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Three Flavor Mixing Hypothesis Fits All∗ Data Really Well.

⇒ Good Measurements of Oscillation Observables

[Gonzalez-Garcia, Maltoni, Salvado, arXiv:1001.4524]
∗ Modulo “Anomalies”. Comments Later.
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What We Know We Don’t Know: Missing Oscillation Parameters
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[Driving Force of Next-Generation Oscillation Program]

• What is the νe component of ν3?
(θ13 6= 0?)

• Is CP-invariance violated in neutrino
oscillations? (δ 6= 0, π?)

• Is ν3 mostly νµ or ντ? (θ23 > π/4,
θ23 < π/4, or θ23 = π/4?)

• What is the neutrino mass hierarchy?
(∆m2

13 > 0?)

⇒ All of the above can “only” be

addressed with new neutrino

oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)
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We need to do this in

the lepton sector!
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Strawman New Physics: New Neutrino–Matter Interactions

These are parameterized by effective four-fermion interactions, of the type:

LNSI = −2
√

2GF (ν̄αγµνβ)
(
εff̃Lαβ f̄Lγ

µf̃L + εff̃Rαβ f̄Rγ
µf̃R

)
+ h.c.

where f, f̃ = u, d, . . . and εff̃αβ are dimensionless couplings that measure the

strength of the four-fermion interaction relative to the weak interactions.

While some of the εs are well constrained (especially those involving muons),

some are only very poorly known. These are best searched for in neutrino

oscillation experiments, where they mediate anomalous matter effects:

Hmat =
√

2GFne


1 + εee ε∗eµ ε∗eτ

εeµ εµµ ε∗µτ

εeτ εµτ εττ

 , εαβ =
∑

f=u,d,e

εffαβ
nf
ne
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Anomalous matter effects are CPT violating (in a simple, benign way):

neutrinos and antineutrinos behave differently!

[Kopp, Machado, Parke, 1009.0014]
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[Kopp, Machado, Parke, 1009.0014]
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PRELIMINARY!

More Room For

New Neutrinos?
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What We Are Trying To Understand:

⇐ NEUTRINOS HAVE TINY MASSES

⇓ LEPTON MIXING IS “WEIRD” ⇓

VMNS ∼
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First Question: What Is The Lagrangian of

The New Standard Model [νSM]?

The short answer is – WE DON’T KNOW. Not enough available info!

m
Equivalently, there are several completely different ways of addressing
neutrino masses. The key issue is to understand what else the νSM
candidates can do. [are they falsifiable?, are they “simple”?, do they
address other outstanding problems in physics?, etc]

We need more experimental input.

February 17, 2011 ν Physics, et al
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Candidate νSM

SM as an effective field theory – non-renormalizable operators

LνSM ⊃ −yij LiHLjH2Λ +O ( 1
Λ2

)
+H.c.

There is only one dimension five operator [Weinberg, 1979]. If Λ� 1 TeV, it
leads to only one observable consequence...

after EWSB: LνSM ⊃ mij
2 νiνj ; mij = yij

v2

Λ .

• Neutrino masses are small: Λ� v → mν � mf (f = e, µ, u, d, etc)

• Neutrinos are Majorana fermions – Lepton number is violated!

• νSM effective theory – not valid for energies above at most Λ/y.

• Define ymax ≡ 1 ⇒ data require Λ ∼ 1014 GeV.

What else is this “good for”? Depends on the ultraviolet completion!

February 17, 2011 ν Physics, et al
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The Seesaw Lagrangian

A simplea, renormalizable Lagrangian that allows for neutrino masses is

Lν = Lold − λαiLαHN i −
3∑
i=1

Mi

2
N iN i +H.c.,

where Ni (i = 1, 2, 3, for concreteness) are SM gauge singlet fermions.

Lν is the most general, renormalizable Lagrangian consistent with the SM
gauge group and particle content, plus the addition of the Ni fields.

After electroweak symmetry breaking, Lν describes, besides all other SM
degrees of freedom, six Majorana fermions: six neutrinos.

aOnly requires the introduction of three fermionic degrees of freedom, no new inter-

actions or symmetries.

February 17, 2011 ν Physics, et al
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What We Know About M :

• M = 0: the six neutrinos “fuse” into three Dirac states. Neutrino
mass matrix given by µαi ≡ λαiv.

The symmetry of Lν is enhanced: U(1)B−L is an exact global
symmetry of the Lagrangian if all Mi vanish. Small Mi values are
’tHooft natural.

• M � µ: the six neutrinos split up into three mostly active, light ones,
and three, mostly sterile, heavy ones. The light neutrino mass matrix
is given by mαβ =

∑
i µαiM

−1
i µβi [m ∝ 1/Λ ⇒ Λ = M/µ2].

This the seesaw mechanism. Neutrinos are Majorana fermions.
Lepton number is not a good symmetry of Lν , even though
L-violating effects are hard to come by.

• M ∼ µ: six states have similar masses. Active–sterile mixing is very
large. This scenario is (generically) ruled out by active neutrino data
(atmospheric, solar, KamLAND, K2K, etc).

February 17, 2011 ν Physics, et al
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High-Energy Seesaw: Brief Comments

• This is everyone’s favorite scenario.

• Upper bound for M (e.g. Maltoni, Niczyporuk, Willenbrock, hep-ph/0006358):

M < 7.6× 1015 GeV ×
(

0.1 eV
mν

)
.

• Hierarchy problem hint (e.g., Casas, Espinosa, Hidalgo, hep-ph/0410298):

M < 107 GeV.

• Physics “too” heavy! No observable consequence other than
leptogenesis. From thermal leptogenesis M > 109 GeV. Will we ever
convince ourselves that this is correct? (e.g., Buckley, Murayama,

hep-ph/0606088)

February 17, 2011 ν Physics, et al
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Low-Energy Seesaw [AdG PRD72,033005)]

The other end of the M spectrum (M < 100 GeV). What do we get?

• Neutrino masses are small because the Yukawa couplings are very small

λ ∈ [10−6, 10−11];

• No standard thermal leptogenesis – right-handed neutrinos way too light?

[For a possible alternative see Canetti, Shaposhnikov, arXiv: 1006.0133 and

reference therein.]

• No obvious connection with other energy scales (EWSB, GUTs, etc);

• Right-handed neutrinos are propagating degrees of freedom. They look like

sterile neutrinos ⇒ sterile neutrinos associated with the fact that the active

neutrinos have mass;

• sterile–active mixing can be predicted – hypothesis is falsifiable!

• Small values of M are natural (in the ‘tHooft sense). In fact, theoretically,

no value of M should be discriminated against!

February 17, 2011 ν Physics, et al
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[AdG, Huang, Jenkins, arXiv:0906.1611]
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9

TABLE I: Dimension-five through dimension-eleven LNV operators analyzed in this survey. The first two columns display the
operator name and field structure, respectively. Column three presents the induced neutrino mass expressions, followed by
the inferred scale of new physics, Λν . Column five lists favorable modes of experimental exploration. Column six describes an
operator’s current status according to the key U (Unconstrained), C (Constrained) and D (Disfavored). See text for details.

O Operator mαβ Λν (TeV) Best Probed Disfavored

4a LiLjQiū
cHkεjk

yu

16π2

v2

Λ 4 × 109 ββ0ν U

4b LiLjQkūcHkεij
yug2

(16π2)2
v2

Λ 6 × 106 ββ0ν U

5 LiLjQkdcH lHmHiεjlεkm
yd

(16π2)2
v2

Λ 6 × 105 ββ0ν U

6 LiLjQkūcH lHkHiεjl
yu

(16π2)2
v2

Λ 2 × 107 ββ0ν U

7 LiQj ēcQkHkH lHmεilεjm y%β

g2

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
4 × 102 mix C

8 LiēcūcdcHjεij y%β

ydyu

(16π2)2
v2

Λ 6 × 103 mix C

9 LiLjLkecLlecεijεkl
y2

"
(16π2)2

v2

Λ 3 × 103 ββ0ν U

10 LiLjLkecQldcεijεkl
y"yd

(16π2)2
v2

Λ 6 × 103 ββ0ν U

11a LiLjQkdcQldcεijεkl
y2

dg2

(16π2)3
v2

Λ 30 ββ0ν U

11b LiLjQkdcQldcεikεjl
y2

d
(16π2)2

v2

Λ 2 × 104 ββ0ν U

12a LiLjQiū
cQjūc y2

u
(16π2)2

v2

Λ 2 × 107 ββ0ν U

12b LiLjQkūcQlū
cεijε

kl y2
ug2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

13 LiLjQiū
cLlecεjl

y"yu

(16π2)2
v2

Λ 2 × 105 ββ0ν U

14a LiLjQkūcQkdcεij
ydyug2

(16π2)3
v2

Λ 1 × 103 ββ0ν U

14b LiLjQiū
cQldcεjl

ydyu

(16π2)2
v2

Λ 6 × 105 ββ0ν U

15 LiLjLkdcLiūcεjk
ydyug2

(16π2)3
v2

Λ 1 × 103 ββ0ν U

16 LiLjecdcēcūcεij
ydyug4

(16π2)4
v2

Λ 2 ββ0ν, LHC U

17 LiLjdcdcd̄cūcεij
ydyug4

(16π2)4
v2

Λ 2 ββ0ν, LHC U

18 LiLjdcucūcūcεij
ydyug4

(16π2)4
v2

Λ 2 ββ0ν, LHC U

19 LiQjdcdcēcūcεij y%β

y2
dyu

(16π2)3
v2

Λ 1 ββ0ν, HElnv, LHC, mix C

20 LidcQiū
cēcūc y%β

ydy2
u

(16π2)3
v2

Λ 40 ββ0ν, mix C

21a LiLjLkecQlucHmHnεijεkmεln
y"yu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 103 ββ0ν U

21b LiLjLkecQlucHmHnεilεjmεkn
y"yu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 103 ββ0ν U

22 LiLjLkecLkēcH lHmεilεjm
g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

23 LiLjLkecQkd̄cH lHmεilεjm
y"yd

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
40 ββ0ν U

24a LiLjQkdcQldcHmHiεjkεlm
y2

d
(16π2)3

v2

Λ 1 × 102 ββ0ν U

24b LiLjQkdcQldcHmHiεjmεkl
y2

d
(16π2)3

v2

Λ 1 × 102 ββ0ν U

25 LiLjQkdcQlucHmHnεimεjnεkl
ydyu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
4 × 103 ββ0ν U

26a LiLjQkdcLiēcH lHmεjlεkm
y"yd

(16π2)3
v2

Λ 40 ββ0ν U

26b LiLjQkdcLkēcH lHmεilεjm
y"yd

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
40 ββ0ν U

27a LiLjQkdcQid̄
cH lHmεjlεkm

g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

27b LiLjQkdcQkd̄cH lHmεilεjm
g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

28a LiLjQkdcQjū
cH lHiεkl

ydyu

(16π2)3
v2

Λ 4 × 103 ββ0ν U

28b LiLjQkdcQkūcH lHiεjl
ydyu

(16π2)3
v2

Λ 4 × 103 ββ0ν U

28c LiLjQkdcQlū
cH lHiεjk

ydyu

(16π2)3
v2

Λ 4 × 103 ββ0ν U

29a LiLjQkucQkūcH lHmεilεjm
y2

u
(16π2)2

v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 105 ββ0ν U

29b LiLjQkucQlū
cH lHmεikεjm

g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

30a LiLjLiēcQkūcHkH lεjl
y"yu

(16π2)3
v2

Λ 2 × 103 ββ0ν U

30b LiLjLmēcQnūcHkH lεikεjlε
mn y"yu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 103 ββ0ν U

31a LiLjQid̄
cQkūcHkH lεjl

ydyu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
4 × 103 ββ0ν U

Effective

Operator

Approach

AdG, Jenkins,

0708.1344 [hep-ph]

(there are 129

of them if you

discount different

Lorentz structures!)

classified by Babu

and Leung in

NPB619,667(2001)
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How Do We Learn More?

In order to learn more, we need more information. Any new data and/or
idea is welcome, including

• searches for charged lepton flavor violation;

(µ→ eγ, µ→ e-conversion in nuclei, etc)

• searches for lepton number violation;

(neutrinoless double beta decay, etc)

• neutrino oscillation experiments;

(Daya Bay, NOνA, etc)

• searches for fermion electric/magnetic dipole moments

(electron edm, muon g − 2, etc);

February 17, 2011 ν Physics, et al
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• precision studies of neutrino – matter interactions;

(Minerνa, NuSOnG, etc)

• collider experiments:

(LHC, etc)

– Can we “see” the physics responsible for neutrino masses at the LHC?
– YES!
Must we see it? – NO, but we won’t find out until we try!

– we need to understand the physics at the TeV scale before we can
really understand the physics behind neutrino masses (is there
low-energy SUSY?, etc).

February 17, 2011 ν Physics, et al
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Segue to Charged-Lepton Flavor Violation:

Neutrino Oscillations have revealed that individual lepton-flavor numbers
are NOT conserved!

Hence, in the νSM (the old Standard Model plus operators that lead to
neutrino masses) µ→ eγ is allowed (along with all other charged lepton
flavor violating processes).

These are Flavor Changing Neutral Current processes, observed in the
quark sector (b→ sγ, K0 ↔ K̄0, etc).

Unfortunately, we do not know the νSM expectation for charged lepton
flavor violating processes → we don’t know the νSM Lagrangian !

February 17, 2011 ν Physics, et al
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One contribution known to be there: active neutrino loops (same as quark sector).

In the case of charged leptons, the GIM suppression is very efficient. . .

e.g.: Br(µ→ eγ) = 3α
32π

∣∣∣∑i=2,3 U
∗
µiUei

∆m2
1i

M2
W

∣∣∣2 < 10−54

[Uαi are the elements of the leptonic mixing matrix,

∆m2
1i ≡ m2

i −m2
1, i = 2, 3 are the neutrino mass-squared differences]

February 17, 2011 ν Physics, et al
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In The SeeSaw Mechanism. . . [minus “Theoretical Prejudice”]

arXiv:0706.1732 [hep-ph]
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Independent from neutrino masses, there are strong theoretical reasons to
believe that the expected rate for flavor changing violating processes is
much, much larger than naive νSM predictions and that discovery is just
around the corner.

Due to the lack of SM “backgrounds,” searches for rare muon processes,
including µ→ eγ, µ→ e+e−e and µ+N → e+N (µ-e–conversion in
nuclei) are considered ideal laboratories to probe effects of new physics at
or even above the electroweak scale.

Indeed, if there is new physics at the electroweak scale (as many theorists
will have you believe) and if mixing in the lepton sector is large
“everywhere” the question we need to address is quite different:

Why haven’t we seen charged lepton flavor violation yet?

February 17, 2011 ν Physics, et al



André de Gouvêa Northwestern

10 3

10 4

10
-2

10
-1

1 10 10
2

κ

Λ
 (

T
eV

)

B(µ→ eγ)>10-13
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EXCLUDED

Model Independent Considerations

LCLFV =
mµ

(κ+1)Λ2 µ̄RσµνeLF
µν+

+ κ
(1+κ)Λ2 µ̄LγµeL

(
ūLγ

µuL + d̄Lγ
µdL
)

• µ→ e-conv at 10−17 “guaranteed” deeper

probe than µ→ eγ at 10−14.

• We don’t think we can do µ→ eγ better than

10−14. µ→ e-conv “only” way forward after MEG.

• If the LHC does not discover new states

µ→ e-conv among very few process that can

access 1000+ TeV new physics scale:

tree-level new physics: κ� 1, 1
Λ2 ∼

g2θeµ
M2

new
.

February 17, 2011 ν Physics, et al
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“Bread and Butter” SUSY plus High Energy Seesaw

� �� � �

��

��

�

� � �
	
 	�

→ θẽµ̃ ∼ ∆m2
ẽµ̃

m̃

Br(µ→ eγ) ' α3π
G2
F
m̃4 θ

2
ẽµ̃ , m̃2 is a typical supersymmetric mass.

θẽµ̃ measures the “amount” of flavor violation.

For m̃ around 1 TeV, θẽµ̃ is severely constrained. Very big problem.

“Natural” solution: θẽµ̃ = 0 → modified by quantum corrections.

February 17, 2011 ν Physics, et al
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[Agashe, Blechman, Petriello, hep-ph/0606021]

Randall-Sundrum Model

(fermions in the bulk)

- dependency on UV-completion(?)

- dependency on Yukawa couplings

- “complementarity” between µ→ eγ,

µ− e conv

SUSY GUT

- dependency on choice for

neutrino Yukawa couplings

- scan restricted to scenarios

LHC discovers new states.

[Calibbi et al, PRD74, 116002 (2006)]
February 17, 2011 ν Physics, et al
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What is This Good For?

While specific models (see last slide) provide estimates for the rates for
CLFV processes, the observation of one specific CLFV process cannot
determine the underlying physics mechanism (this is always true when all
you measure is the coefficient of an effective operator).

Real strength lies in combinations of different measurements, including:

• kinematical observables (e.g. angular distributions in µ→ eee);

• other CLFV channels;

• neutrino oscillations;

• measurements of g − 2 and EDMs;

• collider searches for new, heavy states;

• etc.

February 17, 2011 ν Physics, et al
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[Cirigliano, Kitano, Okada, Tuzon, 0904.0957]

Dipole (∝ µ̄σαβeFαβ)

Scalar 4-Fermion Interaction

Vector 4-Fermion Interaction (Z)

∝ (µ̄γαe)(q̄γαq)

Vector 4-Fermion Interaction (γ)

∝ (µ̄e)(q̄q)
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Model Independent Comparison Between g − 2 and CLFV:

The dipole effective operators that mediate µ→ eγ and contribute to aµ are

virtually the same:

mµ

Λ2
µ̄σµνµFµν × θeµ

mµ

Λ2
µ̄σµνeFµν

θeµ measures how much flavor is violated. θeµ = 1 in a flavor indifferent theory,

θeµ = 0 in a theory where indiviadual lepton flavor number is exactly conserved.

If θeµ ∼ 1, µ→ eγ is a much more stringent probe of Λ.

On the other hand, if the current discrepancy in aµ is due to new physics,

θeµ � 1 (θeµ < 10−4). [Hisano, Tobe, hep-ph/0102315]

e.g., in SUSY models, Br(µ→ eγ) ' 3× 10−5
(

10−9

δaµ

)(
∆m2

ẽµ̃

m̃2

)2

Comparison restricted to dipole operator. If four-fermion operators are relevant,

they will “only” enhance rate for CLFV with respect to expectations from g− 2.
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(From Talk by D. Bryman) New Physics: Exchange 10−4(MW )−2 by Cnew(Mnew)−2
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André de Gouvêa Northwestern

large data samples may teach us a lot . . . depending on where we are in (2017±?)
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CONCLUSIONS

1. we have a very successful parametrization of the neutrino sector, but
we still don’t understand where neutrino masses (and lepton mixing)
come from;

2. neutrino masses are very small – we don’t know why, but we think it
means something important. What are neutrinos trying to tell us?;

3. we need more experimental data! And there are some intriguing
hints here and there. Help may come from many different sources:
colliders, neutrino experiments, experiments with charged-leptons, etc.

4. Intensity Frontier experiments provide a very powerful probe of new
physics (reach well beyond the TeV scale), whether or not this new
physics has anything to do with neutrino masses.
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Backup Slides . . .
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VMNS ∼


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
1 0.2 0.001
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0.001 0.01 1



1

Understanding Fermion Mixing

The other puzzling phenomenon uncovered by the neutrino data is the

fact that Neutrino Mixing is Strange. What does this mean?

It means that lepton mixing is very different from quark mixing:

[|(VMNS)e3| < 0.2]

WHY?

They certainly look VERY different, but which one would you label
as “strange”?
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pessimist – “We can’t compute what |Ue3| is – must measure it!”

[Albright and Chen, hep-ph/0608137]

(same goes for the mass hierarchy, δ)
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André de Gouvêa Northwestern

Comments On Current Flavor Model-Building Scene:

• VERY active research area. Opportunity to make bona fide prediction
regarding parameters that haven’t been measured yet but will be
measured for sure in the near future → θ13, δ, mass hierarchy, etc;

• For flavor symmetries, more important than determining the values of
the parameters is the prospect of establishing non-trivial relationships
among several interesting unkowns;

e.g.,

sin2 θ13 ∼ ∆m2
12/|∆m2

13| if hierarchy is normal,
sin2 θ13 ∼ (∆m2

12/|∆m2
13|)2 if hierachy is inverted

is common “prediction” of many flavor models (often also related to
cos 2θ23).

February 17, 2011 ν Physics, et al
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On very small Yukawa couplings

We would like to believe that Yukawa couplings should naturally be of
order one.

Nature, on the other hand, seems to have a funny way of showing this. Of
all known fermions, only one (1) has a “natural” Yukawa coupling – the
top quark!

Regardless there are several very different ways of obtaining “naturally”
very small Yukawa couplings. They require more new physics.

“Natural” solutions include flavor symmetries, extra-dimensions of
different “warping,” . . .
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(a) (b) (c)

q

q qq ℓℓ

g gg

qq ℓν

q

g g

q qqq ℓ ℓ

LNV at Colliders ⇒ LHC: pp→ `±`±+ multi-jets

OK OK ν in final state
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Going All the Way: What Happens When M � µ?

In this case, the six Weyl fermions pair up into three quasi-degenerate
states (“quasi-Dirac fermions”).

These states are fifty–fifty active–sterile mixtures. In the limit M → 0, we
end up with Dirac neutrinos, which are clearly allowed by all the data.
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[AdG, Huang, Jenkins, arXiv:0906.1611]

Quasi-Sterile Neutrinos

• tiny new ∆m2 = ε∆m2
12,

• maximal mixing!

• Effects in Solar νs
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(Almost) All We Know About Solar Neutrinos
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Quasi-Sterile Neutrinos

• tiny new ∆m2 = ε∆m2
12,

• maximal mixing!

• Effects in Solar νs
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[AdG, Jenkins, Vasudevan, PRD75, 013003 (2007)]

Oscillations

Dark Matter(?)

Pulsar Kicks

Also effects in 0νββ,

tritium beta-decay,

supernova neutrino oscillations,

non-standard cosmology.
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B(µ→ eγ)>10-13

B(µ→ eee)>10-14

B(µ→ eee)>10-15

B(µ→ eee)>10-16

EXCLUDED

Other Example: µ→ ee+e−

LCLFV =
mµ

(κ+1)Λ2 µ̄RσµνeLF
µν+

+ κ
(1+κ)Λ2 µ̄LγµeLēγ

µe

• µ→ eee-conv at 10−16 “guaranteed” deeper

probe than µ→ eγ at 10−14.

• µ→ eee another way forward after MEG?

• If the LHC does not discover new states

µ→ eee among very few process that can

access 1,000+ TeV new physics scale:

tree-level new physics: κ� 1, 1
Λ2 ∼

g2θeµ
M2

new
.
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Who Cares About Neutrino Masses: Only∗ “Palpable” Evidence
of Physics Beyond the Standard Model

The SM we all learned in school predicts that neutrinos are strictly
massless. Massive neutrinos imply that the the SM is incomplete and
needs to be replaced/modified.

Furthermore, the SM has to be replaced by something qualitatively
different.

——————
∗ There is only a handful of questions our model for fundamental physics cannot

explain properly. These are, in order of “palpability” (my opinion):

• What is the physics behind electroweak symmetry breaking? (Higgs or not in SM).

• What is the dark matter? (not in SM).

• Why does the Universe appear to be accelerating? Why does it appear that the

Universe underwent rapid acceleration in the past? (not in SM – is this “particle

physics?”).
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Weak Scale Seesaw, and Accidentally Light Neutrino Masses
[AdG arXiv:0706.1732 [hep-ph]]

What does the seesaw Lagrangian predict

for the LHC?

Nothing much, unless. . .

• MN ∼ 1− 100 GeV,

• Yukawa couplings larger than naive
expectations.

⇐ H → νN as likely as H → bb̄!

(NOTE: N → `q′q̄ or ``′ν (prompt)

“Weird” Higgs decay signature! )

[“No” Lepton Number Violation at Colliders]
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Why are Neutrino Masses Small in the M 6= 0 Case?

If µ�M , below the mass scale M ,

L5 =
LHLH

Λ
.

Neutrino masses are small if Λ� 〈H〉. Data require Λ ∼ 1014 GeV.

In the case of the seesaw,

Λ ∼ M

λ2
,

so neutrino masses are small if either

• they are generated by physics at a very high energy scale M � v

(high-energy seesaw); or

• they arise out of a very weak coupling between the SM and a new, hidden

sector (low-energy seesaw); or

• cancellations among different contributions render neutrino masses

accidentally small (“fine-tuning”).
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