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Amazing Standard Model
[The Gfitter group, 1803.01853]
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Phenomenological Lagrangians
Collections of a series of couplings that can be used to translate data into 
Lagrangian parameters:

Triple Gauge Vertices Lag. [Hagiwara, Peccei, Zeppenfeld & Hikasa, NPB282 (1987)]

LWWV =� igWWV

(
gV1

⇣
W+

µ⌫W
�µV ⌫ �W+

µ V⌫W
�µ⌫

⌘
+ V W

+
µ W�
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� igV5 ✏µ⌫⇢�
�
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µ @⇢W
�
⌫ �W�

⌫ @⇢W
+
µ

�
V� + gV6

�
@µW

+µW�⌫ � @µW
�µW+⌫

�
V⌫

)

gZ1 = � = Z = 1 gZ5 = g�6 = gZ6 = 0The SM values are:                                       and   

V ⌘ {�, Z} gWW� ⌘ e = gsW gWWZ = gcW
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Phenomenological Lagrangians
Collections of a series of couplings that can be used to translate data into 
Lagrangian parameters:

NOT                               invariant, but just  SU(2)L ⇥ U(1)Y U(1)em

The gauge bosons are not always written by 
means of the gauge field strengths
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Δ (k) — Formalism
Higgs triple vertices with gauge bosons — HVV

When considering only the SM couplings:

gxxh ⌘ gx = gSM
x (1 +�x) tree-level couplings

g��h ⌘ g� = gSM
� (1 +�SM

� +��)

gggh ⌘ gg = gSM
g (1 +�SM

g +�g)
loop-induced couplings

SFITTER }}
[Lafaye, Plehn, Rauch, Zerwas & Dührssen, JHEP 0908 (2009)]
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Equivalent parameters x ⌘ 1 +�x

[LHC Higgs Cross Section Working Group, arXiv:1209.0040]( (
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Equivalent parameters x ⌘ 1 +�x

[LHC Higgs Cross Section Working Group, arXiv:1209.0040]( (

Again, NOT                           invariant, but just             .SU(2)L ⇥ U(1)Y U(1)em
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Figure 1: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In this fit

we do not allow for new particles in the e↵ective Higgs couplings to photons and gluons, �� = 0 = �g. The results labelled

‘SM exp’ assume central values on the Standard Model expectation, but the current data error bars.

fermion. In addition, the non-diagonal photon–Z–Higgs is missing, but can be trivially added to this ansatz as we

will discuss. We have shown that a SFitter analysis of the aligned two-Higgs-doublet model — with coupling

deviations � computed from the underlying parameters — and the weak scale Higgs coupling analysis indeed give

identical results [8]. Furthermore, neglecting the invisible decays and setting �W = �Z the Lagrangian in Eq.(2.2)

corresponds to the non-linear e↵ective Lagrangian [37] of the Higgs sector, but restricted to the leading terms of the

expansion defined in Ref. [38].

Our couplings approach only tracks a deviation in the leading coupling of the Higgs boson to each SM particle. We

only consider the dimension-4 Lagrangian plus non-decoupling dimension-6 operators coupling the Higgs to photons or

gluons. Strictly speaking, in the linear e↵ective Lagrangian approach this kind of dimension-6 operators also modify

the Higgs couplings to electroweak gauge bosons. As long as the experimental analysis is limited to total rates, we

can expect loop-induced corrections for the HWW coupling to be suppressed with respect to shifts in the tree-level

coupling gW .

A shortcoming of the approach is that it does not include e↵ects of the additional new particles on the SM

Lagrangian outside the Higgs sector. For example, it does not link deviations in Higgs couplings to anomalous triple

gauge couplings. For a comprehensive analysis of all e↵ects of such new states we have to extend the free Higgs

couplings to an e↵ective field theory based on a non-linear sigma model in the broken phase of the electroweak

symmetry, see for instance Ref. [37].

Going beyond the original SFitter ansatz indeed means re-writing and extending the Lagrangian by additional

operators which couple Standard Model fields to the Higgs boson. These operators can be classified by their dimension.

For example for the Higgs coupling to W and Z bosons this question has been studied independently of the coupling

strength [9, 10, 37].

A. Standard Model couplings

In the first step we can fit the five tree level Higgs couplings to all Standard Model particles relevant for the LHC

observations. The result is shown in Fig. 1. The red bars labelled ‘SM exp’ show results where we have injected

a Standard Model Higgs signal on top of the background, i.e. the measured rate in each channel is exactly the SM

expectation, but leave everything else unchanged. They indicate that the observed errors are slightly smaller than

expected. This is a universal e↵ect of the theoretical uncertainties which we will discuss in detail in Sec. II C.

The simplest model, motivated for example by a Higgs portal [39] or a single form factor from a strongly interacting

Results with Δg=0=Δγ

SM exp. are obtained injecting the SM Higgs signal on top of the background.

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Analyses based on event rates from ATLAS and CMS:

3

A. Experimental input

In all SFitter Higgs coupling analyses the experimental input is not the published set of Higgs signal strengths,

but the number of signal and background events for each analysis. This allows us to independently study statistical,

systematic, and theoretical uncertainties and include them in a profile likelihood analysis largely independent of the

ATLAS and CMS assumptions. As a matter of fact, this independence is our motivation to maintain the SFitter

e↵ort in spite of more and more advanced experimental Higgs coupling analyses.

As experimental input we use the following Higgs searches and measurements as published by the ATLAS and CMS

collaborations:

production/decay mode ATLAS CMS

H ! WW Ref. [13] Ref. [14]

H ! ZZ Ref. [15] Ref. [16]

H ! �� Ref. [17] Ref. [18]

H ! ⌧ ⌧̄ Ref. [19] Ref. [20]

H ! bb̄ Ref. [21] Ref. [22]

H ! Z� Ref. [23] Ref. [24]

H ! invisible Ref. [25–28] Ref. [29, 30]

tt̄H production Ref. [17, 31] Ref. [18, 32, 33]

kinematic distributions Ref. [21, 34]

o↵-shell rate Ref. [35] Ref. [36]

From all these analyses we extract the number of observed, signal and background events after appropriate cuts. The

several categorizations in the experimental searches listed in the above table lead to the 159 measurements that we

include in the rate based analyses. In Sec. IIID we add 14 extra measurements from kinematic distributions. Finally,

the o↵-shell distributions considered in Sec. IV contribute with 37 additional measurements.

We will show Higgs coupling analyses in the SFitter framework starting with one universal modification, moving

to five tree level SM-like couplings, and then allowing for additional contributions to the Higgs-photon and Higgs-gluon

loop-induced couplings. A new channel which we did not include in previous Higgs coupling analyses is the direct

measurement of a modified top-quark Yukawa coupling in tt̄H production. This is necessary to identify new physics

contributing to the e↵ective Higgs-gluon coupling. While there is not yet enough sensitivity to properly observe the tt̄H

production channel with SM coupling strength, the current searches do provide upper bounds on the production and

decay rates. Both experiments have looked for this channel as part of their di-photon final-state analysis [17, 18, 31];

moreover, CMS has published additional searches based on multi-lepton final states arising from Higgs decays into

WW
⇤, ZZ

⇤ and ⌧ ⌧̄ [32] as well as a dedicated bb̄ analysis [33]. These tt̄H measurements allow us to separate an extra

new contribution to the Higgs-gluon coupling, leading to the analysis with seven independent coupling modifications.

After setting the two Higgs-weak-boson coupling modifications equal, these seven modifications correspond to the

relevant parameters in the non-linear e↵ective Lagrangian expansion [37], if we restrict them to the leading terms

following Ref. [38]. In the last step we will also include Higgs searches to invisible particles, i.e. generating missing

transverse momentum. This will allow us to add an extra modification to the analysis, accounting for possible Higgs

invisible decays. All coupling analyses in the traditional SFitter framework rely on the same measurements listed

above.

For the dimension-6 operators, which not only change the coupling strengths but also the momentum dependence

of the vertices leading to modifications of kinematic distributions, we make use of several di↵erential distributions.

These are the transverse momentum distributions of the gauge boson in V H, H ! bb̄ production [21] for all 0, 1

and 2-lepton final states, and the ��jj distribution in H+2 jets with di-photon decays of the Higgs boson [34]. In

9
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Figure 1: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In this fit

we do not allow for new particles in the e↵ective Higgs couplings to photons and gluons, �� = 0 = �g. The results labelled

‘SM exp’ assume central values on the Standard Model expectation, but the current data error bars.

fermion. In addition, the non-diagonal photon–Z–Higgs is missing, but can be trivially added to this ansatz as we

will discuss. We have shown that a SFitter analysis of the aligned two-Higgs-doublet model — with coupling

deviations � computed from the underlying parameters — and the weak scale Higgs coupling analysis indeed give

identical results [8]. Furthermore, neglecting the invisible decays and setting �W = �Z the Lagrangian in Eq.(2.2)

corresponds to the non-linear e↵ective Lagrangian [37] of the Higgs sector, but restricted to the leading terms of the

expansion defined in Ref. [38].

Our couplings approach only tracks a deviation in the leading coupling of the Higgs boson to each SM particle. We

only consider the dimension-4 Lagrangian plus non-decoupling dimension-6 operators coupling the Higgs to photons or

gluons. Strictly speaking, in the linear e↵ective Lagrangian approach this kind of dimension-6 operators also modify

the Higgs couplings to electroweak gauge bosons. As long as the experimental analysis is limited to total rates, we

can expect loop-induced corrections for the HWW coupling to be suppressed with respect to shifts in the tree-level

coupling gW .

A shortcoming of the approach is that it does not include e↵ects of the additional new particles on the SM

Lagrangian outside the Higgs sector. For example, it does not link deviations in Higgs couplings to anomalous triple

gauge couplings. For a comprehensive analysis of all e↵ects of such new states we have to extend the free Higgs

couplings to an e↵ective field theory based on a non-linear sigma model in the broken phase of the electroweak

symmetry, see for instance Ref. [37].

Going beyond the original SFitter ansatz indeed means re-writing and extending the Lagrangian by additional

operators which couple Standard Model fields to the Higgs boson. These operators can be classified by their dimension.

For example for the Higgs coupling to W and Z bosons this question has been studied independently of the coupling

strength [9, 10, 37].

A. Standard Model couplings

In the first step we can fit the five tree level Higgs couplings to all Standard Model particles relevant for the LHC

observations. The result is shown in Fig. 1. The red bars labelled ‘SM exp’ show results where we have injected

a Standard Model Higgs signal on top of the background, i.e. the measured rate in each channel is exactly the SM

expectation, but leave everything else unchanged. They indicate that the observed errors are slightly smaller than

expected. This is a universal e↵ect of the theoretical uncertainties which we will discuss in detail in Sec. II C.

The simplest model, motivated for example by a Higgs portal [39] or a single form factor from a strongly interacting

Results with Δg=0=Δγ

First analysis: universal modifications of h couplings  

Extended Higgs sector, e.g. extra Singlet, �H ⇡ 3%

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Analyses based on event rates from ATLAS and CMS:

3

A. Experimental input

In all SFitter Higgs coupling analyses the experimental input is not the published set of Higgs signal strengths,

but the number of signal and background events for each analysis. This allows us to independently study statistical,

systematic, and theoretical uncertainties and include them in a profile likelihood analysis largely independent of the

ATLAS and CMS assumptions. As a matter of fact, this independence is our motivation to maintain the SFitter

e↵ort in spite of more and more advanced experimental Higgs coupling analyses.

As experimental input we use the following Higgs searches and measurements as published by the ATLAS and CMS
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production/decay mode ATLAS CMS
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H ! Z� Ref. [23] Ref. [24]
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tt̄H production Ref. [17, 31] Ref. [18, 32, 33]

kinematic distributions Ref. [21, 34]

o↵-shell rate Ref. [35] Ref. [36]

From all these analyses we extract the number of observed, signal and background events after appropriate cuts. The

several categorizations in the experimental searches listed in the above table lead to the 159 measurements that we

include in the rate based analyses. In Sec. IIID we add 14 extra measurements from kinematic distributions. Finally,

the o↵-shell distributions considered in Sec. IV contribute with 37 additional measurements.

We will show Higgs coupling analyses in the SFitter framework starting with one universal modification, moving

to five tree level SM-like couplings, and then allowing for additional contributions to the Higgs-photon and Higgs-gluon
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contributing to the e↵ective Higgs-gluon coupling. While there is not yet enough sensitivity to properly observe the tt̄H

production channel with SM coupling strength, the current searches do provide upper bounds on the production and

decay rates. Both experiments have looked for this channel as part of their di-photon final-state analysis [17, 18, 31];

moreover, CMS has published additional searches based on multi-lepton final states arising from Higgs decays into
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⇤ and ⌧ ⌧̄ [32] as well as a dedicated bb̄ analysis [33]. These tt̄H measurements allow us to separate an extra

new contribution to the Higgs-gluon coupling, leading to the analysis with seven independent coupling modifications.

After setting the two Higgs-weak-boson coupling modifications equal, these seven modifications correspond to the

relevant parameters in the non-linear e↵ective Lagrangian expansion [37], if we restrict them to the leading terms

following Ref. [38]. In the last step we will also include Higgs searches to invisible particles, i.e. generating missing

transverse momentum. This will allow us to add an extra modification to the analysis, accounting for possible Higgs

invisible decays. All coupling analyses in the traditional SFitter framework rely on the same measurements listed

above.

For the dimension-6 operators, which not only change the coupling strengths but also the momentum dependence

of the vertices leading to modifications of kinematic distributions, we make use of several di↵erential distributions.
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Figure 1: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In this fit

we do not allow for new particles in the e↵ective Higgs couplings to photons and gluons, �� = 0 = �g. The results labelled

‘SM exp’ assume central values on the Standard Model expectation, but the current data error bars.

fermion. In addition, the non-diagonal photon–Z–Higgs is missing, but can be trivially added to this ansatz as we

will discuss. We have shown that a SFitter analysis of the aligned two-Higgs-doublet model — with coupling

deviations � computed from the underlying parameters — and the weak scale Higgs coupling analysis indeed give

identical results [8]. Furthermore, neglecting the invisible decays and setting �W = �Z the Lagrangian in Eq.(2.2)

corresponds to the non-linear e↵ective Lagrangian [37] of the Higgs sector, but restricted to the leading terms of the

expansion defined in Ref. [38].

Our couplings approach only tracks a deviation in the leading coupling of the Higgs boson to each SM particle. We

only consider the dimension-4 Lagrangian plus non-decoupling dimension-6 operators coupling the Higgs to photons or

gluons. Strictly speaking, in the linear e↵ective Lagrangian approach this kind of dimension-6 operators also modify

the Higgs couplings to electroweak gauge bosons. As long as the experimental analysis is limited to total rates, we

can expect loop-induced corrections for the HWW coupling to be suppressed with respect to shifts in the tree-level

coupling gW .

A shortcoming of the approach is that it does not include e↵ects of the additional new particles on the SM

Lagrangian outside the Higgs sector. For example, it does not link deviations in Higgs couplings to anomalous triple

gauge couplings. For a comprehensive analysis of all e↵ects of such new states we have to extend the free Higgs

couplings to an e↵ective field theory based on a non-linear sigma model in the broken phase of the electroweak

symmetry, see for instance Ref. [37].

Going beyond the original SFitter ansatz indeed means re-writing and extending the Lagrangian by additional

operators which couple Standard Model fields to the Higgs boson. These operators can be classified by their dimension.

For example for the Higgs coupling to W and Z bosons this question has been studied independently of the coupling

strength [9, 10, 37].

A. Standard Model couplings

In the first step we can fit the five tree level Higgs couplings to all Standard Model particles relevant for the LHC

observations. The result is shown in Fig. 1. The red bars labelled ‘SM exp’ show results where we have injected

a Standard Model Higgs signal on top of the background, i.e. the measured rate in each channel is exactly the SM

expectation, but leave everything else unchanged. They indicate that the observed errors are slightly smaller than

expected. This is a universal e↵ect of the theoretical uncertainties which we will discuss in detail in Sec. II C.

The simplest model, motivated for example by a Higgs portal [39] or a single form factor from a strongly interacting

Results with Δg=0=Δγ

Second analysis: universal modifications with gauge bosons and fermions 

SU(2)L scalar triplet or similar: �V ⇡ ±6%

�f ⇡ ±12%

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Analyses based on event rates from ATLAS and CMS:

3

A. Experimental input

In all SFitter Higgs coupling analyses the experimental input is not the published set of Higgs signal strengths,

but the number of signal and background events for each analysis. This allows us to independently study statistical,

systematic, and theoretical uncertainties and include them in a profile likelihood analysis largely independent of the

ATLAS and CMS assumptions. As a matter of fact, this independence is our motivation to maintain the SFitter

e↵ort in spite of more and more advanced experimental Higgs coupling analyses.

As experimental input we use the following Higgs searches and measurements as published by the ATLAS and CMS

collaborations:

production/decay mode ATLAS CMS

H ! WW Ref. [13] Ref. [14]

H ! ZZ Ref. [15] Ref. [16]

H ! �� Ref. [17] Ref. [18]

H ! ⌧ ⌧̄ Ref. [19] Ref. [20]

H ! bb̄ Ref. [21] Ref. [22]

H ! Z� Ref. [23] Ref. [24]

H ! invisible Ref. [25–28] Ref. [29, 30]

tt̄H production Ref. [17, 31] Ref. [18, 32, 33]

kinematic distributions Ref. [21, 34]

o↵-shell rate Ref. [35] Ref. [36]

From all these analyses we extract the number of observed, signal and background events after appropriate cuts. The

several categorizations in the experimental searches listed in the above table lead to the 159 measurements that we

include in the rate based analyses. In Sec. IIID we add 14 extra measurements from kinematic distributions. Finally,

the o↵-shell distributions considered in Sec. IV contribute with 37 additional measurements.

We will show Higgs coupling analyses in the SFitter framework starting with one universal modification, moving

to five tree level SM-like couplings, and then allowing for additional contributions to the Higgs-photon and Higgs-gluon

loop-induced couplings. A new channel which we did not include in previous Higgs coupling analyses is the direct

measurement of a modified top-quark Yukawa coupling in tt̄H production. This is necessary to identify new physics

contributing to the e↵ective Higgs-gluon coupling. While there is not yet enough sensitivity to properly observe the tt̄H

production channel with SM coupling strength, the current searches do provide upper bounds on the production and

decay rates. Both experiments have looked for this channel as part of their di-photon final-state analysis [17, 18, 31];

moreover, CMS has published additional searches based on multi-lepton final states arising from Higgs decays into

WW
⇤, ZZ

⇤ and ⌧ ⌧̄ [32] as well as a dedicated bb̄ analysis [33]. These tt̄H measurements allow us to separate an extra

new contribution to the Higgs-gluon coupling, leading to the analysis with seven independent coupling modifications.

After setting the two Higgs-weak-boson coupling modifications equal, these seven modifications correspond to the

relevant parameters in the non-linear e↵ective Lagrangian expansion [37], if we restrict them to the leading terms

following Ref. [38]. In the last step we will also include Higgs searches to invisible particles, i.e. generating missing

transverse momentum. This will allow us to add an extra modification to the analysis, accounting for possible Higgs

invisible decays. All coupling analyses in the traditional SFitter framework rely on the same measurements listed

above.

For the dimension-6 operators, which not only change the coupling strengths but also the momentum dependence

of the vertices leading to modifications of kinematic distributions, we make use of several di↵erential distributions.

These are the transverse momentum distributions of the gauge boson in V H, H ! bb̄ production [21] for all 0, 1

and 2-lepton final states, and the ��jj distribution in H+2 jets with di-photon decays of the Higgs boson [34]. In
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Figure 1: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In this fit

we do not allow for new particles in the e↵ective Higgs couplings to photons and gluons, �� = 0 = �g. The results labelled

‘SM exp’ assume central values on the Standard Model expectation, but the current data error bars.

fermion. In addition, the non-diagonal photon–Z–Higgs is missing, but can be trivially added to this ansatz as we

will discuss. We have shown that a SFitter analysis of the aligned two-Higgs-doublet model — with coupling

deviations � computed from the underlying parameters — and the weak scale Higgs coupling analysis indeed give

identical results [8]. Furthermore, neglecting the invisible decays and setting �W = �Z the Lagrangian in Eq.(2.2)

corresponds to the non-linear e↵ective Lagrangian [37] of the Higgs sector, but restricted to the leading terms of the

expansion defined in Ref. [38].

Our couplings approach only tracks a deviation in the leading coupling of the Higgs boson to each SM particle. We

only consider the dimension-4 Lagrangian plus non-decoupling dimension-6 operators coupling the Higgs to photons or

gluons. Strictly speaking, in the linear e↵ective Lagrangian approach this kind of dimension-6 operators also modify

the Higgs couplings to electroweak gauge bosons. As long as the experimental analysis is limited to total rates, we

can expect loop-induced corrections for the HWW coupling to be suppressed with respect to shifts in the tree-level

coupling gW .

A shortcoming of the approach is that it does not include e↵ects of the additional new particles on the SM

Lagrangian outside the Higgs sector. For example, it does not link deviations in Higgs couplings to anomalous triple

gauge couplings. For a comprehensive analysis of all e↵ects of such new states we have to extend the free Higgs

couplings to an e↵ective field theory based on a non-linear sigma model in the broken phase of the electroweak

symmetry, see for instance Ref. [37].

Going beyond the original SFitter ansatz indeed means re-writing and extending the Lagrangian by additional

operators which couple Standard Model fields to the Higgs boson. These operators can be classified by their dimension.

For example for the Higgs coupling to W and Z bosons this question has been studied independently of the coupling

strength [9, 10, 37].

A. Standard Model couplings

In the first step we can fit the five tree level Higgs couplings to all Standard Model particles relevant for the LHC

observations. The result is shown in Fig. 1. The red bars labelled ‘SM exp’ show results where we have injected

a Standard Model Higgs signal on top of the background, i.e. the measured rate in each channel is exactly the SM

expectation, but leave everything else unchanged. They indicate that the observed errors are slightly smaller than

expected. This is a universal e↵ect of the theoretical uncertainties which we will discuss in detail in Sec. II C.

The simplest model, motivated for example by a Higgs portal [39] or a single form factor from a strongly interacting

Results with Δg=0=Δγ
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A. Experimental input

In all SFitter Higgs coupling analyses the experimental input is not the published set of Higgs signal strengths,

but the number of signal and background events for each analysis. This allows us to independently study statistical,

systematic, and theoretical uncertainties and include them in a profile likelihood analysis largely independent of the

ATLAS and CMS assumptions. As a matter of fact, this independence is our motivation to maintain the SFitter

e↵ort in spite of more and more advanced experimental Higgs coupling analyses.

As experimental input we use the following Higgs searches and measurements as published by the ATLAS and CMS

collaborations:

production/decay mode ATLAS CMS

H ! WW Ref. [13] Ref. [14]

H ! ZZ Ref. [15] Ref. [16]

H ! �� Ref. [17] Ref. [18]

H ! ⌧ ⌧̄ Ref. [19] Ref. [20]

H ! bb̄ Ref. [21] Ref. [22]

H ! Z� Ref. [23] Ref. [24]

H ! invisible Ref. [25–28] Ref. [29, 30]

tt̄H production Ref. [17, 31] Ref. [18, 32, 33]

kinematic distributions Ref. [21, 34]

o↵-shell rate Ref. [35] Ref. [36]

From all these analyses we extract the number of observed, signal and background events after appropriate cuts. The

several categorizations in the experimental searches listed in the above table lead to the 159 measurements that we

include in the rate based analyses. In Sec. IIID we add 14 extra measurements from kinematic distributions. Finally,

the o↵-shell distributions considered in Sec. IV contribute with 37 additional measurements.

We will show Higgs coupling analyses in the SFitter framework starting with one universal modification, moving

to five tree level SM-like couplings, and then allowing for additional contributions to the Higgs-photon and Higgs-gluon

loop-induced couplings. A new channel which we did not include in previous Higgs coupling analyses is the direct

measurement of a modified top-quark Yukawa coupling in tt̄H production. This is necessary to identify new physics

contributing to the e↵ective Higgs-gluon coupling. While there is not yet enough sensitivity to properly observe the tt̄H

production channel with SM coupling strength, the current searches do provide upper bounds on the production and

decay rates. Both experiments have looked for this channel as part of their di-photon final-state analysis [17, 18, 31];

moreover, CMS has published additional searches based on multi-lepton final states arising from Higgs decays into

WW
⇤, ZZ

⇤ and ⌧ ⌧̄ [32] as well as a dedicated bb̄ analysis [33]. These tt̄H measurements allow us to separate an extra

new contribution to the Higgs-gluon coupling, leading to the analysis with seven independent coupling modifications.

After setting the two Higgs-weak-boson coupling modifications equal, these seven modifications correspond to the

relevant parameters in the non-linear e↵ective Lagrangian expansion [37], if we restrict them to the leading terms

following Ref. [38]. In the last step we will also include Higgs searches to invisible particles, i.e. generating missing

transverse momentum. This will allow us to add an extra modification to the analysis, accounting for possible Higgs

invisible decays. All coupling analyses in the traditional SFitter framework rely on the same measurements listed

above.

For the dimension-6 operators, which not only change the coupling strengths but also the momentum dependence

of the vertices leading to modifications of kinematic distributions, we make use of several di↵erential distributions.

These are the transverse momentum distributions of the gauge boson in V H, H ! bb̄ production [21] for all 0, 1

and 2-lepton final states, and the ��jj distribution in H+2 jets with di-photon decays of the Higgs boson [34]. In
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.
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Figure 1: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In this fit

we do not allow for new particles in the e↵ective Higgs couplings to photons and gluons, �� = 0 = �g. The results labelled

‘SM exp’ assume central values on the Standard Model expectation, but the current data error bars.

fermion. In addition, the non-diagonal photon–Z–Higgs is missing, but can be trivially added to this ansatz as we

will discuss. We have shown that a SFitter analysis of the aligned two-Higgs-doublet model — with coupling

deviations � computed from the underlying parameters — and the weak scale Higgs coupling analysis indeed give

identical results [8]. Furthermore, neglecting the invisible decays and setting �W = �Z the Lagrangian in Eq.(2.2)

corresponds to the non-linear e↵ective Lagrangian [37] of the Higgs sector, but restricted to the leading terms of the

expansion defined in Ref. [38].

Our couplings approach only tracks a deviation in the leading coupling of the Higgs boson to each SM particle. We

only consider the dimension-4 Lagrangian plus non-decoupling dimension-6 operators coupling the Higgs to photons or

gluons. Strictly speaking, in the linear e↵ective Lagrangian approach this kind of dimension-6 operators also modify

the Higgs couplings to electroweak gauge bosons. As long as the experimental analysis is limited to total rates, we

can expect loop-induced corrections for the HWW coupling to be suppressed with respect to shifts in the tree-level

coupling gW .

A shortcoming of the approach is that it does not include e↵ects of the additional new particles on the SM

Lagrangian outside the Higgs sector. For example, it does not link deviations in Higgs couplings to anomalous triple

gauge couplings. For a comprehensive analysis of all e↵ects of such new states we have to extend the free Higgs

couplings to an e↵ective field theory based on a non-linear sigma model in the broken phase of the electroweak

symmetry, see for instance Ref. [37].

Going beyond the original SFitter ansatz indeed means re-writing and extending the Lagrangian by additional

operators which couple Standard Model fields to the Higgs boson. These operators can be classified by their dimension.

For example for the Higgs coupling to W and Z bosons this question has been studied independently of the coupling

strength [9, 10, 37].

A. Standard Model couplings

In the first step we can fit the five tree level Higgs couplings to all Standard Model particles relevant for the LHC

observations. The result is shown in Fig. 1. The red bars labelled ‘SM exp’ show results where we have injected

a Standard Model Higgs signal on top of the background, i.e. the measured rate in each channel is exactly the SM

expectation, but leave everything else unchanged. They indicate that the observed errors are slightly smaller than

expected. This is a universal e↵ect of the theoretical uncertainties which we will discuss in detail in Sec. II C.

The simplest model, motivated for example by a Higgs portal [39] or a single form factor from a strongly interacting

hγγ is well measured: variation of SM couplings (t, b, W) + NP contributions 
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.
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Figure 1: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In this fit

we do not allow for new particles in the e↵ective Higgs couplings to photons and gluons, �� = 0 = �g. The results labelled

‘SM exp’ assume central values on the Standard Model expectation, but the current data error bars.

fermion. In addition, the non-diagonal photon–Z–Higgs is missing, but can be trivially added to this ansatz as we

will discuss. We have shown that a SFitter analysis of the aligned two-Higgs-doublet model — with coupling

deviations � computed from the underlying parameters — and the weak scale Higgs coupling analysis indeed give

identical results [8]. Furthermore, neglecting the invisible decays and setting �W = �Z the Lagrangian in Eq.(2.2)

corresponds to the non-linear e↵ective Lagrangian [37] of the Higgs sector, but restricted to the leading terms of the

expansion defined in Ref. [38].

Our couplings approach only tracks a deviation in the leading coupling of the Higgs boson to each SM particle. We

only consider the dimension-4 Lagrangian plus non-decoupling dimension-6 operators coupling the Higgs to photons or

gluons. Strictly speaking, in the linear e↵ective Lagrangian approach this kind of dimension-6 operators also modify

the Higgs couplings to electroweak gauge bosons. As long as the experimental analysis is limited to total rates, we

can expect loop-induced corrections for the HWW coupling to be suppressed with respect to shifts in the tree-level

coupling gW .

A shortcoming of the approach is that it does not include e↵ects of the additional new particles on the SM

Lagrangian outside the Higgs sector. For example, it does not link deviations in Higgs couplings to anomalous triple

gauge couplings. For a comprehensive analysis of all e↵ects of such new states we have to extend the free Higgs

couplings to an e↵ective field theory based on a non-linear sigma model in the broken phase of the electroweak

symmetry, see for instance Ref. [37].

Going beyond the original SFitter ansatz indeed means re-writing and extending the Lagrangian by additional

operators which couple Standard Model fields to the Higgs boson. These operators can be classified by their dimension.

For example for the Higgs coupling to W and Z bosons this question has been studied independently of the coupling

strength [9, 10, 37].

A. Standard Model couplings

In the first step we can fit the five tree level Higgs couplings to all Standard Model particles relevant for the LHC

observations. The result is shown in Fig. 1. The red bars labelled ‘SM exp’ show results where we have injected

a Standard Model Higgs signal on top of the background, i.e. the measured rate in each channel is exactly the SM

expectation, but leave everything else unchanged. They indicate that the observed errors are slightly smaller than

expected. This is a universal e↵ect of the theoretical uncertainties which we will discuss in detail in Sec. II C.

The simplest model, motivated for example by a Higgs portal [39] or a single form factor from a strongly interacting

hγγ is well measured: variation of SM couplings (t, b, W) + NP contributions 

�� ⇡ 13%

The addition of a new parameter allows larger changes in the SM couplings, 
but the final combination for hγγ is very compatible with the SM exp.
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.
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Figure 1: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In this fit

we do not allow for new particles in the e↵ective Higgs couplings to photons and gluons, �� = 0 = �g. The results labelled

‘SM exp’ assume central values on the Standard Model expectation, but the current data error bars.

fermion. In addition, the non-diagonal photon–Z–Higgs is missing, but can be trivially added to this ansatz as we

will discuss. We have shown that a SFitter analysis of the aligned two-Higgs-doublet model — with coupling

deviations � computed from the underlying parameters — and the weak scale Higgs coupling analysis indeed give

identical results [8]. Furthermore, neglecting the invisible decays and setting �W = �Z the Lagrangian in Eq.(2.2)

corresponds to the non-linear e↵ective Lagrangian [37] of the Higgs sector, but restricted to the leading terms of the

expansion defined in Ref. [38].

Our couplings approach only tracks a deviation in the leading coupling of the Higgs boson to each SM particle. We

only consider the dimension-4 Lagrangian plus non-decoupling dimension-6 operators coupling the Higgs to photons or

gluons. Strictly speaking, in the linear e↵ective Lagrangian approach this kind of dimension-6 operators also modify

the Higgs couplings to electroweak gauge bosons. As long as the experimental analysis is limited to total rates, we

can expect loop-induced corrections for the HWW coupling to be suppressed with respect to shifts in the tree-level

coupling gW .

A shortcoming of the approach is that it does not include e↵ects of the additional new particles on the SM

Lagrangian outside the Higgs sector. For example, it does not link deviations in Higgs couplings to anomalous triple

gauge couplings. For a comprehensive analysis of all e↵ects of such new states we have to extend the free Higgs

couplings to an e↵ective field theory based on a non-linear sigma model in the broken phase of the electroweak

symmetry, see for instance Ref. [37].

Going beyond the original SFitter ansatz indeed means re-writing and extending the Lagrangian by additional

operators which couple Standard Model fields to the Higgs boson. These operators can be classified by their dimension.

For example for the Higgs coupling to W and Z bosons this question has been studied independently of the coupling

strength [9, 10, 37].

A. Standard Model couplings

In the first step we can fit the five tree level Higgs couplings to all Standard Model particles relevant for the LHC

observations. The result is shown in Fig. 1. The red bars labelled ‘SM exp’ show results where we have injected

a Standard Model Higgs signal on top of the background, i.e. the measured rate in each channel is exactly the SM

expectation, but leave everything else unchanged. They indicate that the observed errors are slightly smaller than

expected. This is a universal e↵ect of the theoretical uncertainties which we will discuss in detail in Sec. II C.

The simplest model, motivated for example by a Higgs portal [39] or a single form factor from a strongly interacting

hγγ is well measured: variation of SM couplings (t, b, W) + NP contributions 

�� ⇡ 13%

The addition of a new parameter allows larger changes in the SM couplings, 
but the final combination for hγγ is very compatible with the SM exp.

10
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.

�t has much larger error bar large deviation in �g

8

The only modification with respect to the fit with �� = 0 is a slight downward shift of the central value of �W . It

decreases the contribution from the dominant W -loop and therefore has to be compensated by a small positive new

physics contribution �� ⇠ 0.13. This also leads to a very slight increase in the uncertainty on �W and �t. While

the new physics contribution �� based on all available ATLAS and CMS analyses has a one-sigma preference for an

additional contribution, the combination �SM+NP
�

is in perfect agreement with the Standard Model. The error bars

for �� and �SM+NP
�

have the same size, which means that the interference structure between �W and �t breaks any

strong correlation with �� in this fit.

Finally, we show in the right panel of Fig. 2 the first SFitter Higgs couplings fit including a new physics contribution

to the e↵ective Higgs-gluon coupling, �g 6= 0. As argued in Sec. II and suggested by our notation, in this seven

parameter analysis we focus on the SM-like solutions, i.e. small values of the |�x|. As expected, the increase in the

error bar of �t is dramatic. The central value of �t increases by one standard deviation of the new measurement,

while �g resides about one standard deviation below the Standard Model expectation, keeping the Higgs production

rate close to the Standard Model prediction. Larger deviations of �t are forbidden by constraints on the tt̄H channels.

For example, the combined CMS analysis of tt̄H channels reports a signal strength of 2.8+1.0
�0.9 [32], and a specific CMS

analysis of the tt̄H ! tt̄bb̄ channel arrives at a signal strength of 1.2+1.6
�1.5 [33]. Typical uncertainties around 100% on

the cross section translate into a 30% uncertainty on the top Yukawa coupling.

One reason to consider the tt̄H measurements with care is that their significance hardly adds to an independent

evidence for this production channel. For example, the combination of Ref. [32] rules out the Standard Model at two

standard deviations, just slightly less significantly than it establishes the tt̄H production process. An appropriate

hypothetical question to ask is if these results would have been published the same way if the signature had been a

sign of physics beyond the Standard Model instead of a very much expected signal.

Aside from the large error bars these measurements in the tt̄H channel have less obvious control of the signal

kinematics than other Higgs channels; for example, they might or might not include a clear Higgs mass reconstruction,

which is crucial for the unambiguous interpretation of the rate measurement but poses a well known combinatorics

problem [43]. Such a global analysis does lead to a valid upper limit on the tt̄H cross section, but for a lower limit

we need to assume that tt̄H production is the only source of relevant events.

As expected, the individual error bars for �g and �t are around three times as large as the error bar for the

combination �SM+NP
g

, where the latter is known to better than 20%. The remaining Higgs couplings are again hardly

a↵ected by the additional parameter �g. The error bar of �� is slightly increased because of the enlarged error bar

on �t. Unlike for �� this is a signal for a very strong correlation between �t and �g in the 2-dimensional profile

likelihood.

In Fig. 3 we show some relevant 2-dimensional correlations of coupling modifications as obtained for the discussed

analysis spanning the seven coupling modifications. First, we see that in the �t vs �� plane there are four solutions

corresponding to a sign flip in each of the two couplings. We fix the global sign of all Higgs couplings to �W > �1 [5].

As long as we limit our analysis to total rates each individual coupling modification at tree level will show a perfect

degeneracy between �x = 0 and �x = �2. The loop-induced Higgs-gluon coupling is dominated by the top loop,
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Figure 3: Correlations between di↵erent coupling modifications for the fit including �� as well as �g. The 1-dimensional profile

likelihoods correspond to the results shown as the blue bars in the right panel of Fig. 2.
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Figure 2: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. For the

loop-induced couplings we allow new contributions to the H�� coupling only (�g = 0, left) and to the H�� and Hgg couplings

(right). The results labelled ‘SM exp’ assume central values on the Standard Model expectation, but the current data error

bars.

Higgs sector [41], consists of a universal coupling modification �H . Such a coupling modification is constrained to

around 3% at 68% CL, in agreement with the Standard Model or �H = 0. Translated into a mixing angle ↵ from

the Higgs portal whose preferred range at 68% CL is

cos↵ = 1 +�H 2 [0.93, 1.03] . (2.3)

The second simplest model is a universal coupling modification for the Higgs interaction with the gauge bosons �V ,

and one modification for the coupling with the fermions �f . Possible ultraviolet completions are given by models

with additional Higgs multiplets beyond singlets or doublets, where certain combinations allow us to circumvent the

otherwise strong limits by electroweak precision data [42]. In this case, �V is still constrained to around ±6% at

68% CL, while the fermionic coupling shows a reduced precision of around ±12% at 68% CL, all consistent with the

Standard Model.

An independent variation of five Higgs couplings is also in complete agreement with the Standard Model. Again,

the actual error bars on the �x are slightly smaller than what we would expect from exact Standard Model values, an

e↵ect we will discuss in Sec. II C. The 15% measurement of the top Yukawa coupling is driven by the Higgs couplings

to photons and gluons under the assumption that no new particles contribute to these loop-induced couplings. The

measurement of the bottom Yukawa benefits from the normalization of all rates, because in the Standard Model the

total width is largely driven by the partial decay width H ! bb̄.

In addition to the individual couplings we also show the deviations of ratios of couplings. Such ratios are useful to

remove systematic and theoretical uncertainties. Indeed, we see that the ratio

gb

gW
=

g
SM
b

g
SM
W

�
1 +�b/W

�
(2.4)

shows a smaller variation than �b alone. The corresponding positive correlation of �b and �W arises from the total

width in the denominator of the predicted event numbers.

Because the Higgs decay H ! �� has been precisely measured at the LHC we can extend the coupling fit by a new

physics contribution to this loop-induced coupling. Of course, the variations of the Standard Model couplings �b,t

and �W are consistently reflected in the full �SM+NP
�

. Following Eq.(2.1) this deviation consists of two terms, the

parametric shift from the Standard Model loops and an additional shift from new physics. The latter is shown as part

of the coupling measurement in the left panel of Fig. 2, where we present the results of the six parameter analysis.

�t has much larger error bar large deviation in �g

8

The only modification with respect to the fit with �� = 0 is a slight downward shift of the central value of �W . It

decreases the contribution from the dominant W -loop and therefore has to be compensated by a small positive new

physics contribution �� ⇠ 0.13. This also leads to a very slight increase in the uncertainty on �W and �t. While

the new physics contribution �� based on all available ATLAS and CMS analyses has a one-sigma preference for an

additional contribution, the combination �SM+NP
�

is in perfect agreement with the Standard Model. The error bars

for �� and �SM+NP
�

have the same size, which means that the interference structure between �W and �t breaks any

strong correlation with �� in this fit.

Finally, we show in the right panel of Fig. 2 the first SFitter Higgs couplings fit including a new physics contribution

to the e↵ective Higgs-gluon coupling, �g 6= 0. As argued in Sec. II and suggested by our notation, in this seven

parameter analysis we focus on the SM-like solutions, i.e. small values of the |�x|. As expected, the increase in the

error bar of �t is dramatic. The central value of �t increases by one standard deviation of the new measurement,

while �g resides about one standard deviation below the Standard Model expectation, keeping the Higgs production

rate close to the Standard Model prediction. Larger deviations of �t are forbidden by constraints on the tt̄H channels.

For example, the combined CMS analysis of tt̄H channels reports a signal strength of 2.8+1.0
�0.9 [32], and a specific CMS

analysis of the tt̄H ! tt̄bb̄ channel arrives at a signal strength of 1.2+1.6
�1.5 [33]. Typical uncertainties around 100% on

the cross section translate into a 30% uncertainty on the top Yukawa coupling.

One reason to consider the tt̄H measurements with care is that their significance hardly adds to an independent

evidence for this production channel. For example, the combination of Ref. [32] rules out the Standard Model at two

standard deviations, just slightly less significantly than it establishes the tt̄H production process. An appropriate

hypothetical question to ask is if these results would have been published the same way if the signature had been a

sign of physics beyond the Standard Model instead of a very much expected signal.

Aside from the large error bars these measurements in the tt̄H channel have less obvious control of the signal

kinematics than other Higgs channels; for example, they might or might not include a clear Higgs mass reconstruction,

which is crucial for the unambiguous interpretation of the rate measurement but poses a well known combinatorics

problem [43]. Such a global analysis does lead to a valid upper limit on the tt̄H cross section, but for a lower limit

we need to assume that tt̄H production is the only source of relevant events.

As expected, the individual error bars for �g and �t are around three times as large as the error bar for the

combination �SM+NP
g

, where the latter is known to better than 20%. The remaining Higgs couplings are again hardly

a↵ected by the additional parameter �g. The error bar of �� is slightly increased because of the enlarged error bar

on �t. Unlike for �� this is a signal for a very strong correlation between �t and �g in the 2-dimensional profile

likelihood.

In Fig. 3 we show some relevant 2-dimensional correlations of coupling modifications as obtained for the discussed

analysis spanning the seven coupling modifications. First, we see that in the �t vs �� plane there are four solutions

corresponding to a sign flip in each of the two couplings. We fix the global sign of all Higgs couplings to �W > �1 [5].

As long as we limit our analysis to total rates each individual coupling modification at tree level will show a perfect

degeneracy between �x = 0 and �x = �2. The loop-induced Higgs-gluon coupling is dominated by the top loop,
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Figure 3: Correlations between di↵erent coupling modifications for the fit including �� as well as �g. The 1-dimensional profile

likelihoods correspond to the results shown as the blue bars in the right panel of Fig. 2.
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Figure 4: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In addition

to all couplings predicted by the Standard Model we include a Higgs decay to invisible particles. The results labelled ‘SM exp’

assume central values on the Standard Model expectation, but the current data error bars.

with a small contribution from the bottom quark, so it will not lift this degeneracy. In contrast, the Higgs-photon

coupling is strongly sensitive to the relative sign of the top and W -contributions.

The moderate positive correlation in the SM-like solution reflects the fact that an increase of the top Yukawa

coupling leads to a decrease in the H�� coupling and hence has to be compensated by a positive value of �� . As

shown in the central panel the correlation between �t and �g is the strongest correlation in the Higgs couplings

analysis. It reflects the fact that the gluon fusion Higgs cross section constrains the sum of the two with a slight

re-weighting from the top mass dependence of the loop-induced Higgs–gluon coupling [44]. We will come back to this

aspect when discussing the e↵ective theory analysis in Sec. III and top mass e↵ects in Sec. IV. The resulting correlation

of �� and �g first of all features eight solutions, arising from the indirect combination through �t ⇠ �2, 0. They are

clearly separated into the two regimes �� = �2, 0, while in �g they are merged through the strong correlation with

�t. For example in the SM-like regime the correlation between the two loop-induced couplings is at a similarly weak

level as the correlation between �� and �t.

Without showing any detailed results we can also take advantage of the first studies of the Higgs interaction with

a photon and a Z boson [23, 24]. We include a new physics contribution to the loop-induced vertex in the Standard

Model, in complete analogy to the modifications�� and�g in Eqs.(2.1) and (2.2). The corresponding 68% CL allowed

region on �Z� bounds �Z� < 0.7 (1.8 at 95% CL), without any visible e↵ect on the rest of studied parameters shown

in Fig. 2.

B. Invisible decays

Higgs decays to invisible particles can only be observed in Higgs production channels with a measurable recoil

system. Examples are weak boson fusion [45] and ZH production [46], where the more sensitive weak boson fusion

(WBF) channel might be able to probe invisible branching ratios to 2� 3% with an ultimate integrated luminosity of

3000 fb�1 [45]. To date there are ATLAS and CMS analyses available in these two channels [25–30].

In Fig. 4 we show the status for the full set of SM Higgs couplings and a hypothetical Higgs coupling to invisible

states. Unlike for the other couplings we do not define a coupling deviation �inv, but directly refer to the invisible

branching ratio BRinv. In the Standard Model this invisible branching ratio is generated by the decayH ! ZZ
⇤
! 4⌫.

It only reaches around 1% and is therefore unlikely to ever be observed at the LHC. The current limit on invisible

Higgs decays in the full Higgs couplings analysis is around 10%. Obviously, for a dedicated analysis with a more

constraining model assumption the limits will be stronger [7].

The SM prediction essentially consists in                       , h ! ZZ⇤ ! 4⌫ BR(h ! Inv) ⇡ 1%

The results of the fit gives                          , without affecting much 
the other couplings.

BR(h ! Inv) ⇡ 10%
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Figure 4: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In addition

to all couplings predicted by the Standard Model we include a Higgs decay to invisible particles. The results labelled ‘SM exp’

assume central values on the Standard Model expectation, but the current data error bars.

with a small contribution from the bottom quark, so it will not lift this degeneracy. In contrast, the Higgs-photon

coupling is strongly sensitive to the relative sign of the top and W -contributions.

The moderate positive correlation in the SM-like solution reflects the fact that an increase of the top Yukawa

coupling leads to a decrease in the H�� coupling and hence has to be compensated by a positive value of �� . As

shown in the central panel the correlation between �t and �g is the strongest correlation in the Higgs couplings

analysis. It reflects the fact that the gluon fusion Higgs cross section constrains the sum of the two with a slight

re-weighting from the top mass dependence of the loop-induced Higgs–gluon coupling [44]. We will come back to this

aspect when discussing the e↵ective theory analysis in Sec. III and top mass e↵ects in Sec. IV. The resulting correlation

of �� and �g first of all features eight solutions, arising from the indirect combination through �t ⇠ �2, 0. They are

clearly separated into the two regimes �� = �2, 0, while in �g they are merged through the strong correlation with

�t. For example in the SM-like regime the correlation between the two loop-induced couplings is at a similarly weak

level as the correlation between �� and �t.

Without showing any detailed results we can also take advantage of the first studies of the Higgs interaction with

a photon and a Z boson [23, 24]. We include a new physics contribution to the loop-induced vertex in the Standard

Model, in complete analogy to the modifications�� and�g in Eqs.(2.1) and (2.2). The corresponding 68% CL allowed

region on �Z� bounds �Z� < 0.7 (1.8 at 95% CL), without any visible e↵ect on the rest of studied parameters shown

in Fig. 2.

B. Invisible decays

Higgs decays to invisible particles can only be observed in Higgs production channels with a measurable recoil

system. Examples are weak boson fusion [45] and ZH production [46], where the more sensitive weak boson fusion

(WBF) channel might be able to probe invisible branching ratios to 2� 3% with an ultimate integrated luminosity of

3000 fb�1 [45]. To date there are ATLAS and CMS analyses available in these two channels [25–30].

In Fig. 4 we show the status for the full set of SM Higgs couplings and a hypothetical Higgs coupling to invisible

states. Unlike for the other couplings we do not define a coupling deviation �inv, but directly refer to the invisible

branching ratio BRinv. In the Standard Model this invisible branching ratio is generated by the decayH ! ZZ
⇤
! 4⌫.

It only reaches around 1% and is therefore unlikely to ever be observed at the LHC. The current limit on invisible

Higgs decays in the full Higgs couplings analysis is around 10%. Obviously, for a dedicated analysis with a more

constraining model assumption the limits will be stronger [7].
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Figure 4: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In addition

to all couplings predicted by the Standard Model we include a Higgs decay to invisible particles. The results labelled ‘SM exp’

assume central values on the Standard Model expectation, but the current data error bars.

with a small contribution from the bottom quark, so it will not lift this degeneracy. In contrast, the Higgs-photon

coupling is strongly sensitive to the relative sign of the top and W -contributions.

The moderate positive correlation in the SM-like solution reflects the fact that an increase of the top Yukawa

coupling leads to a decrease in the H�� coupling and hence has to be compensated by a positive value of �� . As

shown in the central panel the correlation between �t and �g is the strongest correlation in the Higgs couplings

analysis. It reflects the fact that the gluon fusion Higgs cross section constrains the sum of the two with a slight

re-weighting from the top mass dependence of the loop-induced Higgs–gluon coupling [44]. We will come back to this

aspect when discussing the e↵ective theory analysis in Sec. III and top mass e↵ects in Sec. IV. The resulting correlation

of �� and �g first of all features eight solutions, arising from the indirect combination through �t ⇠ �2, 0. They are

clearly separated into the two regimes �� = �2, 0, while in �g they are merged through the strong correlation with

�t. For example in the SM-like regime the correlation between the two loop-induced couplings is at a similarly weak

level as the correlation between �� and �t.

Without showing any detailed results we can also take advantage of the first studies of the Higgs interaction with

a photon and a Z boson [23, 24]. We include a new physics contribution to the loop-induced vertex in the Standard

Model, in complete analogy to the modifications�� and�g in Eqs.(2.1) and (2.2). The corresponding 68% CL allowed

region on �Z� bounds �Z� < 0.7 (1.8 at 95% CL), without any visible e↵ect on the rest of studied parameters shown

in Fig. 2.

B. Invisible decays

Higgs decays to invisible particles can only be observed in Higgs production channels with a measurable recoil

system. Examples are weak boson fusion [45] and ZH production [46], where the more sensitive weak boson fusion

(WBF) channel might be able to probe invisible branching ratios to 2� 3% with an ultimate integrated luminosity of

3000 fb�1 [45]. To date there are ATLAS and CMS analyses available in these two channels [25–30].

In Fig. 4 we show the status for the full set of SM Higgs couplings and a hypothetical Higgs coupling to invisible

states. Unlike for the other couplings we do not define a coupling deviation �inv, but directly refer to the invisible

branching ratio BRinv. In the Standard Model this invisible branching ratio is generated by the decayH ! ZZ
⇤
! 4⌫.

It only reaches around 1% and is therefore unlikely to ever be observed at the LHC. The current limit on invisible

Higgs decays in the full Higgs couplings analysis is around 10%. Obviously, for a dedicated analysis with a more

constraining model assumption the limits will be stronger [7].

Everything is consistent with the SM
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Figure 4: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In addition

to all couplings predicted by the Standard Model we include a Higgs decay to invisible particles. The results labelled ‘SM exp’

assume central values on the Standard Model expectation, but the current data error bars.

with a small contribution from the bottom quark, so it will not lift this degeneracy. In contrast, the Higgs-photon

coupling is strongly sensitive to the relative sign of the top and W -contributions.

The moderate positive correlation in the SM-like solution reflects the fact that an increase of the top Yukawa

coupling leads to a decrease in the H�� coupling and hence has to be compensated by a positive value of �� . As

shown in the central panel the correlation between �t and �g is the strongest correlation in the Higgs couplings

analysis. It reflects the fact that the gluon fusion Higgs cross section constrains the sum of the two with a slight

re-weighting from the top mass dependence of the loop-induced Higgs–gluon coupling [44]. We will come back to this

aspect when discussing the e↵ective theory analysis in Sec. III and top mass e↵ects in Sec. IV. The resulting correlation

of �� and �g first of all features eight solutions, arising from the indirect combination through �t ⇠ �2, 0. They are

clearly separated into the two regimes �� = �2, 0, while in �g they are merged through the strong correlation with

�t. For example in the SM-like regime the correlation between the two loop-induced couplings is at a similarly weak

level as the correlation between �� and �t.

Without showing any detailed results we can also take advantage of the first studies of the Higgs interaction with

a photon and a Z boson [23, 24]. We include a new physics contribution to the loop-induced vertex in the Standard

Model, in complete analogy to the modifications�� and�g in Eqs.(2.1) and (2.2). The corresponding 68% CL allowed

region on �Z� bounds �Z� < 0.7 (1.8 at 95% CL), without any visible e↵ect on the rest of studied parameters shown

in Fig. 2.

B. Invisible decays

Higgs decays to invisible particles can only be observed in Higgs production channels with a measurable recoil

system. Examples are weak boson fusion [45] and ZH production [46], where the more sensitive weak boson fusion

(WBF) channel might be able to probe invisible branching ratios to 2� 3% with an ultimate integrated luminosity of

3000 fb�1 [45]. To date there are ATLAS and CMS analyses available in these two channels [25–30].

In Fig. 4 we show the status for the full set of SM Higgs couplings and a hypothetical Higgs coupling to invisible

states. Unlike for the other couplings we do not define a coupling deviation �inv, but directly refer to the invisible

branching ratio BRinv. In the Standard Model this invisible branching ratio is generated by the decayH ! ZZ
⇤
! 4⌫.

It only reaches around 1% and is therefore unlikely to ever be observed at the LHC. The current limit on invisible

Higgs decays in the full Higgs couplings analysis is around 10%. Obviously, for a dedicated analysis with a more

constraining model assumption the limits will be stronger [7].

Everything is consistent with the SM

The Δ-framework is not                      gauge invariant Lagrangian by 
itself, but it is a useful tool to interpret experimental data

SU(2)L ⇥ U(1)Y
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Figure 4: 68% CL error bars on the deviations �x from all Standard Model couplings of the observed Higgs boson. In addition

to all couplings predicted by the Standard Model we include a Higgs decay to invisible particles. The results labelled ‘SM exp’

assume central values on the Standard Model expectation, but the current data error bars.

with a small contribution from the bottom quark, so it will not lift this degeneracy. In contrast, the Higgs-photon

coupling is strongly sensitive to the relative sign of the top and W -contributions.

The moderate positive correlation in the SM-like solution reflects the fact that an increase of the top Yukawa

coupling leads to a decrease in the H�� coupling and hence has to be compensated by a positive value of �� . As

shown in the central panel the correlation between �t and �g is the strongest correlation in the Higgs couplings

analysis. It reflects the fact that the gluon fusion Higgs cross section constrains the sum of the two with a slight

re-weighting from the top mass dependence of the loop-induced Higgs–gluon coupling [44]. We will come back to this

aspect when discussing the e↵ective theory analysis in Sec. III and top mass e↵ects in Sec. IV. The resulting correlation

of �� and �g first of all features eight solutions, arising from the indirect combination through �t ⇠ �2, 0. They are

clearly separated into the two regimes �� = �2, 0, while in �g they are merged through the strong correlation with

�t. For example in the SM-like regime the correlation between the two loop-induced couplings is at a similarly weak

level as the correlation between �� and �t.

Without showing any detailed results we can also take advantage of the first studies of the Higgs interaction with

a photon and a Z boson [23, 24]. We include a new physics contribution to the loop-induced vertex in the Standard

Model, in complete analogy to the modifications�� and�g in Eqs.(2.1) and (2.2). The corresponding 68% CL allowed

region on �Z� bounds �Z� < 0.7 (1.8 at 95% CL), without any visible e↵ect on the rest of studied parameters shown

in Fig. 2.

B. Invisible decays

Higgs decays to invisible particles can only be observed in Higgs production channels with a measurable recoil

system. Examples are weak boson fusion [45] and ZH production [46], where the more sensitive weak boson fusion

(WBF) channel might be able to probe invisible branching ratios to 2� 3% with an ultimate integrated luminosity of

3000 fb�1 [45]. To date there are ATLAS and CMS analyses available in these two channels [25–30].

In Fig. 4 we show the status for the full set of SM Higgs couplings and a hypothetical Higgs coupling to invisible

states. Unlike for the other couplings we do not define a coupling deviation �inv, but directly refer to the invisible

branching ratio BRinv. In the Standard Model this invisible branching ratio is generated by the decayH ! ZZ
⇤
! 4⌫.

It only reaches around 1% and is therefore unlikely to ever be observed at the LHC. The current limit on invisible

Higgs decays in the full Higgs couplings analysis is around 10%. Obviously, for a dedicated analysis with a more

constraining model assumption the limits will be stronger [7].

Everything is consistent with the SM

The Δ-framework is not                      gauge invariant Lagrangian by 
itself, but it is a useful tool to interpret experimental data

SU(2)L ⇥ U(1)Y

We need to go beyond the Δ-framework for EWSB sector
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Generic HVV Lagrangian
When considering beyond SM couplings:

Vµ⌫ = @µV⌫ � @⌫Vµ V = {A,Z,W,G}

LHVV = gHffh
�
f̄RfL + h.c.

�
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HZ�
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HZZ
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�
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�
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�
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�
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HWW
@µW

+µ@⌫W
�⌫h
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In general:                                    with only non-vanishing SM at tree-levelgHxy = gSM
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The relation with the Δ formalism is trivial: �gHxy = gSM

Hxy
�Hxy
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†

Ŵµ⌫Ŵ
µ⌫� OBB = �†

B̂µ⌫B̂
µ⌫�

OBW = �†
B̂µ⌫Ŵ

µ⌫� OW = (Dµ�)
†
Ŵ

µ⌫(D⌫�) OB = (Dµ�)
†
B̂

µ⌫(D⌫�)

O�,1 = (Dµ�)
† � �† (Dµ�) O�,2 =

1

2
@
µ
�
�†�

�
@µ

�
�†�

�
O�,4 = (Dµ�)

† (Dµ�)
�
�†�

�
. (3.2)
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.
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RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat
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Ŵµ⌫Ŵ
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Ŵµ⌫Ŵ
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where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:
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These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{

gV1

(

W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κV W
+
µ W−

ν V µν +
λV

m2
W

W+
µνW

− νρV µ
ρ

}

, (27)

6

with

gfHij = −
mf

i

v
δij

[

1−
v2

4Λ2
(fΦ,1 + 2fΦ,2 + fΦ,4)

]

+
v2√
2Λ2

f ′
fΦ,ij (23)

where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
∑

ij

(

yeij(OeΦ,ij)
† + yuijOuΦ,ij + ydij(OdΦ,ij)

† + h.c.
)

−
∂V (h)

∂h
, (24)

2OB +OBW +OBB + g′
2
(

OΦ,1 −
1

2
OΦ,2

)

= −
g′2

2

∑

i

(

−
1

2
O(1)

ΦL,ii +
1

6
O(1)

ΦQ,ii −O(1)
Φe,ii +

2

3
O(1)

Φu,ii −
1

3
O(1)

Φd,ii

)

(25)

2OW +OBW +OWW + g2
(

OΦ,4 −
1

2
OΦ,2

)

= −
g2

4

∑

i

(

O(3)
ΦL,ii +O(3)

ΦQ,ii

)

. (26)

These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{

gV1

(

W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κV W
+
µ W−

ν V µν +
λV

m2
W

W+
µνW

− νρV µ
ρ

}

, (27)

EOMs remove redondant contributions:
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These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]
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EOMs remove redondant contributions:

Which operators are the best to keep??
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basis. In what follows we will denote all these coefficients without the prime.
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†

Ŵµ⌫Ŵ
µ⌫� OBB = �†

B̂µ⌫B̂
µ⌫�
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B̂µ⌫Ŵ

µ⌫� OW = (Dµ�)
†
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µ⌫(D⌫�) OB = (Dµ�)
†
B̂

µ⌫(D⌫�)

O�,1 = (Dµ�)
† � �† (Dµ�) O�,2 =
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2
@
µ
�
�†�

�
@µ

�
�†�

�
O�,4 = (Dµ�)

† (Dµ�)
�
�†�

�
. (3.2)
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.
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parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.
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Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a
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is gauge invariant, but not fully renormalizable or unitary.
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theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and
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A. Dimension-6 operator basis
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where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
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These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]
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basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
∑

ij

(

yeij(OeΦ,ij)
† + yuijOuΦ,ij + ydij(OdΦ,ij)

† + h.c.
)

−
∂V (h)

∂h
, (24)

2OB +OBW +OBB + g′
2
(

OΦ,1 −
1

2
OΦ,2

)

= −
g′2

2

∑

i

(

−
1

2
O(1)

ΦL,ii +
1

6
O(1)

ΦQ,ii −O(1)
Φe,ii +

2

3
O(1)

Φu,ii −
1

3
O(1)

Φd,ii

)

(25)

2OW +OBW +OWW + g2
(

OΦ,4 −
1

2
OΦ,2

)

= −
g2

4

∑

i

(

O(3)
ΦL,ii +O(3)

ΦQ,ii

)

. (26)
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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with
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]
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v2√
2Λ2

f ′
fΦ,ij (23)

where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
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These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]
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like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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Ŵ

µ⌫(D⌫�) OB = (Dµ�)
†
B̂

µ⌫(D⌫�)

O�,1 = (Dµ�)
† � �† (Dµ�) O�,2 =

1

2
@
µ
�
�†�

�
@µ

�
�†�

�
O�,4 = (Dµ�)

† (Dµ�)
�
�†�

�
. (3.2)

13
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with

gfHij = −
mf

i

v
δij

[
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v2
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(fΦ,1 + 2fΦ,2 + fΦ,4)

]

+
v2√
2Λ2
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fΦ,ij (23)

where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:
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These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{
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(
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−µν
)
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, (27)
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of
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is gauge invariant, but not fully renormalizable or unitary.
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couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling
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µ⌫� OW = (Dµ�)
†
Ŵ
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III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a
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is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59
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µ⌫� OW = (Dµ�)
†
Ŵ

µ⌫(D⌫�) OB = (Dµ�)
†
B̂

µ⌫(D⌫�)

O�,1 = (Dµ�)
† � �† (Dµ�) O�,2 =

1

2
@
µ
�
�†�

�
@µ

�
�†�

�
O�,4 = (Dµ�)

† (Dµ�)
�
�†�

�
. (3.2)

13

with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†
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6

with

gfHij = −
mf

i

v
δij

[

1−
v2

4Λ2
(fΦ,1 + 2fΦ,2 + fΦ,4)

]

+
v2√
2Λ2

f ′
fΦ,ij (23)

where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
∑

ij

(

yeij(OeΦ,ij)
† + yuijOuΦ,ij + ydij(OdΦ,ij)

† + h.c.
)

−
∂V (h)

∂h
, (24)

2OB +OBW +OBB + g′
2
(

OΦ,1 −
1

2
OΦ,2

)

= −
g′2

2

∑

i

(

−
1

2
O(1)

ΦL,ii +
1

6
O(1)

ΦQ,ii −O(1)
Φe,ii +

2

3
O(1)

Φu,ii −
1

3
O(1)

Φd,ii

)

(25)

2OW +OBW +OWW + g2
(

OΦ,4 −
1

2
OΦ,2

)

= −
g2

4

∑

i

(

O(3)
ΦL,ii +O(3)

ΦQ,ii

)

. (26)

These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{

gV1

(

W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κV W
+
µ W−

ν V µν +
λV

m2
W

W+
µνW

− νρV µ
ρ

}

, (27)
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.
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where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.
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In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:
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These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
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and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
∑

ij

(

yeij(OeΦ,ij)
† + yuijOuΦ,ij + ydij(OdΦ,ij)

† + h.c.
)

−
∂V (h)

∂h
, (24)

2OB +OBW +OBB + g′
2
(

OΦ,1 −
1

2
OΦ,2

)

= −
g′2

2

∑

i

(

−
1

2
O(1)

ΦL,ii +
1

6
O(1)

ΦQ,ii −O(1)
Φe,ii +

2

3
O(1)

Φu,ii −
1

3
O(1)

Φd,ii

)

(25)

2OW +OBW +OWW + g2
(

OΦ,4 −
1

2
OΦ,2

)

= −
g2

4

∑

i

(

O(3)
ΦL,ii +O(3)

ΦQ,ii

)

. (26)

These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{

gV1

(

W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κV W
+
µ W−

ν V µν +
λV

m2
W

W+
µνW

− νρV µ
ρ

}

, (27)

EOMs removes redondant contributions:
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5

B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.
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with

gfHij = −
mf

i

v
δij

[

1−
v2

4Λ2
(fΦ,1 + 2fΦ,2 + fΦ,4)

]

+
v2√
2Λ2

f ′
fΦ,ij (23)

where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
∑

ij

(

yeij(OeΦ,ij)
† + yuijOuΦ,ij + ydij(OdΦ,ij)

† + h.c.
)

−
∂V (h)

∂h
, (24)

2OB +OBW +OBB + g′
2
(

OΦ,1 −
1

2
OΦ,2

)

= −
g′2

2

∑

i

(

−
1
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O(1)

ΦL,ii +
1

6
O(1)

ΦQ,ii −O(1)
Φe,ii +

2

3
O(1)

Φu,ii −
1

3
O(1)

Φd,ii

)

(25)

2OW +OBW +OWW + g2
(

OΦ,4 −
1

2
OΦ,2

)

= −
g2

4

∑

i

(

O(3)
ΦL,ii +O(3)

ΦQ,ii

)

. (26)

These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{

gV1

(

W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κV W
+
µ W−

ν V µν +
λV

m2
W

W+
µνW

− νρV µ
ρ

}

, (27)
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where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.
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In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
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(
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−
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These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV
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(
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+
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EOMs removes redondant contributions:
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5

B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

Contribute to:
Neutral and Charged Weak Currents



20

13

with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†

Ŵµ⌫Ŵ
µ⌫� OBB = �†

B̂µ⌫B̂
µ⌫�

OBW = �†
B̂µ⌫Ŵ

µ⌫� OW = (Dµ�)
†
Ŵ

µ⌫(D⌫�) OB = (Dµ�)
†
B̂

µ⌫(D⌫�)

O�,1 = (Dµ�)
† � �† (Dµ�) O�,2 =

1

2
@
µ
�
�†�

�
@µ

�
�†�

�
O�,4 = (Dµ�)

† (Dµ�)
�
�†�

�
. (3.2)
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:
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with

gfHij = −
mf

i

v
δij

[

1−
v2

4Λ2
(fΦ,1 + 2fΦ,2 + fΦ,4)

]

+
v2√
2Λ2

f ′
fΦ,ij (23)

where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
∑

ij

(

yeij(OeΦ,ij)
† + yuijOuΦ,ij + ydij(OdΦ,ij)

† + h.c.
)

−
∂V (h)

∂h
, (24)

2OB +OBW +OBB + g′
2
(

OΦ,1 −
1

2
OΦ,2

)

= −
g′2

2

∑

i

(

−
1

2
O(1)

ΦL,ii +
1

6
O(1)

ΦQ,ii −O(1)
Φe,ii +

2

3
O(1)

Φu,ii −
1

3
O(1)

Φd,ii

)

(25)

2OW +OBW +OWW + g2
(

OΦ,4 −
1

2
OΦ,2

)

= −
g2

4

∑

i

(

O(3)
ΦL,ii +O(3)

ΦQ,ii

)

. (26)

These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{

gV1

(

W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κV W
+
µ W−

ν V µν +
λV

m2
W

W+
µνW

− νρV µ
ρ

}

, (27)
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At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of
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operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
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In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.
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minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59
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µ⌫� OBB = �†

B̂µ⌫B̂
µ⌫�

OBW = �†
B̂µ⌫Ŵ
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.
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the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
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x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:
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with

gfHij = −
mf

i

v
δij

[

1−
v2

4Λ2
(fΦ,1 + 2fΦ,2 + fΦ,4)

]

+
v2√
2Λ2

f ′
fΦ,ij (23)

where we denoted the physical masses by mf
j and f ′

qΦ,ij are the coefficients of the corresponding operators in the mass
basis. In what follows we will denote all these coefficients without the prime.

C. The right of choice

In the effective Lagrangian framework not all operators at a given order are independent as they can be related by
the use of the classical equations of motion (EOM) of the SM fields. The invariance of the physical observables under
the associated operator redefinitions is guaranteed as it has been proved that operators connected by the EOM lead to
the same S–matrix elements [22]. In a top–bottom approach, when starting from the full theory and integrating out
heavy degrees of freedom to match the coefficients of the higher dimension operators at low energies it is convenient
not to choose a minimal set of operators in order to guarantee that the operators generated by the underlying theory
can be easily identified [23]. However, in a bottom–up approach when we use the effective Lagrangians to obtain
bounds on generic extensions of the SM, we must choose a minimum operator basis to avoid parameters combinations
that can not be probed.
In our case at hand, we have to take into account the SM EOM which imply that not all the operators in Eqs. (2)

and (17) are independent. In particular the EOM for the Higgs field and the electroweak gauge bosons lead to three
relations between the operators:

2OΦ,2 + 2OΦ,4 =
∑

ij

(

yeij(OeΦ,ij)
† + yuijOuΦ,ij + ydij(OdΦ,ij)

† + h.c.
)

−
∂V (h)

∂h
, (24)

2OB +OBW +OBB + g′
2
(

OΦ,1 −
1

2
OΦ,2

)

= −
g′2

2

∑

i

(

−
1

2
O(1)

ΦL,ii +
1

6
O(1)

ΦQ,ii −O(1)
Φe,ii +

2

3
O(1)

Φu,ii −
1

3
O(1)

Φd,ii

)

(25)

2OW +OBW +OWW + g2
(

OΦ,4 −
1

2
OΦ,2

)

= −
g2

4

∑

i

(

O(3)
ΦL,ii +O(3)

ΦQ,ii

)

. (26)

These constraints allow for the elimination of three operators listed in Eqs. (2) and (17).
At this point we are faced with the decision of which operators to leave in the basis to be used in the analysis of

the Higgs data; different approaches can be followed in doing so. Again, in a top–bottom approach in which some
a priori knowledge is assumed about the beyond the SM theory one can use this theoretical prejudice to choose the
basis. For example if the UV completion of the SM is a given gauge theory, it is possible to predict whether a given
operator is generated at tree level or at loop level [24]. One may then be tempted to keep those in the basis as
larger coefficients are expected [21]. However, in the absence of such illumination it is impossible to know if the low
energy theory would contain any tree–level generated operator; for instance see Ref. [25] for a model whose low energy
theory contains only loop induced operators. Furthermore, caution should be used when translating the bounds on
the effective operators into the scale of the new physics since after the use of EOM coefficients of operators generated
at loop level can, in fact, originate from tree level operators eliminated using the EOM and vice–versa [23]. In fact,
all choices of basis suffer from this problem!
In principle, given the proof of the equivalence of the S–matrix elements the determination of physical observables

like production cross sections or decay branching ratios would be independent of the choice of basis. Nevertheless
independent does not mean equivalent in real life. For this reason in this work we advocate that in the absence of
theoretical prejudices it turns out to be beneficial to use a basis chosen by the data: “Power to the Data”. With this
we mean that the sensible (and certainly technically convenient) choice is to leave in the basis to be used to study
Higgs results those operators which are more directly related to the existing data, in particular to the bulk of precision
electroweak measurements which have helped us to establish the SM.
First, let us notice that presently there is data on triple electroweak gauge boson vertices (TGV) [26, 27] that

should be considered in the choice of basis. The operators OB, OW , OBW , and OΦ,1 modify the triple gauge–boson
couplings γW+W− and ZW+W− that can be parametrized as [15, 17]

LWWV = −igWWV

{

gV1

(

W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κV W
+
µ W−

ν V µν +
λV

m2
W

W+
µνW

− νρV µ
ρ

}

, (27)

Use the last EOM to remove O�,4
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†

Ŵµ⌫Ŵ
µ⌫� OBB = �†

B̂µ⌫B̂
µ⌫�

OBW = �†
B̂µ⌫Ŵ

µ⌫� OW = (Dµ�)
†
Ŵ

µ⌫(D⌫�) OB = (Dµ�)
†
B̂

µ⌫(D⌫�)

O�,1 = (Dµ�)
† � �† (Dµ�) O�,2 =

1

2
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.
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Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of
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L =
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is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.
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Ŵ

µ⌫(D⌫�) OB = (Dµ�)
†
B̂

µ⌫(D⌫�)

O�,1 = (Dµ�)
† � �† (Dµ�) O�,2 =

1

2
@
µ
�
�†�

�
@µ

�
�†�

�
O�,4 = (Dµ�)

† (Dµ�)
�
�†�

�
. (3.2)

O�,3 =
1

3

�
�†�

�3

5

B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†

Ŵµ⌫Ŵ
µ⌫� OBB = �†

B̂µ⌫B̂
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†
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†
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
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fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators
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is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.
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Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:



             for 1st and 2nd generations only via Hgg and Hγγ loops: negligible!(Of�)ii
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators
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is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.
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Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an
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operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.
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uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.
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and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.
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Ŵµ⌫Ŵ
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B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
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x

fx

⇤2
Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.
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Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� G
a

µ⌫
G

aµ⌫
OWW = �†

Ŵµ⌫Ŵ
µ⌫� OBB = �†
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†
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† � �† (Dµ�) O�,2 =

1

2
@
µ
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�
�†�

�
O�,4 = (Dµ�)

† (Dµ�)
�
�†�

�
. (3.2)
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�
�†�

�3

5

B. Higgs interactions with fermions

The dimension–six operators modifying the Higgs interactions with fermion pairs are [20]

OeΦ,ij = (Φ†Φ)(L̄iΦeRj ), O(1)
ΦL,ij = Φ†(i

↔

DµΦ)(L̄iγµLj), O(3)
ΦL,ij = Φ†(i

↔

Da
µΦ)(L̄iγµσaLj),

OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ), O(1)
ΦQ,ij = Φ†(i

↔

DµΦ)(Q̄iγµQj), O(3)
ΦQ,ij = Φ†(i

↔

Da
µΦ)(Q̄iγµσaQj),

OdΦ,ij = (Φ†Φ)(Q̄iΦdRj), O(1)
Φe,ij = Φ†(i

↔

DµΦ)(ēRiγ
µeRj ),

O(1)
Φu,ij = Φ†(i

↔

DµΦ)(ūRiγ
µuRj),

O(1)
Φd,ij = Φ†(i

↔

DµΦ)(d̄Riγ
µdRj ),

O(1)
Φud,ij = Φ̃†(i

↔

DµΦ)(ūRiγ
µdRj ),

(17)

where we define Φ̃ = σ2Φ∗, Φ†
↔

DµΦ = Φ†DµΦ − (DµΦ)†Φ and Φ†
↔

Da
µΦ = Φ†σaDµΦ − (DµΦ)†σaΦ. We use the

notation of L for the lepton doublet, Q for the quark doublet and fR for the SU(2) singlet fermions, where i, j are
family indices. Notice that, unlike the Higgs–gauge boson operators of the previous subsection, not all Higgs–fermion
operators listed above are Hermitian.
In Eq. (17) we have classified the operators according to the number of Higgs fields they contain. In a first set,

which we denote OfΦ, the operators exhibit three Higgs fields and after spontaneous symmetry breaking they lead

to modifications of the SM Higgs Yukawa couplings. The second set, O(1)
Φf , contains operators presenting two Higgs

fields and one covariant derivative, and consequently, they contribute to Higgs couplings to fermion pairs which also

modify the neutral current weak interactions of the corresponding fermions, with the exception of O(1)
Φud,ij that also

changes the charged weak interactions. The third set, O(3)
Φf , similar to the second, also leads to modifications of the

fermionic neutral and charged current interactions.
Operators OfΦ,ij renormalize fermion masses and mixing, as well as modify the Yukawa interactions. In the SM,

these interactions take the form

LY uk = −yeijL̄iΦeRj − ydijQ̄iΦdRj − yuijQ̄iΦ̃uRj + h.c. , (18)

while the dimension–six modifications of the Yukawa interactions are

LHqq
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij

Λ2
OeΦ,ij + h.c. (19)

where a sum over the three families i, j = 1, 2, 3 is understood. After spontaneous symmetry breaking and prior to
the finite Higgs wave function renormalization in Eq. (8), Eqs. (18) and (19) can be conveniently decomposed in two
pieces L0 and L1 given by

L0 =
1√
2
d̄L

(

−yd +
v2

2Λ2
fdΦ

)

dR (v+h)+
1√
2
ūL

(

−yu +
v2

2Λ2
fuΦ

)

uR (v+h)+
1√
2
ēL

(

−yu +
v2

2Λ2
feΦ

)

eR (v+h)+h.c. ,

(20)
and

L1 =
1√
2

v2

Λ2
d̄LfdΦdR h+

1√
2

v2

Λ2
ūLfuΦuR h+

1√
2

v2

Λ2
ēLfeΦeR h+ h.c. , (21)

where fL,R = (fL,R1, fL,R2, fL,R3)T with f = u, or d or e and yf and ffΦ are 3×3 matrices in generation space.
L0 is proportional to the mass term for the fermions and in the mass basis leads to the SM–like Higgs–fermion

interactions with renormalized fermion masses and quark weak mixing 2. On the other hand, generically, the new
interactions contained in L1 are not necessarily flavor diagonal in the mass basis unless ffΦ ∝ yf .
Altogether the Hf̄f couplings in the fermion mass basis and after renormalization of the Higgs wave function in

Eq. (8) can be written as

LHff = gfHij f̄
′
Lf

′
RH + h.c. (22)

2 Since we are not adding right-handed neutrinos to the fermion basis nor allowing for L violating dimension–five operators, the couplings
to the charged leptons can be chosen to be generation diagonal in the mass basis as in the SM.

A possible choice:

(Of�)e�,33

(Of�)u�,33 (Of�)d�,33

Relevant parameters for Higgs Physics:

fGG

⇤2
,
fWW

⇤2
,
fBB

⇤2
,
fW
⇤2

,
fB
⇤2

,
f�,2

⇤2
,
f⌧
⇤2

,
fb
⇤2

,
ft
⇤2

[based on: Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)]



21

In the unitary gauge:



21

In the unitary gauge:
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�
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µ
W�µh ,

LHff = gf f̄LfRh+ h.c.
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this dialing of Y⌫ the masses of AN
µ follow Y⌫ since YE does not enter

their mass formula. A spectrum in this regime is shown in Fig. ??.

The leading effects of the A` flavor gauge bosons at low ener-
gies can be obtained integrating them out through the E.O.M.s
in (69) or equivalently computing the light particle interactions
they would mediate, diagrammatically:

h
g

g

h
�

�

and similarly for eR and N current-current operators.
The discussion of the different spectrum regimes reveals one

relevant feature that affects low energy phenomenology: electron-
number (⌧ � µ number) violating gauge bosons, for g` ⇠ 1, are
as heavy as the heaviest of the two scales, kYEk (kYEkme/mµ),
kY⌫k as can be seen in Eqs. (73,74). Furthermore, the gauge
coupling g` drops out in the effective operator that this gauge
bosons induce at low energy. Explicitly we can write:

Brµ!eee(A
`
µ) , Br⌧!µe�e�(A

`
µ) , Br⌧!µµe(A

`
µ) ⇠

v4
⇣
kYEk

2 +kY⌫k
2
⌘2

(75)

Br⌧!µµµ(A
`
µ) , Br⌧!µe+e�(A

`
µ) ⇠

�⌧!e⌫⌫̄

�total

v4
✓

m2
e

m2
µ
kYEk

2 +kY⌫k
2
◆2

(76)

This feature implies an interesting connection between direct
searches of new particles at colliders and low energy flavor vi-
olating decays. The connection works as follows: YE which en-
ters both gauge bosons and mirror fermion masses is bounded
by the absence of extra leptons at LEP. This bound, given in
Eq. (42), on the smallest entry of YE , translated to the modulus
is: kYEk > 35m⌧/meGeV= 1.2 ⇥ 105GeV. It is straight forward
to apply this bound in the above formulas to get a lower bound

29
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13 free coefficients vs. 9 Lagrangian parameters 
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Figure 9: Error bars on the coe�cients fx/⇤
2 for the dimension-6 operators defined in Eq.(3.3) (left panel) and Eq.(3.7) (right

panel). We only include total rate information and show 68% CL as well as 95% CL contours. Unlike for the other 1-dimensional

profile likelihoods we keep track of the secondary minima in this one figure. The results labelled ‘SM exp’ assume central values

on the Standard Model expectation, but the current data error bars.

while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.

The universal contribution of f�,2 to all Higgs couplings strongly correlates this operator with the rest of dimension-

6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.

Starting with the assumption that to first approximation the rate-based analysis of dimension-6 operators is physi-

cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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2 for the dimension-6 operators defined in Eq.(3.3) (left panel) and Eq.(3.7) (right

panel). We only include total rate information and show 68% CL as well as 95% CL contours. Unlike for the other 1-dimensional

profile likelihoods we keep track of the secondary minima in this one figure. The results labelled ‘SM exp’ assume central values

on the Standard Model expectation, but the current data error bars.

while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.
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6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.
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cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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As mentioned above, O�,2 a↵ects the Higgs couplings universally. In analogy to the Higgs-gluon coupling we scale the

fermionic fx by a factor m/v to reflect the chiral nature of the Higgs coupling operator [58]. For the Higgs couplings

to SM fermions this implies

L
Hff = gfHf̄LfR + h.c. with gf = �

mf

v

✓
1�

v
2

2⇤2
f�,2 �

v
2

p
2⇤2

ff

◆
, (3.8)

where we define the physical masses and fermions in the mass basis (f = ⌧, b, t).

B. Rate-based analysis

As a first step we update the global analysis of dimension-6 operators based on the complete Run I data in the

SFitter framework. The main di↵erence to the analysis of Ref. [9] is the variable top–Yukawa operator, which can

now be constrained by tt̄H production as well as the Higgs production via gluon fusion.

The contributions of the dimension-6 operators to the production rates and decay widths are calculated using

MadGraph5 [59] and FeynRules [60]. We check our results with Comphep [61, 62] and VBFNLO [63]. We

approximately include higher-order corrections through K-factors computed for the Standard Model processes [52].

Similarly, for this rate-based analysis we assume that all detector e�ciencies are identical for both the SM Higgs

processes and the corresponding dimension-6 contributions. The results of this 9–parameter global analysis are shown

in Fig. 8 and Fig. 9, after performing a statistical analysis as described in Sec. I B. For the present case we show the

multiple degenerate solutions.

In Fig. 8 we depict a selection of interesting correlations between the dimension-6 operators. In addition to the

correlations discussed in the previous section, e.g. fGG vs ft shown in Fig. 3, the dimension-6 operators introduce a

rich structure of correlations related to the Higgs interactions with electroweak gauge bosons. As long as the analysis

is only based on rate measurements in the Higgs sector, these correlations are the main di↵erence compared to the

�-framework. The strongest of these correlations is due to the di-photon channel, as it is measured with the highest

precision. Therefore, the tree-level contributions from fWW and fBB to the Higgs coupling to photon pairs generate

the strong correlation in the left panel of Fig. 8; see Eq.(3.4). The two, slightly separated, allowed regions at 68% CL

are due to the interference between the dimension-6 amplitudes and the Standard Model ones. The fact that both

fWW and fBB receive their strongest constraints from the di-photon channel, reflects that their contribution in the

rate based analysis is very similar to the addition of �� in the previous section. While this strong correlation is

partially broken by their smaller contribution to the other channels in the analysis, we will see in the following section

that the addition of kinematic distributions will increase the sensitive to fWW and fBB stemming from VBF and

Higgs associate production channels.

In the central panel of Fig. 8 we show the correlation between fB and fW . The Wilson coe�cient fW is much more

strongly constrained than fB , because of the large contributions of the former to the HV V vertices (V = Z,W
±)
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Figure 8: Correlations between di↵erent coe�cients fx/⇤
2, measured in TeV�2. The 1-dimensional profile likelihoods corre-

sponding to these results are shown as the blue bars in Fig. 9.
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Figure 9: Error bars on the coe�cients fx/⇤
2 for the dimension-6 operators defined in Eq.(3.3) (left panel) and Eq.(3.7) (right

panel). We only include total rate information and show 68% CL as well as 95% CL contours. Unlike for the other 1-dimensional

profile likelihoods we keep track of the secondary minima in this one figure. The results labelled ‘SM exp’ assume central values

on the Standard Model expectation, but the current data error bars.

while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.

The universal contribution of f�,2 to all Higgs couplings strongly correlates this operator with the rest of dimension-

6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.

Starting with the assumption that to first approximation the rate-based analysis of dimension-6 operators is physi-

cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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2 for the dimension-6 operators defined in Eq.(3.3) (left panel) and Eq.(3.7) (right

panel). We only include total rate information and show 68% CL as well as 95% CL contours. Unlike for the other 1-dimensional

profile likelihoods we keep track of the secondary minima in this one figure. The results labelled ‘SM exp’ assume central values

on the Standard Model expectation, but the current data error bars.

while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.

The universal contribution of f�,2 to all Higgs couplings strongly correlates this operator with the rest of dimension-

6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.

Starting with the assumption that to first approximation the rate-based analysis of dimension-6 operators is physi-

cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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As mentioned above, O�,2 a↵ects the Higgs couplings universally. In analogy to the Higgs-gluon coupling we scale the

fermionic fx by a factor m/v to reflect the chiral nature of the Higgs coupling operator [58]. For the Higgs couplings

to SM fermions this implies
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where we define the physical masses and fermions in the mass basis (f = ⌧, b, t).

B. Rate-based analysis

As a first step we update the global analysis of dimension-6 operators based on the complete Run I data in the

SFitter framework. The main di↵erence to the analysis of Ref. [9] is the variable top–Yukawa operator, which can

now be constrained by tt̄H production as well as the Higgs production via gluon fusion.

The contributions of the dimension-6 operators to the production rates and decay widths are calculated using

MadGraph5 [59] and FeynRules [60]. We check our results with Comphep [61, 62] and VBFNLO [63]. We

approximately include higher-order corrections through K-factors computed for the Standard Model processes [52].

Similarly, for this rate-based analysis we assume that all detector e�ciencies are identical for both the SM Higgs

processes and the corresponding dimension-6 contributions. The results of this 9–parameter global analysis are shown

in Fig. 8 and Fig. 9, after performing a statistical analysis as described in Sec. I B. For the present case we show the

multiple degenerate solutions.

In Fig. 8 we depict a selection of interesting correlations between the dimension-6 operators. In addition to the

correlations discussed in the previous section, e.g. fGG vs ft shown in Fig. 3, the dimension-6 operators introduce a

rich structure of correlations related to the Higgs interactions with electroweak gauge bosons. As long as the analysis

is only based on rate measurements in the Higgs sector, these correlations are the main di↵erence compared to the

�-framework. The strongest of these correlations is due to the di-photon channel, as it is measured with the highest

precision. Therefore, the tree-level contributions from fWW and fBB to the Higgs coupling to photon pairs generate

the strong correlation in the left panel of Fig. 8; see Eq.(3.4). The two, slightly separated, allowed regions at 68% CL

are due to the interference between the dimension-6 amplitudes and the Standard Model ones. The fact that both

fWW and fBB receive their strongest constraints from the di-photon channel, reflects that their contribution in the

rate based analysis is very similar to the addition of �� in the previous section. While this strong correlation is

partially broken by their smaller contribution to the other channels in the analysis, we will see in the following section

that the addition of kinematic distributions will increase the sensitive to fWW and fBB stemming from VBF and

Higgs associate production channels.

In the central panel of Fig. 8 we show the correlation between fB and fW . The Wilson coe�cient fW is much more

strongly constrained than fB , because of the large contributions of the former to the HV V vertices (V = Z,W
±)
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Figure 8: Correlations between di↵erent coe�cients fx/⇤
2, measured in TeV�2. The 1-dimensional profile likelihoods corre-

sponding to these results are shown as the blue bars in Fig. 9.
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Figure 9: Error bars on the coe�cients fx/⇤
2 for the dimension-6 operators defined in Eq.(3.3) (left panel) and Eq.(3.7) (right

panel). We only include total rate information and show 68% CL as well as 95% CL contours. Unlike for the other 1-dimensional

profile likelihoods we keep track of the secondary minima in this one figure. The results labelled ‘SM exp’ assume central values

on the Standard Model expectation, but the current data error bars.

while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.

The universal contribution of f�,2 to all Higgs couplings strongly correlates this operator with the rest of dimension-

6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.

Starting with the assumption that to first approximation the rate-based analysis of dimension-6 operators is physi-

cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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on the Standard Model expectation, but the current data error bars.

while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.

The universal contribution of f�,2 to all Higgs couplings strongly correlates this operator with the rest of dimension-

6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.

Starting with the assumption that to first approximation the rate-based analysis of dimension-6 operators is physi-

cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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on the Standard Model expectation, but the current data error bars.

while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.

The universal contribution of f�,2 to all Higgs couplings strongly correlates this operator with the rest of dimension-

6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.

Starting with the assumption that to first approximation the rate-based analysis of dimension-6 operators is physi-

cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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while fB only contributes to HZZ with a weak mixing angle suppression. The mild impact of fB will eventually be

compensated by measurements of H ! Z� decays. Moreover, the contributions to HV V also correlate fB to fWW

and fBB , as displayed in the right panel of Fig. 8.

The universal contribution of f�,2 to all Higgs couplings strongly correlates this operator with the rest of dimension-

6 structures, both in the bosonic and in the fermionic sectors. This way, f�,2 in principle lifts the degeneracy between

the two allowed regions for fb and f⌧ , which is due to the interference between the SM amplitudes and the higher-

dimensional operators. The actual likelihood values for the two minima are still equivalent though. In the�-framework

these regions are almost entirely degenerate, allowing us to focus on the SM-like solution in that case.

Starting with the assumption that to first approximation the rate-based analysis of dimension-6 operators is physi-

cally equivalent to the Higgs coupling analysis described in Sec. IIA the strong correlations shown in Fig. 8 still pose

a technical problem. The Higgs coupling modifications �x are by definition well aligned with the experimental mea-

surements, which means that the profile likelihood construction down to 1-dimensional likelihoods is straightforward.

For example the correlation between fB and fW makes it obvious that a profile likelihood either in fB or fW will

have to deal with strongly non-Gaussian distributions, including secondary minima.

With this technical caveat in mind we show in Fig. 9 the best fit points and the corresponding 1-dimensional 68%

and 95% CL regions for each e↵ective operator. We follow the procedure described in Sec. I B, in this case keeping

all possible solutions for Ot,b,⌧ and OGG. As we have discussed the strongest constraints apply to fWW and fBB .

Next are fW and f�,2, and finally the weaker constraint fB , as discussed above. Just like for �t the free value of ft
enlarges the error bars for fGG and splits the allowed parameter range into more or less distinct regions, like those

shown in Figs. 3 and 9.

In the right panel we observe the expected secondary solutions for all three ft,b,⌧ . To compare the errors on the

couplings to fermions we should keep in mind that in Eq.(3.7) the chiral factor is taken out of the definition of the

operator and its associated scale ⇤. As we can see, at the 68% CL the secondary solutions appear as clear additional

structures, while at 95% CL the SM-like and secondary solutions barely separate for fb. This allows us to cleanly

separate SM-like solutions from those with merely switched signs of the Yukawa couplings. Note that the latter

correspond to a new physics scale ⇤ ⇠ 150 GeV in the presence of a chiral symmetry factor, shedding some doubt on

the e↵ective theory treatment as a whole.

From a statistical point of view it is not clear how one would deal with such alternative solutions; in our case we

show the solutions with flipped signs of the Yukawa couplings in Fig. 9, but will omit them in the 1-dimensional profile

likelihood for the rest of the present section. In the Markov chain analysis they will be of course still included. We
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Figure 1: Bounds on the Wilson coe�cients of Eqs. (1), (5), (10) and (18), from LEP-I, SLC and KLOE
data (and the necessary information from pp ! l⌫̄ at the LHC –see Appendix B). Solid red lines denote the
95% C.L. intervals after marginalizing over all other parameters (dashed lines do not include KLOE data);
blue lines are obtained by setting all other coe�cients to zero. The global fit including the operator of Eq. (20)
corresponds to the orange lines.

5 Conclusions

We have made a first step towards a complete SM fit, focusing here on EWSB e↵ects in

gauge-bosons and Higgs physics. We have characterized all possible deformations from SM

physics using the Wilson coe�cients of the independent dimension-6 operators, the relevant

ones for our analysis given in Table 1. Assuming flavor-universality (but also including the

top-quark operators separately) and taking as the input data mZ , GF , ↵em and mf , mh, we

have grouped the operators according to their impact on the di↵erent experimental data.

In a first group we have the operators that can a↵ect the gauge-boson propagators and

their couplings to fermions. These receive strong constraints from well-measured quantities,

mainly the Z-pole observables at LEP-I and SLC, the W mass at Tevatron, together with

the check of the CKM unitarity from low-energy data. The constraints on the corresponding

Wilson coe�cients from a global fit are summarized in Fig. 1. To stress the correlation between

the various operators, we compare the 95% C.L. contours obtained by marginalizing all other

coe�cients (in red) with the contours obtained by setting all other coe�cients to zero (in

blue). More data, such as the low-energy determination of the ⌫-nucleon and ⌫-e scattering

or atomic parity violation experiments, could be added to our analysis. Nevertheless, due to

their poorer resolution, we do not expect these data to a↵ect substantially our results.

In a second group we have operators a↵ecting triple gauge-boson vertices, that contrary

to the previous group, receive milder constraints. Our basis is suitable for treating separately

these two groups, while other bases, such as the one of Ref. [11] used in the fit of Ref. [7], makes

this separation more di�cult, due to strong correlations between bounds on di↵erent Wilson

14

Figure 2: The 95% CL ranges found in analyses of the leptonic observables (left panel)

and including also the hadronic observables (right panel). In each case, the upper (green)

bars denote single-coe�cient fits, and the lower (red) bars denote multi-coe�cient fits.

The upper-axis should be read ⇥
mW
v

⇠ 1/3 for c̄W + c̄B.

between the Standard Model and heavy-flavour measurements at the Z peak. However, values

of c̄
(3)l
LL

, c̄T , c̄W + c̄B and c̄
e

R
between 0 and -0.01 are favoured, corresponding to ⇤ & 2.5 TeV. The

ranges of c̄
q

L
, c̄

(3)q
L

, c̄
u

R
and c̄

d

R
are considerably broader in both fits, particularly in the global 8-

coe�cient fit, most notably c̄
u

R
and c̄

d

R
, with values of the latter approaching -0.05 being allowed

at the 95% CL.

3 Triple-Gauge and Higgs Couplings at the LHC

In previous work [14] we used LHC measurements of Higgs signal strengths together with
di↵erential distributions in Higgs associated production measurements by ATLAS and D0 to
constrain all the dimension-6 operators a↵ecting Higgs physics. The associated production
information was vital in eliminating a blind direction, which can also be closed by including
TGC measurements. These are most precisely measured by LEP, but it has been recently
pointed out that the LEP TGC constraints 7 have a direction of limited sensitivity due to
accidental partial cancellations [21]. Meanwhile, TGCs have been analysed at 8 TeV at the
LHC by both the CMS and ATLAS experiments [19, 20], and here we study their potential to
complement Higgs physics in constraining a complete set of dimension-6 operators.

9
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(middle row), and c̄b, c̄t and c̄H (bottom row) 10 The purple line represents the combination
of LHC signal-strength constraints with the ATLAS 8-TeV TGC measurements, the blue line
the combination of CMS 7- and 8-TeV constraints, and the red line uses all the sets of LHC

TGC constraints. We use the signal-strength information on the W
+
W

�(⇤)
, ZZ

(⇤)
, ��, Z�, and

⌧
+
⌧
� final states, whose likelihoods are obtained as explained in [14]. We observe that the

constraints on the coe�cient c̄3W , which only a↵ects TGCs, is at the same level as some of the
other coe�cients whose operators also a↵ect Higgs physics.

Figure 6: The marginalised 95% CL ranges for the dimension-6 operator coe�cients

obtained by combining the LHC signal-strength data with the ATLAS 8-TeV TGC data

(purple bars), the CMS 7- and 8-TeV TGC measurements (blue bars), and their combi-

nation (red bars). Note that c̄�,g are shown ⇥100, so for these coe�cients the upper axis

should therefore be read ⇥10.

The results in Fig. 5 are summarised in the marginalised 95% CL ranges displayed in Fig. 6.
Again, the LHC signal-strength data are always included, in combination with the ATLAS 8-
TeV data (purple bars), the CMS 7- and 8-TeV data (blue bars) and all the LHC TGC data
(red bars). As already mentioned, the LHC TGC data enables a competitive model-independent
bound on the coe�cient c̄3W .

3.2 Inclusion of Higgs Associated Production Constraints

We now include in our analysis the constraints from the kinematics of associated Higgs pro-
duction, following the analysis of [14] 11. Fig. 7 displays the marginalised �

2 distributions for
each of the dimension-6 coe�cients c̄W , c̄HW and c̄HB (top row), c̄g, c̄� and c̄3W (middle row),

10We note that the constraints on the last three operators are relatively weak, but include them for
information.

11The applicability of the e↵ective field theory approach to this associated production analysis is
discussed in the Appendix.
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FIG. 7: Marginalised 95% confidence level constraints for the dimension-six operator coe�cients for current data (blue),
the LHC at 14 TeV with an integrated luminosity of 300 fb�1 (green) and 3000 fb�1 (orange). The expected constraints are
centred around zero by construction, since the pseudo-data are generated by using the SM hypothesis. The left panel shows the
constraints obtained using signal strength measurements only, and on the right di↵erential pT,H measurements are included.
The inner error bar depicts the experimental uncertainty, the outer error bar shows the total uncertainty.

that reduces the time to evaluate fMC dramatically using
P -dimensional polynomial parametrisations.

The key idea is to treat each bin of a histogram as an
independent function of the parameter space as iterated
above. The parametrisations fMC(p) all together provide
a fast pseudo generator that yields an approximate re-
sponse in milliseconds rather than hours. Further, due to
the usage of polynomials, the response function is steady.
These properties make fMC(p) suitable for numeric ap-
plications.

So far it has been applied with great emphasis and suc-
cess to the problem of Monte-Carlo generator tuning —
essentially a numerical minimisation of a goodness-of-fit
measure between real data and fMC(p). When facing the
problem of hypothesis testing of a Monte-Carlo predic-
tion as it is done in this work, the same principle can
be applied. The di↵erence being that the axes of the
parameter-space in this case are the theoretically well
motivated Wilson coe�cients which are to be set limits
for. In its latest incarnation a C++ version of the core
functionality of Professor, i.e. the parametrisation,
has been added. It uses Eigen3 to perform the SVD and
calculate the approximate fMC(p).

The lowest oder polynomial to incorporate parameter
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FIG. 8: Relative uncertainty of the interpolation for the
Higgs branching ratios as well as the total width in the di-
mension six extension of the SM in percent, including uncer-
tainties. Note that due to the dependence on the total width
this interpolation is highly non-linear.

correlations is of second order. For a certain bin, b, at a
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Figure 10: Upper and left lower panels: p
V
T distributions from V H production [21]. We show the SM Higgs-plus-background

expectation (black solid), the number of observed events, the SM Higgs hypothesis (red solid), and the expectation from one

dimension-6 operator (red dashed). Lower right: ��jj distribution in Ref. [34]. We display the number of observed events, the

SM–Higgs hypothesis (red), and the expectation from adding a set of dimension-6 operators (dashed red and dotted blue). All

plots include 20.3 fb�1 at 8 TeV. In the figure we neglect the e↵ect of higher-dimensional operators on the branching ratios.

As mentioned above, the p
V

T
distributions shown in Fig. 10 correspond to a cut–based ATLAS analysis [21]. When

adding this information to the global Run I analysis consistently we need to be careful: first, we cannot use the same

information twice. This means we could remove the corresponding total rates from the analysis and instead include

the binned distributions. However, the cut–based analysis is weaker than the multi-variate analysis and they do not

give the same measured central values. This would render any estimate of the additional power of the kinematic

information impossible. Instead, we keep the multi-variate rate information and add the kinematic information

through a set of asymmetries based on the bin content of Fig. 10,

Ai =
bini+1 � bini
bini+1 + bini

, (3.9)

which for each leptonic channel defines three or four additional measurements.

Our second test case is the azimuthal angle correlation in weak boson fusion production with H ! �� [68]. Because

the measurement of ��jj does not require the reconstruction of any reference frame, its uncertainties are reduced.

Unfortunately, the corresponding distributions are not shown in the most prominent weak boson fusion channels with

decays H ! W
+
W

� and H ! ⌧
+
⌧
�. An unfolded distribution is in contrast available for the decay H ! �� [34].

However, due to the lack of cuts on mjj and �⌘jj , the weak boson fusion mode accounts for less than 35% of all

signal events, diluting consequently the promising power of the ��jj variable in this production mechanism.

In the present absence of a better alternative we include the above channels in our SFitter analysis. To simulate

SM Higgs production in weak boson fusion and the V H channel we rely on the same selection of tools we have used

Background rapidly decreases
Strong dependence on d=6 
operators at larger momenta 

Kinematic distributions from ATLAS                  (1409.6212) h ! b̄b

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]
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As mentioned above, O�,2 a↵ects the Higgs couplings universally. In analogy to the Higgs-gluon coupling we scale the

fermionic fx by a factor m/v to reflect the chiral nature of the Higgs coupling operator [58]. For the Higgs couplings

to SM fermions this implies

L
Hff = gfHf̄LfR + h.c. with gf = �

mf

v

✓
1�

v
2

2⇤2
f�,2 �

v
2

p
2⇤2

ff

◆
, (3.8)

where we define the physical masses and fermions in the mass basis (f = ⌧, b, t).

B. Rate-based analysis

As a first step we update the global analysis of dimension-6 operators based on the complete Run I data in the

SFitter framework. The main di↵erence to the analysis of Ref. [9] is the variable top–Yukawa operator, which can

now be constrained by tt̄H production as well as the Higgs production via gluon fusion.

The contributions of the dimension-6 operators to the production rates and decay widths are calculated using

MadGraph5 [59] and FeynRules [60]. We check our results with Comphep [61, 62] and VBFNLO [63]. We

approximately include higher-order corrections through K-factors computed for the Standard Model processes [52].

Similarly, for this rate-based analysis we assume that all detector e�ciencies are identical for both the SM Higgs

processes and the corresponding dimension-6 contributions. The results of this 9–parameter global analysis are shown

in Fig. 8 and Fig. 9, after performing a statistical analysis as described in Sec. I B. For the present case we show the

multiple degenerate solutions.

In Fig. 8 we depict a selection of interesting correlations between the dimension-6 operators. In addition to the

correlations discussed in the previous section, e.g. fGG vs ft shown in Fig. 3, the dimension-6 operators introduce a

rich structure of correlations related to the Higgs interactions with electroweak gauge bosons. As long as the analysis

is only based on rate measurements in the Higgs sector, these correlations are the main di↵erence compared to the

�-framework. The strongest of these correlations is due to the di-photon channel, as it is measured with the highest

precision. Therefore, the tree-level contributions from fWW and fBB to the Higgs coupling to photon pairs generate

the strong correlation in the left panel of Fig. 8; see Eq.(3.4). The two, slightly separated, allowed regions at 68% CL

are due to the interference between the dimension-6 amplitudes and the Standard Model ones. The fact that both

fWW and fBB receive their strongest constraints from the di-photon channel, reflects that their contribution in the

rate based analysis is very similar to the addition of �� in the previous section. While this strong correlation is

partially broken by their smaller contribution to the other channels in the analysis, we will see in the following section

that the addition of kinematic distributions will increase the sensitive to fWW and fBB stemming from VBF and

Higgs associate production channels.

In the central panel of Fig. 8 we show the correlation between fB and fW . The Wilson coe�cient fW is much more

strongly constrained than fB , because of the large contributions of the former to the HV V vertices (V = Z,W
±)
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Figure 8: Correlations between di↵erent coe�cients fx/⇤
2, measured in TeV�2. The 1-dimensional profile likelihoods corre-

sponding to these results are shown as the blue bars in Fig. 9.
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Figure 11: Correlations between di↵erent coe�cients fx/⇤
2 (measured in TeV�2) after including kinematic distributions. In

the top row we add the ��jj distribution; in the second row we also include p
V
T from V H production; in the bottom row we

then remove the highest bin associated with large momentum flow through the dimension-6 vertex. The 1-dimensional profile

likelihoods of the second row correspond to the results shown as the blue bars in Fig. 12.

2-dimensional correlations from this analysis. A comparison to the first row shows that almost the entire additional

information of the pV
T
distribution is encoded in the last bin. In the remainder of the discussion we will not follow this

conservative approach, so it should be noted that the full SFitter analysis of the higher-dimensional operators has

to be taken with a grain of salt. On the other hand, the analysis including kinematic distributions is mostly meant

to be a proof of principle, and the consistency of the Higgs e↵ective theory will clearly improve with Run II data.

With this in mind we show the best fit points and the corresponding 1-dimensional 68% CL error bars including

kinematic distributions in Fig. 12. In contrast to Fig. 9 we do not show secondary solutions for the signs of the

Yukawa-like couplings and for OGG. We also limit ourselves to 68% CL contours. We see that OB and OW are the

operators most a↵ected by the addition of kinematic distributions, closely followed by OWW and OBB . Typical energy

scales probed by Run I data are 300 GeV to 500 GeV if order one Wilson coe�cients are assumed, with less significant

constraints in the fermion sector. All coe�cients are in agreement with zero, and the one to two sigma deviations

are hard to map onto individual measurements. Including all available kinematic information visibly stabilizes the

constraint on fB and moves every single best-fit point closer to the Standard Model prediction.

IV. FUTURE: OFF-SHELL MEASUREMENTS

ATLAS and CMS recently published a study on the contribution of Higgs exchange to ZZ production at invariant

masses well above the Higgs pole mZZ ⇠ mH [11, 35, 36]. Given the small Higgs width, such a measurement

WITHOUT:

WITH:

Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)
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Figure 12: 68% CL error bars on the Wilson coe�cients fx/⇤
2 for the dimension-6 operators defined in Eq.(3.3) (left panel)

and Eq.(3.7) (right panel). In addition to total rate information we also include kinematic distributions and only show 68%

CL contours. For the Yukawa couplings as well as for OGG we limit ourselves to the SM-like solution for this representation.

would normally only show a very moderate dependence on the Higgs mass. However, the kinematic structure of

this particular channel turns it into a sensitive measurement. Approximately O(15%) of the rate mediated by the

s-channel Higgs exchange lies in the o↵-shell regime, m4` > 130 GeV. In addition the leading e↵ect arises from the

signal interference with the continuum background. Some representative Feynman diagrams to this process are

t

1 +�t

1 +�Z �g 1 +�Z

Note that �g in this representation shows a non-trivial momentum dependence, limiting the model-independent

features of the width measurement [12]. If the Higgs propagator in the interference is probed far above the mass shell,

it behaves like 1/s. On-shell and o↵-shell Higgs rates then scale like

�
on-shell
i!H!f

/
g
2
i
(mH) g2

f
(mH)

�H

vs �
o↵-shell
i!H⇤!f

/ g
2
i
(m4`) g

2
f
(m4`) . (4.1)

where gi (gf ) refer to the Higgs couplings involved in the production (decay) for the present channel. Eventually,

we will remove the assumptions about the Higgs width described in Sec. I B from the SFitter setup and instead

determine the total width from the combination of o↵-shell and on-shell measurements. The Lagrangian of the

underlying hypothesis reads

L = LSM +�W gmWH W
µ
Wµ +�Z

g

2cw
mZH Z

µ
Zµ �

X

⌧,b,t

�f

mf

v
H

�
f̄RfL + h.c.

�

+�gFG

H

v
Gµ⌫G

µ⌫ +��FA

H

v
Aµ⌫A

µ⌫ + invisible decays + unobservable decays . (4.2)

The distinction between the two terms linked to decays to non-SM states is that ‘invisible decays’ are reconstructable

using missing transverse momentum, while ‘unobservable decays’ are for some other reason not observable at the

LHC, for example because of overwhelming jet backgrounds [5]. Not accounting for such unobservable decays would

lead to shifts of all �x as compared to the analysis including these decays.

Before we allow for a fully unconstrained Higgs width through unobservable decay channels we combine on-shell

and o↵-shell analysis to probe the energy dependence of the operators involved [71]. On the Higgs production side, the

Biggest impact of Kinematics on                                  , respectively.

Energy scales probed by Run I are 300-500 GeV (O(1) coeff.)

OB , OW , OBB , OWW

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]
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All these couplings are correlated!!
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68% 95%
V 1.025 ± 0.021 [0.985, 1.069]

Table 7: Fit results for the scale factor V at 68% and 95% probabili-
ties.
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Figure 4: Left: Probability distribution for the scale factor V . Right:
Two-dimensional probability distributions for V and ⇤. The dark and
light regions correspond to 68% and 95% probabilities, respectively.

4. Constraints on the Higgs-boson couplings from

the Higgs-boson and electroweak precision data

In this section we fit the Higgs-boson couplings to
the data for the Higgs-boson signal strengths and the
EWPO, where the former are taken from Refs. [31, 54]
for H ! ��, Refs. [55, 56] for H ! ZZ, Refs. [57, 58]
for H ! W

+
W
�, Refs. [59, 60] for H ! ⌧+⌧�, and

Refs. [61–65] for H ! bb̄ (see also Ref. [66]). We
consider the scale factors V and  f for the Higgs-boson
couplings to the EW vector bosons and to fermions, re-
spectively, and do not introduce new couplings that are
absent in the SM. For the SM loop-induced couplings
(Hgg, H��, and HZ�) we assume that there is no contri-
bution from new particles in the loop. For the relations
between the scale factors and the Higgs-boson signal
strengths, we refer the reader to Ref. [67].

In Table 8 we summarize the fit results for V and  f

from the Higgs-boson signal strengths. Note that the-
oretical predictions are symmetric under the exchange
{V ,  f } $ {�V , � f }. In the left plot in Fig. 5, we
present two-dimensional probability distributions for V
and  f at 68%, 95%, 99%, and 99.9%, where only the
parameter space with positive V is presented. The re-
gion with negative  f is disfavored in the fit. The right
plot in Fig. 5 shows constraints from the individual de-
cay channels. The constraints from H ! bb̄ are weaker
than that from H ! ⌧+⌧� and are not presented for sim-
plicity. It is noted that because of the presence of flat
directions in the fit, the detailed shapes of the individual
constraints depend on the choice of the allowed ranges
of the scale factors. We also consider constraints from
the EWPO with the formulae in Eqs. (7) and (8), which
are valid under the assumptions given above Eq. (6). As

68% 95% Correlations
V 1.02 ± 0.05 [0.93, 1.11] 1.00
 f 0.97 ± 0.11 [0.76, 1.20] 0.22 1.00

Table 8: SM-like solution in the fit of V and  f to the Higgs-boson
signal strengths.
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Figure 5: Left: Two-dimensional probability distributions for V and
 f at 68%, 95%, 99%, and 99.9% (darker to lighter), obtained from
the fit to the Higgs-boson signal strengths. Right: Constraints from
individual channels at 95%.

68% 95% Correlations
V 1.02 ± 0.02 [0.99, 1.06] 1.00
 f 0.97 ± 0.11 [0.77, 1.20] 0.10 1.00

Table 9: Same as Table 8, but considering both the Higgs-boson signal
strengths and the EWPO.
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Figure 6: Two-dimensional probability distributions for V and  f at
68% (the dark region) and 95% (the light region), obtained from the
fit to the Higgs-boson signal strengths and the EWPO.

shown in Table 9 and Fig. 6, the constraint on V from
the EWPO is stronger than that from the Higgs-boson
signal strengths.

Next we consider the case where the coupling to
W
+
W
�, parameterized by W , can di↵er from that to

ZZ, parameterized by Z . Note that theoretical predic-
tions are symmetric under the exchanges {W ,  f } $
{�W , � f } and/or Z $ �Z , where Z can flip the sign
independent of W , since the interference between the
W and Z contributions to the vector-boson fusion cross
section is negligible. Hence we consider only the pa-
rameter space where both W and Z are positive. Here
we do not consider the EWPO, since W , Z develops
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FIG. 4: 95% confidence level limits from the measurement of gluon fusion production with

H → W+W− (black band), compared with the inferred limits from the oblique parameters.

Eq. 24[33, 34]:

µWW = .68± .20 (CMS)

µWW = .99± .30 (ATLAS) . (25)

In Fig. 4, we show the allowed region in fWW (mZ) versus fW (mZ) from H → W+W−. In

this case, the limits from Higgs decay and from the oblique parameters are similar. Note

that the scale of Fig. 4, fi/Λ2 ∼ 200, makes these limits meaningless.

Only fBB , fWW , and fBW (mZ) contribute to H → γγ. Using the well known SM

results[35] we find,

µγγ ≡
Γ(H → γγ)

Γ(H → γγ) |SM

=

{

1 +

(

Ireal
I2real + I2imag

)

8π2v2

Λ2

[

fBB(mZ) + fWW (mZ)− fBW (mZ)

]}2

∼ 1 + 1.47

(

1 TeV

Λ

)2[

fBB(mZ) + fWW (mZ)− fBW (mZ)

]

+O
(

1

Λ4

)

(26)

where

Ireal = ΣfNCQ
2
fF

real
1/2 (xf) + F real

1 (xW )

Iimag = ΣfNCQ
2
fF

imag
1/2 (xf) + F imag

1 (xW ) , (27)
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and couplings to electrons. However, given the model-
independent electroweak precision constraints [12], these
measurements can e↵ectively constrain 3 linear combina-
tions of Wilson coe�cients of D=6 operators that cor-
respond to the aTGCs [5]. We use this dependence
to construct the 3D likelihood function �

2

WW
(�g1,z, �� ,

�z). For the LHC Higgs data, we use the signal strength
observables (µ) listed in Table I, separated according to
the final state and the production mode. The e↵ect of
D=6 operators on µ was calculated for each channel and
production mode in Ref. [13] and independently cross-
checked here. After imposing electroweak precision con-
straints, 9 linear combinations of D=6 operators can af-
fect µ in an observable way [8, 14]. The crucial point
is that 2 of these combinations correspond to the aT-
GCs �g1,z, �� . Therefore, the likelihood function con-
structed from LHC Higgs data, �2

h
(�g1,z, �� , . . . ), may

lead to additional constraints on aTGCs. Indeed, com-
bining the likelihoods �

2

comb.
= �

2

h
+ �

2

WW
we obtain

strong constraints on the aTGCs at the level of O(0.1).
After marginalizing over the remaining seven Wilson co-
e�cients, we find the following central values, 1 � errors,
and the correlation matrix for the aTGCs:

0

@
�g1,z

��

�z

1

A =

0

@
0.037± 0.041
0.133± 0.087
�0.152± 0.080

1

A ,

⇢ =

0

@
1 0.62 �0.84

0.62 1 �0.85
�0.84 �0.85 1

1

A .

(2)

These constraints hold in any new physics scenario pre-
dicting approximately flavor blind coe�cients of D=6
operators and in which D > 6 operators are sublead-
ing. Appendix A contains a technical description of our
fit and the constraints for all the 10 combinations of Wil-
son coe�cients entering the analysis. They are given in
di↵erent bases for reader’s convenience.

Let us discuss here qualitatively the most important
elements of our fit. Higgs data are sensitive to �g1,z and
�� primarily via their contribution to electroweak Higgs
production channels. However, only 1 combination of
these 2 aTGCs is strongly constrained, while the bound
on the direction �� ⇡ 3.8�g1,z is very weak. Analo-
gously, as already discussed, also LEP-2 bounds present
an approximate blind direction. This is illustrated in
Fig. 1, where the WW and Higgs constraints in the �g1,z–
�� plane are shown separately [15]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (2).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino [3], as in Ref. [5]. That process probes mostly ��

but it also a↵ects limits on the remaining aTGCs due to
the highly correlated nature of the constraints from WW
and Higgs data. Indeed, we find that adding single W

TGC
Higgs
TGC+Higgs
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∆g1,z

∆ΚΓ

FIG. 1. Allowed 68% and 95% CL region in the �g1,z-��

plane after considering LEP-II WW production data (TGC),
Higgs data, and the combination of both datasets.

data to the combined likelihood roughly halves the con-
fidence intervals for the aTGCs: �g1,z = 0.017 ± 0.023,
�� = 0.047± 0.034, �z = �0.089± 0.042. However, we
choose to highlight the more conservative result in Eq. (2)
as we consider it more robust. The reason is that the ex-
perimental extraction of the single W cross section from
fiducial measurements could be altered in a non-trivial
way in the presence of the aTGC �� , which a↵ects the
photon t-channel contribution to the production ampli-
tude. A more careful analysis is needed to render the
single W constraint more robust.

In the following we discuss whether the assumptions
employed in our analysis can be relaxed without conflict-
ing experimental data and, if yes, how this a↵ects our
results.

We begin by considering the possible impact of D=8
operators, contributing at O(⇤�4). Since the experimen-
tal precision at the LHC is currently moderate, O(20%)
at best, only higher-dimensional operators with ⇤ . few
hundred GeV can be constrained by Higgs physics. For
such a low ⇤ it is not a priori obvious that the D=8
operators are subleading. One way to estimate their ef-
fect is to include in the analysis corrections to Higgs and
WW observables that are quadratic in the Wilson coe�-
cients of D=6 operators, as they are also of O(⇤�4). If
the constraints on the aTGCs are severely a↵ected by
including the quadratic contributions, that would sig-
nal a potential sensitivity to D=8 operators [16]. In
fact, constraints from Higgs or from WW data alone
are completely changed after including the quadratic
terms. However, the combined data are only moder-
ately sensitive. Once the quadratic contributions are
included we find the constraints �g1,z = 0.032+0.043

�0.035
,

LHC Higgs and LEP-2 WW data by itself do 
not constrain TGCs robustly due to each 
suffering from 1 flat direction in space of 3 
TGCs 

However, the flat directions are orthogonal 
and combined constraints lead to robust 
O(0.1) limits on aTGCs

TGC - Higgs Synergy
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Falkowski, Gonzalez-
Alonso, Greljo & Marzocca, 
PRL 116 (2016)
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c

145 (no flavour) operators preserving SM, lepton, baryon syms, up 
to NLO in the renormalisation procedure (4 derivatives & d=6)

Reduction to a minimal independent set of operators: EOMs

Choice of a suitable basis (data driven): measurable @ LHC. 

Analysis on similar lines as for SMEFT
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Kinematics are important in several couplings
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Figure 1: 68% and 95% CL error bars on the coe�cients defined for the non-linear operator analysis. The underlying SFitter

analysis is identical to Ref.[1].

aj = cj ãj for the gauge operators and aj = cj(2ãj �1) for the fermion operators. This way we can link the non-linear

Lagrangian and the linear Lagrangian relevant for our Higgs analysis,

v
2

2

fBB

⇤2
= aB ,

v
2

2

fWW

⇤2
= aW ,

v
2

(4⇡)2
fGG

⇤2
= aG ,

v
2

8

fB

⇤2
= a4 , �

v
2

4

fW

⇤2
= a5 , v

2 f�,2

⇤2
= cH ,

v
2 ft

⇤2
= at , v

2 fb

⇤2
= ab , v

2 f⌧

⇤2
= a⌧ . (8)

We emphasize that these relations are valid only when we study the e↵ects of the operators restricted to trilinear

Higgs interactions.

Based on these relations we can express the SFitter Higgs results from Ref. [1] in terms of this non-linear subset

of operators. In Figure 1 we show the 68% and 95% CL allowed regions based on all on-shell Higgs event rates and

including kinematic distributions.

Summarizing, in this addendum we have presented the results of the SFitter Run I Higgs analysis [1] in terms

of non-linear e↵ective operators. While the �-framework can be linked to a subset of operators in a non-linear

Lagrangian, additional non-linear operators allows us to also describe kinematic distributions. This is the same logic

as the extension of the �-framework to a linear dimension-6 Lagrangian. If we restrict our analysis to on-shell Higgs

measurements, we find a one-to-one correspondence between the linear and a non-linear operator set. The LHC results

in the two approaches can be translated into each other through a simple operator rotation.
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Minor impact on 
the fit results

The results of the global analysis of Higgs data including all the kinematic distribu-
tions described in [49] (except for the o↵-shell m4` distributions) for the set of non-linear
operators described in here (corresponding to the parameters in Eq. (3.32)) are shown in
Table 11. There we show the best fit points together with the di↵erent 95% CL allowed
regions on the several coe�cients spanned in the analysis. For each of the 95% CL ranges
we have profiled on the other 9 undisplayed coe�cients that are included in the global
analysis.

The addition of the extra parameter in the analysis has enlarged the allowed range
on all the rest of coe�cients contributing to the bosonic Higgs trilinear interactions (a4,
a5, aW , aB and �aC) in comparison to the results in [49] (after taking into account the
di↵erent normalizations used between the to analysis). This was expected given the larger
dimensionality of the parameter space analyzed in here. The new contributions from P17

are consequently strongly correlated to some of these coe�cients, as it is illustrated in
Figure 2. There, we show the 2-dimensional planes aB vrs. a17 and a4 vrs. a17, where we
have profiled on the rest of undisplayed coe�cients for each of the panels.

Figure 2: Results of the global analysis of LHC Higgs run I data including kinematic
distributions, where we have profiled on the undisplayed parameters.

In the present analysis the addition of kinematic distributions thus becomes crucial both
to close the allowed regions on all of the considered parameters, as well as to control the
correlations between the several anomalous couplings [49]. To our knowledge, the results
derived here present the most complete set of Higgs based constraints on the non-linear
e↵ective Lagrangian set of operators. They highlight in addition the potential of the EFT
expansion to describe and study the Higgs interactions at the LHC.
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expansion to describe and study the Higgs interactions at the LHC.
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Lagrangian and the linear Lagrangian relevant for our Higgs analysis,

v
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fBB
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v
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v
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= at , v
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⇤2
= ab , v

2 f⌧

⇤2
= a⌧ . (8)

We emphasize that these relations are valid only when we study the e↵ects of the operators restricted to trilinear

Higgs interactions.

Based on these relations we can express the SFitter Higgs results from Ref. [1] in terms of this non-linear subset

of operators. In Figure 1 we show the 68% and 95% CL allowed regions based on all on-shell Higgs event rates and

including kinematic distributions.

Summarizing, in this addendum we have presented the results of the SFitter Run I Higgs analysis [1] in terms

of non-linear e↵ective operators. While the �-framework can be linked to a subset of operators in a non-linear

Lagrangian, additional non-linear operators allows us to also describe kinematic distributions. This is the same logic

as the extension of the �-framework to a linear dimension-6 Lagrangian. If we restrict our analysis to on-shell Higgs

measurements, we find a one-to-one correspondence between the linear and a non-linear operator set. The LHC results

in the two approaches can be translated into each other through a simple operator rotation.
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due to the decorrelation in the              functions: i.e.Fi(h)
[see also Isidori&Trott, 1307.4051]

Example I

Coupling
AµνW

`µW´ν AµνW
`µW´νh ZµνW

`µW´ν ZµνW
`µW´νh

A

W´

W`

A

h

W´

W`

Z

W´

W`

Z

h

W´

W`

generic singlet 2 c2 ` c3 2 c2a2 ` c3a3 ´2t2θ c2 ` c3 ´2t2θ c2a2 ` c3a3

Coupling
AµνZ

µBνh AµνZ
µhBνh ZµνZ

µBνh ZµνZ
µhBνh

h

Z

A

h

h

Z

A

h

Z

Z

h

h

Z

Z

generic singlet 2 c4a4 ` c5a5 2 c4b4 ` c5b5 2tθ c4a4 ´ c5a5 2tθ c4b4 ´ c5b5

Ilaria Brivio (UAM/IFT Madrid) Unravelling the Higgs nature with EFTs 6/23

vs. vs.

OB =
v2

16
P2(h) +

v2

8
P4(h) with Fi(h) =

✓
1 +

h

v

◆2

OB =
ieg2

8
Aµ⌫W

�µW+⌫(v + h)2 �
ie2g

8 cos ✓W
Zµ⌫W

�µW+⌫(v + h)2

�
eg

4 cos ✓W
Aµ⌫Z

µ@⌫h(v + h) +
e2

4 cos2 ✓W
Zµ⌫Z

µ@⌫h(v + h)



DecorrelaMons

42

More important effects when comparing TGV and HVV: for example
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Forty additional operators should be considered if right-handed neutrinos are added to the
spectrum: 17 in L2F , 8 four-leptons interactions and 15 mixed two quarks-two leptons
terms.

The complete list of NLO operators is provided in what follows: Section 2.2 and 2.3
are respectively dedicated to the bosonic and fermionic sectors. Further details on the
construction of the invariants and on how the Equations of Motion have been employed
to remove redundant terms can be found in Secs. C and D. The Feynman rules of the
complete basis are reported in Appendix E, in unitary gauge and for vertices with up to
four legs.

2.2 NLO basis: bosonic sector Lbos

At NLO in the chiral expansion, the lagrangian Lbos contains purely bosonic operators
with up to four derivatives. Complete bases for the CP even and CP odd sectors have
been already constructed in Refs. [27, 33] and [29] respectively. In this work only a subset
of those ensembles are retained as, once the fermionic sector is introduced, some of the
terms become redundant and can be removed using the Equations of Motion (see Sec. D).
Nonetheless, the original numeration of the operators has been kept, in order to simplify
the comparison with the literature. Finally, the explicit dependence on the Higgs field in
the generic functions Fi(h) is dropped in what follows for brevity.

2.2.1 CP even bosonic basis L CP

bos

The CP even NLO Lagrangian reads

L CP

bos
=

X

j

cjPj, j = {T,B,W,G,DH, 1� 6, 8, 11� 14, 17, 18, 20� 24, 26} (2.12)

where all the operators contain four derivatives, with the only exception of

PT (h) =
v
2

4
Tr(TVµ)Tr(TVµ)FT . (2.13)

Although this term would have been included in L0 a priori, as it has two derivatives, it
is customarily moved to �L because of the bounds existing on its coe�cient are quite
strong: cT . 10�3. In fact, this operator violates the custodial symmetry and contributes
to the T parameter, which is constrained to a high accuracy by electroweak precision data
(EWPD). We defer to Section 3 for further details.

The remaining operators in L CP

bos
, in the numeration of Ref. [33], are the following:
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As anticipated in the previous section, the operators PB,W,G(h) are reported in the list
of NLO operators, under the assumption that the coupling of the transverse components of
the gauge fields with the Higgs sector is not a leading e↵ect. It is also worth noticing that
the operators PC(h) and PH(h) of Ref. [33] have not been included in this list, as their
e↵ects can be reabsorbed in redefinitions of the arbitrary functions FC(h) and YQ,L(h)
appearing in L0 in eq. (2.3) (see App. B).

Moreover, a di↵erent normalisation for the operators has been chosen, compared to
Ref. [33]: the 4⇡ suppression factors determined by the NDA master formula in Eq. (2.7)
have been made explicit (see Ref. [38] for details on the advantages of the NDA normal-
isation), while the dependence on the couplings constants has been removed, in order to
emphasise the generality of the EFT approach. It is customary, in fact, to include in
the definition of the HEFT operators the numerical factors arising from the 1-loop renor-
malisation procedure: for instance, the operator P1(h) is often defined proportionally to
gg

0
/(4⇡)2 [22,23,27,33]. However, in principle the coe�cients ci account not only for renor-

malisation e↵ects, but also for possible external contributions, originated by sources that
are not expected to share the same dependence on the gauge couplings. This normalisation
choice is common in many EFTs, such as Fermi Theory and SMEFT.

2.2.2 CP odd bosonic basis L��CP
bos

In the CP-odd sector the bosonic Lagrangian contains 15 operators: according to the
numeration in Ref. [29],

L��CP

bos
=

X

j

c̃jSj, j = {2D, B̃, W̃ , G̃, 1� 9, 15} , (2.14)

where

S2D(h) ⌘ i
v
2

4
Tr (TVµ) @

µF2D (2.15)

10

Alonso, Gavela, LM, Rigolin & Yepes, PRD 87 (2013)
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We can repeat the previous exercise and see the connection among the bases:

F(h) = 1 + 2
h

v
+

h2

v2
with in general

PH(h) =
1

2
(@µh)(@

µh)FH(h) P⇤H =
1

v2
(@µ@

µh)2F⇤H(h)

We added two pure-h operators:

OBB/f
2 =

⇠

2
PB(h) OWW /f2 =

⇠

2
PW (h)

OGG/f
2 = �

2⇠

g2
s

PG(h) OBW /f2 =
⇠

8
P1(h)

OB/f
2 =

⇠

16
P2(h) +

⇠

8
P4(h) OW /f2 =

⇠

8
P3(h)�

⇠

4
P5(h)

O�,1/f
2 =

⇠

2
PH(h)�

⇠

4
F(h)PT (h) O�,2/f

2 = ⇠PH(h)

O�,4/f
2 =

⇠

2
PH(h) +

⇠

2
F(h)PC(h)

O⇤�/f
2 =

⇠

2
P⇤H(h) +

⇠

8
P6(h) +

⇠

4
P7(h)� ⇠P8(h)�

⇠

4
P9(h)�

⇠

2
P10(h)
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�B = 4(2c2 � a4) ! 0

�W = 2(2c3 + a5) ! 0

Data: Tevatron D0 and CDF Collaborations and LHC, CMS, and ATLAS 
Collaborations at 7 TeV and 8 TeV for final states γγ, W+W−, ZZ, Zγ, b b̄, and 
ττ ̄

Figure 2: Left:A BSM sensor irrespective of the type of expansion: constraints from TGV
and Higgs data on the combinations ⌃B = 4(2c2+a4) and ⌃W = 2(2c3�a5), which converge
to cB and cW in the linear d = 6 limit. The dot at (0, 0) signals the SM expectation.
Right:A non-linear versus linear discriminator: constraints on the combinations �B =
4(2c2�a4) and �W = 2(2c3+a5), which would take zero values in the linear (order d = 6)
limit (as well as in the SM), indicated by the dot at (0, 0). For both figures the lower
left panels shows the 2-dimensional allowed regions at 68%, 90%, 95%, and 99% CL after
marginalization with respect to the other six parameters (aG, aW , aB, cH , �B, and �W )
and (aG, aW , aB, cH , ⌃B, and ⌃W ) respectively. The star corresponds to the best fit point
of the analysis. The upper left and lower right panels give the corresponding 1-dimensional
projections over each of the two combinations.

see Eq. (4.7). Presently, the best direct limits on this anomalous coupling come from the
study ofW+

W
� pairs and singleW production at LEP II energies [120–122]. Moreover, the

strongest bounds on g
Z

5
originate from its impact on radiative corrections to Z physics [123–

125]; see Table 5 for the available direct and indirect limits on g
Z

5
.

We can use the relation in Table 1 to translate the existing bounds on g
Z

5
into limits

on P14(h). The corresponding limits can be seen in the last column of Table 5. We note
here that these limits were obtained assuming only a non-vanishing g

Z

5
while the rest of

anomalous TGV were set to their corresponding SM value.
At present, the LHC collaborations have presented some data analyses of anomalous

TGV [126–130] but in none of them have they included the e↵ects of gZ
5
. A preliminary

study on the potential of LHC 7 to constrain this coupling was presented in Ref. [131]
where it was shown that the LHC 7 with a very modest luminosity had the potential of
probing g

Z

5
at the level of the present indirect bounds. In Ref. [131] it was also discussed

the use of some kinematic distributions to characterize the presence of a non-vanishing
g
Z

5
. So far the LHC has already collected almost 25 times more data than the luminosity

considered in this preliminary study which we update here. Furthermore, in this update
we take advantage of a more realistic background evaluation, by using the results of the

29

SM

Linear doublet

⌃B = 4(2c2 + a4) ! fB⇠

⌃W = 2(2c3 � a5) ! fW ⇠

Considering all the couplings together:
Brivio,Corbett,Eboli,Gavela,Gonzalez-Fraile, Gonzalez-Garcia,LM&Rigolin, JHEP 1403 (2014)
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variables. We show in Figure 3 the current status of the bounds on the two relevant planes
of coe�cients after taking into consideration all the Higgs measurements included in the
presented Higgs global analysis (based on [49]), together with the most recent combination
of TGV searches presented in the previous subsection (based on [59]).

Figure 3: Present bounds on ⌃B, ⌃W , �B and �W (see text for the details on
their definition) as obtained from the most recent combined global analysis of Higgs
and TGV data. The rest of undisplayed parameters spanned in the global analysis
(�aC , aB, aG, aW , , a17, Y

(1)

t , Y
(1)

b
and Y

(1)

⌧ ) have been profiled. The black dots signal
the (0, 0) point, while the stars signal the current best fit point obtained in the analysis.

As described in Ref. [33], given the variables shown in Figure 3, while in the left panel
the (0, 0) point corresponds to the SM, in the right one it also corresponds to possible BSM
signals generated in the linear approach. Therefore, an eventual deviation from (0, 0) in the
left panel would indicate BSM physics irrespective of the nature of the EWSB realization, in
contrast if this was accompanied by a departure in the right panel, this would be indicative
of a non linear nature of the Higgs boson.

The observed constraints of ⌃B, ⌃W , �B and�W shown in Figure 3 present a significant
improvement with respect to the previous bounds that were shown in Figure 2 of [33], The
reason for such a sizable improvement relies on two key points. First he more complete
set of run I LHC Higgs event rate measurement and the addition of relevant kinematic
distributions that are sensitive to the anomalous SM Lorentz structures generated by a5 and
a3 introduced in [49] increase the strength of the derived results. Second the combination
of the significant LHC run I diboson production analysis as described in [59] has also a
huge impact in the results. These combination of improvements leads to the significant
enhancement on the sensitive of the combined results shown in Figure 3, in spite of the
larger dimensionality of the parameter space considered in the present study with respect
to the global analysis in [33].

31

Adding the data from kinematic distributions:

Figure 2: Left:A BSM sensor irrespective of the type of expansion: constraints from TGV
and Higgs data on the combinations ⌃B = 4(2c2+a4) and ⌃W = 2(2c3�a5), which converge
to cB and cW in the linear d = 6 limit. The dot at (0, 0) signals the SM expectation.
Right:A non-linear versus linear discriminator: constraints on the combinations �B =
4(2c2�a4) and �W = 2(2c3+a5), which would take zero values in the linear (order d = 6)
limit (as well as in the SM), indicated by the dot at (0, 0). For both figures the lower
left panels shows the 2-dimensional allowed regions at 68%, 90%, 95%, and 99% CL after
marginalization with respect to the other six parameters (aG, aW , aB, cH , �B, and �W )
and (aG, aW , aB, cH , ⌃B, and ⌃W ) respectively. The star corresponds to the best fit point
of the analysis. The upper left and lower right panels give the corresponding 1-dimensional
projections over each of the two combinations.

see Eq. (4.7). Presently, the best direct limits on this anomalous coupling come from the
study ofW+

W
� pairs and singleW production at LEP II energies [120–122]. Moreover, the

strongest bounds on g
Z

5
originate from its impact on radiative corrections to Z physics [123–

125]; see Table 5 for the available direct and indirect limits on g
Z

5
.

We can use the relation in Table 1 to translate the existing bounds on g
Z

5
into limits

on P14(h). The corresponding limits can be seen in the last column of Table 5. We note
here that these limits were obtained assuming only a non-vanishing g

Z

5
while the rest of

anomalous TGV were set to their corresponding SM value.
At present, the LHC collaborations have presented some data analyses of anomalous

TGV [126–130] but in none of them have they included the e↵ects of gZ
5
. A preliminary

study on the potential of LHC 7 to constrain this coupling was presented in Ref. [131]
where it was shown that the LHC 7 with a very modest luminosity had the potential of
probing g

Z

5
at the level of the present indirect bounds. In Ref. [131] it was also discussed

the use of some kinematic distributions to characterize the presence of a non-vanishing
g
Z

5
. So far the LHC has already collected almost 25 times more data than the luminosity

considered in this preliminary study which we update here. Furthermore, in this update
we take advantage of a more realistic background evaluation, by using the results of the

29

SM

Linear doublet

Brivio, Gonzalez-Fraile, Gonzalez-Garcia & LM, Eur.Phys.J. C76 (2016) 416
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Signals expected in the chiral basis, but not in the linear one (d=8)

"µ⌫⇢�@µW
+
⌫ W�

⇢ Z�F14(h)

Expected LHC sensitivity

gZ
5 “ g 2c14{2c2θ

pZT (GeV)

E
ve
n
ts
/b

in

WZ SM

background

Signal for gZ
5 “ 0.1

dataset: 7+8+14 TeV
(4.7+19.6+300 fb´1)

Current best bound at 95% CL

gZ
5 P r´0.08, 0.04s

Dawson,Valencia (1994)

Simulation analysis

§ WZ pair production

W˘

q

q

ν
"1˘

"˘
"¯

W˘

Z

§ binned analysis of pZT distribution

§ Result (95% CL)

gZ
5 P r´0.033, 0.028s

Ilaria Brivio (UAM/IFT Madrid) Unravelling the Higgs nature with EFTs 19/23

Figure 3: The left (right) panel displays the number of expected events as a function of the Z
transverse momentum for a center–of–mass energy of 7 (14) TeV, assuming an integrated
luminosity of 4.64 (300) fb�1. The black histogram corresponds to the sum of all back-
ground sources except for the SM electroweak pp ! W

±
Z process, while the red histogram

corresponds to the sum of all SM backgrounds, and the dashed distribution corresponds to
the addition of the anomalous signal for gZ

5
= 0.2 (gZ

5
= 0.1). The last bin contains all the

events with p
Z

T
> 180 GeV.

Two procedures have been used to estimate the LHC potential to probe anomalous gZ
5

couplings. In the first approach, we performed a simple event counting analysis assuming
that the number of observed events correspond to the SM prediction (gZ

5
= 0) and we look

for the values of gZ
5
which are inside the 68% and 95% CL allowed regions. As suggested

by Ref. [131], the following additional cut was applied in this analysis to enhance the
sensitivity to g

Z

5
:

p
Z

T
> 90 GeV. (4.41)

On a second analysis, a simple �
2 was built based on the contents of the di↵erent bins of

the p
Z

T
distribution, in order to obtain more stringent bounds. The binning used is shown

in Fig. 3. Once again, it was assumed that the observed p
Z

T
spectrum corresponds to the

SM expectations and we sought for the values of gZ
5

that are inside the 68% and 95%
allowed regions. The results of both analyses are presented in Table 7.

We present in the first row of Table 7 the expected LHC limits for the combination of
the 7 TeV and 8 TeV existing data sets, where we considered an integrated luminosity of
4.64 fb�1 for the 7 TeV run and 19.6 fb�1 for the 8 TeV one. Therefore, the attainable
precision on g

Z

5
at the LHC 7 and 8 TeV runs is already higher than the present direct

bounds stemming from LEP and it is also approaching the present indirect limits. Finally,
the last row of Table 7 displays the expected precision on g

Z

5
when the 14 TeV run with

an integrated luminosity of 300 fb�1 is included in the combination. Here, once more,
it was assumed that the observed number of events is the SM expected one. The LHC
precision on g

Z

5
will approach the per cent level, clearly improving the present both direct

and indirect bounds.
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number of expected events (WZ production) 
with respect to the Z pT

gZ5 2 [�0.08, 0.04]

@95% CL:
present                                         
LHC(7+8+14) gZ5 2 [�0.033, 0.028]

Brivio,Corbett,Eboli,Gavela,Gonzalez-Fraile, Gonzalez-Garcia,LM&Rigolin, JHEP 1403 (2014)

gZ5

P14(h) = "µ⌫⇢�Tr(TVµ)Tr(V⌫W⇢�)F14(h)
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Delgado, Dobado & Llanes-Estrada, JHEP 1402 (2014)
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Figure 7. Cross-section for ωω → ωω resulting from evaluating Eq. (6.1) with the amplitudes in
figure 7 and the parameters there described (taken again at µ = 1 TeV).

What “strong interactions” means in this context is that the AIJ amplitudes have mod-

uli of order 1. Then, for example, Watson’s final state theorem applies due to rescattering,

and the phases of the WLWL or ϕϕ production amplitudes should be the same as the phases

of the elastic amplitudes (that are not directly accessible since we do not have asymptotic

beams of these unstable particles).

6.3 Tree-level Higgs scattering: terms proportional to m2
ϕ

We have been working in the chiral limit with m2
ϕ " m2

W " m2
Z " 0. This is a theoretical

limit that may bear resemblance with reality in the energy region s " 1 TeV2 where squared

momenta are significantly larger than masses, but it is perhaps useful to briefly assess the

size of the terms neglected.

We focuse on ϕϕ → ϕϕ elastic scattering, because our chiral amplitude vanishes at O(s)

with the series starting at O(s2) (see Eq. (5.14) where K = 0) so one expects maximum

sensitivity to the correction.

Our amplitude, at a simple reference point such as µ2 = s = 1 TeV2 can be written as

T0
(

s = 1 TeV2
)

=
1 TeV4

96πv4
ξ2
(

10γ(1TeV) +
α2 − β

π2

)

(6.2)

= 0.905ξ2
(

10γ +
α2 − β

π2

)

In the first place, if we consider instead the Higgs self-coupling potential in the Standard

Model,

V self =
m2

ϕ

2v
ϕ2 +

m2
ϕ

8v2
ϕ4 , (6.3)
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table 1 one can see the combinations of couplings that
rule each quantity. This gives six observables and four
relevant combinations. Thus, the ECLh allows us to ex-
tract the couplings from four observables and make a
definite prediction for the other two. Notice that a global
fit with the non-linear EFT must incorporate both NLO
loops and NLO tree-level contributions (both are of the
same order in the chiral counting), otherwise one may
eventually run into inconsistent determinations.
These six observables provide in addition a consistent

set of renormalization conditions (a1 and a2−a3 do need
to be renormalized). The corresponding running for the
O(p4) couplingsCr = crγ, ari are summarized in Table 2,
where the constants ΓC therein are given by

dCr

d ln µ
= −

ΓC

16π2
. (16)

For the sake of completeness, we have also included in
the last two lines of Table 2 the running of ar4 and a

r
5

determined inWW–scattering analyses [17].
A remarkable feature of the one-loop photon-photon

amplitudes is that individual diagrams carry the usual
chiral suppression O

(

p2/(16π2v2)
)

with respect to the
LO. However, the full one-loop amplitude shows a
stronger suppression O

(

(1 − a2)p2/(16π2v2)
)

, where
experimentally a is found to be close to 1 withinO(10%)
uncertainties [1].
We would like to finish this section with the pre-

liminary phenomenological analysis for γγ → W+LW
−
L

shown in Fig. 2. The fact that the Equivalence Theo-
rem works with an error lower that 2% in the SM for
Mγγ =

√
s > 0.5 TeV reassures us about the validity of

our analysis. The SM cross section behaves at high en-
ergies like 1/s for γγ→ W+LW

−
L . On the other hand, the

O(p4) NLO terms in the amplitude (15) add a contribu-
tion to the cross section that growswith s and turnsmore
and more important at higher and higher energies. We
observe the impact of possible new physics by varying
the couplings within typical ranges for the chiral cou-
plings [4, 16]: ar1−a

r
2+a

r
3 = 2×10

−3, 4×10−3, 6×10−3
(respectively from bottom to top in Fig. 2), and the
other couplings set to their SM values, a = 1 and
crγ = 0. The deviation from the SM is negligible at very
low energies. Nonetheless, it grows with Mγγ and for
a1 − a2 + a3 = 2 × 10−3 (4 × 10−3; 6 × 10−3) the cross
section exceeds the SM one by 20% for Mγγ > 2.6 TeV
(1.8 TeV; 1.5 TeV). The signal keeps turning more and
more intense beyond these values of Mγγ. A more de-
tailed study will be provided in a forthcoming work. In
order to study this subprocess in colliders (LHC or fu-
ture e+e− accelerators) we will have to convolute this γγ
cross sections with the corresponding photon luminosity
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Figure 2. . Cross section (top) for γγ→ W+LW−L for unpolarized
photons. The ratio of the ECLh and SM cross sections is pro-
vided in the lower plot. The red-dashed line correspond to the
SM prediction and the solid blue ones our ECLh predictions
for a = cγ = 0 and (a1−a2+a3) = 2×10−3, 4×10−3, 6×10−3,
respectively from bottom to top in each plot.

functions. Although preliminary studies show that one
can get a measurable amount of events for integrated
luminosities of the order of 1 ab−1, the key-point will
be the discrimination and separation of SM background
through convenient cuts [19, 20, 21] and the minimiza-
tion of theoretical uncertainties. For instance, the non-
zero h,W and Z masses produce corrections suppressed
by mh,W,Z/Mγγ, which may turn important if one studies
this reaction below the TeV. This also means going be-
yond the Equivalence Theorem and computing the full
one-loop γγ → VLVL amplitude. It can be also interest-
ing to analyze within this framework the reverted sub-
process VV → γγ via vector boson fusion at LHC.

3. γγ–scattering in MCHM

In this section we show an explicit example of how
our EFT description describes the small momentum
regime of any underlying theory with the same symme-
tries and low-energy particle content.
In the context of the so called SO(5)/SO(4)

MCHM [8] it is assumed that some global symmetry
breaking takes place at some scale 4π f > 4πv so that

5

U(x)

Scattering of             and           WLWL ZLZL Cross section for �� ! W+
L W�

L

Delgado, Dobado, Herrero & Sanz-Cillero, JHEP 1407 (2014)

Similar studies in:
Espriu & Yencho, PRD87 (2013)
Espriu, Mescia & Yencho, PRD88 (2013)
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Similar effect as for WH production in other example is observed: the stronger 
the coupling of the underlying theory, the bigger validity range of EFT

Interpretation of δg1z measurements as constraints on resonance theory  
depends on the parameter regime of the resonance theory 

Example BSM Model: SU(2)LxU(1) vector resonances

AA,Gonzalez-Alonso,
Greljo,Marzocca,Son

in progress

Friday, April 1, 16

From Falkowski’s talk at ATLAS meeting

Validity of SMEFT

51



Assuming B and L conservation, and no BSM custodial breaking

i ̄D/ 

⇤ ̄LU RF 2U(h)

⇤2

(4⇡)2
Tr (VµV

µ)FV2(h)

1

(4⇡)2
Tr (VµVµ)2 FV4(h)

1

4⇡
Tr (Wµ⌫ [V

µ,V⌫ ])FXV2(h)

Operator dp N� NDA form

 2U 3 1 ⇤ 2UF 2U(h)

X2
4 2 X2 FX2(h)
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4 2
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2 FV2(h)
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XV@ 6 3
1
4⇡ XV @FXV@(h)
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1
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2VU @F 2VU@(h)

 2V2U 7 3
1
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2V2UF 2V2U(h)

 2U@2 7 3
1
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2U @2 F 2U@2(h)

V2@2 8 4
1

(4⇡)2 V
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V4
8 4

1
(4⇡)2 V

4 FV4(h)

HEFT basis
Gavela, Jenkins, Manohar & LM, arXiv: 1601.07551
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Forty additional operators should be considered if right-handed neutrinos are added to the
spectrum: 17 in L2F , 8 four-leptons interactions and 15 mixed two quarks-two leptons
terms.

The complete list of NLO operators is provided in what follows: Section 2.2 and 2.3
are respectively dedicated to the bosonic and fermionic sectors. Further details on the
construction of the invariants and on how the Equations of Motion have been employed
to remove redundant terms can be found in Secs. C and D. The Feynman rules of the
complete basis are reported in Appendix E, in unitary gauge and for vertices with up to
four legs.

2.2 NLO basis: bosonic sector Lbos

At NLO in the chiral expansion, the lagrangian Lbos contains purely bosonic operators
with up to four derivatives. Complete bases for the CP even and CP odd sectors have
been already constructed in Refs. [27, 33] and [29] respectively. In this work only a subset
of those ensembles are retained as, once the fermionic sector is introduced, some of the
terms become redundant and can be removed using the Equations of Motion (see Sec. D).
Nonetheless, the original numeration of the operators has been kept, in order to simplify
the comparison with the literature. Finally, the explicit dependence on the Higgs field in
the generic functions Fi(h) is dropped in what follows for brevity.

2.2.1 CP even bosonic basis L CP

bos

The CP even NLO Lagrangian reads

L CP

bos
=

X

j

cjPj, j = {T,B,W,G,DH, 1� 6, 8, 11� 14, 17, 18, 20� 24, 26} (2.12)

where all the operators contain four derivatives, with the only exception of

PT (h) =
v
2

4
Tr(TVµ)Tr(TVµ)FT . (2.13)

Although this term would have been included in L0 a priori, as it has two derivatives, it
is customarily moved to �L because of the bounds existing on its coe�cient are quite
strong: cT . 10�3. In fact, this operator violates the custodial symmetry and contributes
to the T parameter, which is constrained to a high accuracy by electroweak precision data
(EWPD). We defer to Section 3 for further details.

The remaining operators in L CP

bos
, in the numeration of Ref. [33], are the following:

PB(h) = �1

4
Bµ⌫B

µ⌫FB PW (h) = �1

4
W

a

µ⌫
W

aµ⌫FW

PG(h) = �1

4
G

a

µ⌫
G

aµ⌫FG PDH(h) = (@µFDH(h)@µF 0
DH

(h))2

P1(h) = Bµ⌫Tr(TW
µ⌫)F1 P2(h) =

i

4⇡
Bµ⌫Tr(T[Vµ

,V⌫ ])F2

P3(h) =
i

4⇡
Tr(Wµ⌫ [Vµ

,V⌫ ])F3 P4(h) =
i

4⇡
Bµ⌫Tr(TVµ)@⌫F4

9
P5(h) =

i

4⇡
Tr(Wµ⌫Vµ)@⌫F5 P6(h) =

1

(4⇡)2
(Tr(VµVµ))2F6

P8(h) =
1

(4⇡)2
Tr(VµV⌫)@µF8@

⌫F 0
8

P11(h) =
1

(4⇡)2
(Tr(VµV⌫))2F11

P12(h) = (Tr(TWµ⌫))2F12 P13(h) =
i

4⇡
Tr(TWµ⌫)Tr(T[Vµ

,V⌫ ])F13

P14(h) =
"
µ⌫⇢�

4⇡
Tr(TVµ)Tr(V⌫W⇢�)F14 P17(h) =

i

4⇡
Tr(TWµ⌫)Tr(TVµ)@⌫F17

P18(h) =
1

(4⇡)2
Tr(T[Vµ,V⌫ ])Tr(TVµ)@⌫F18 P20(h) =

1

(4⇡)2
Tr(VµVµ)@⌫F20@

⌫F 0
20

P21(h) =
1

(4⇡)2
(Tr(TVµ))2@⌫F21@

⌫F 0
21

P22(h) =
1

(4⇡)2
Tr(TVµ)Tr(TV⌫)@µF22@

⌫F 0
22

P23(h) =
1

(4⇡)2
Tr(VµVµ)(Tr(TV⌫))2F23 P24(h) =

1

(4⇡)2
Tr(VµV⌫)Tr(TVµ)Tr(TV⌫)F24

P26(h) =
1

(4⇡)2
(Tr(TVµ)Tr(TV⌫))2F26

As anticipated in the previous section, the operators PB,W,G(h) are reported in the list
of NLO operators, under the assumption that the coupling of the transverse components of
the gauge fields with the Higgs sector is not a leading e↵ect. It is also worth noticing that
the operators PC(h) and PH(h) of Ref. [33] have not been included in this list, as their
e↵ects can be reabsorbed in redefinitions of the arbitrary functions FC(h) and YQ,L(h)
appearing in L0 in eq. (2.3) (see App. B).

Moreover, a di↵erent normalisation for the operators has been chosen, compared to
Ref. [33]: the 4⇡ suppression factors determined by the NDA master formula in Eq. (2.7)
have been made explicit (see Ref. [38] for details on the advantages of the NDA normal-
isation), while the dependence on the couplings constants has been removed, in order to
emphasise the generality of the EFT approach. It is customary, in fact, to include in
the definition of the HEFT operators the numerical factors arising from the 1-loop renor-
malisation procedure: for instance, the operator P1(h) is often defined proportionally to
gg

0
/(4⇡)2 [22,23,27,33]. However, in principle the coe�cients ci account not only for renor-

malisation e↵ects, but also for possible external contributions, originated by sources that
are not expected to share the same dependence on the gauge couplings. This normalisation
choice is common in many EFTs, such as Fermi Theory and SMEFT.

2.2.2 CP odd bosonic basis L��CP
bos

In the CP-odd sector the bosonic Lagrangian contains 15 operators: according to the
numeration in Ref. [29],

L��CP

bos
=

X

j

c̃jSj, j = {2D, B̃, W̃ , G̃, 1� 9, 15} , (2.14)

where

S2D(h) ⌘ i
v
2

4
Tr (TVµ) @

µF2D (2.15)

10

Alonso, Gavela, LM, Rigolin & Yepes, PRD 87 (2013)
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We can repeat the previous exercise and see the connection among the bases:

F(h) = 1 + 2
h

v
+

h2

v2
with in general

PH(h) =
1

2
(@µh)(@

µh)FH(h) P⇤H =
1

v2
(@µ@

µh)2F⇤H(h)

We added two pure-h operators:

OBB/f
2 =

⇠

2
PB(h) OWW /f2 =

⇠

2
PW (h)

OGG/f
2 = �

2⇠

g2
s

PG(h) OBW /f2 =
⇠

8
P1(h)

OB/f
2 =

⇠

16
P2(h) +

⇠

8
P4(h) OW /f2 =

⇠

8
P3(h)�

⇠

4
P5(h)

O�,1/f
2 =

⇠

2
PH(h)�

⇠

4
F(h)PT (h) O�,2/f

2 = ⇠PH(h)

O�,4/f
2 =

⇠

2
PH(h) +

⇠

2
F(h)PC(h)

O⇤�/f
2 =

⇠

2
P⇤H(h) +

⇠

8
P6(h) +

⇠

4
P7(h)� ⇠P8(h)�

⇠

4
P9(h)�

⇠

2
P10(h)
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Figure 1: 68% and 95% CL error bars on the coe�cients defined for the non-linear operator analysis. The underlying SFitter

analysis is identical to Ref.[1].

aj = cj ãj for the gauge operators and aj = cj(2ãj �1) for the fermion operators. This way we can link the non-linear

Lagrangian and the linear Lagrangian relevant for our Higgs analysis,

v
2

2

fBB

⇤2
= aB ,

v
2

2

fWW

⇤2
= aW ,

v
2

(4⇡)2
fGG

⇤2
= aG ,

v
2

8

fB

⇤2
= a4 , �

v
2

4

fW

⇤2
= a5 , v

2 f�,2

⇤2
= cH ,

v
2 ft

⇤2
= at , v

2 fb

⇤2
= ab , v

2 f⌧

⇤2
= a⌧ . (8)

We emphasize that these relations are valid only when we study the e↵ects of the operators restricted to trilinear

Higgs interactions.

Based on these relations we can express the SFitter Higgs results from Ref. [1] in terms of this non-linear subset

of operators. In Figure 1 we show the 68% and 95% CL allowed regions based on all on-shell Higgs event rates and

including kinematic distributions.

Summarizing, in this addendum we have presented the results of the SFitter Run I Higgs analysis [1] in terms

of non-linear e↵ective operators. While the �-framework can be linked to a subset of operators in a non-linear

Lagrangian, additional non-linear operators allows us to also describe kinematic distributions. This is the same logic

as the extension of the �-framework to a linear dimension-6 Lagrangian. If we restrict our analysis to on-shell Higgs

measurements, we find a one-to-one correspondence between the linear and a non-linear operator set. The LHC results

in the two approaches can be translated into each other through a simple operator rotation.
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The simulation for LHC (7 TeV, 14 TeV) has been done taking cuts and precautions:

Focused on WZ production, considering leptonic decays of W and Z (background)

Main background: SM production of WZ pairs; W and Z production with jets; ZZ 
production with one Z in leptons with one charged in missing E, the other in tt pair.
Detection efficiencies rescaled to the one by ATLAS for TGV                                 .
We closely follow the TGV analysis performed by ATLAS (cuts on transverse 
momentum and pseudorapidity).
The cross section in the presence of an anomalous          is then given by

In the SM, Vff contain a CP odd component. The amplitude for any subprocess                     
.    contains SM contributions that are both C and P odd and that interfere 
with the contribution from the anomalous. 

pp ! `0±`+`�Emiss `(0) = e or µ

gZ5

� = �bck + �SM + �int gZ5 + �ano
�
gZ5

�2

qq̄ ! WZ

�KZ , gZ1 , �Z

Brivio,Corbett,Eboli,Gavela,Gonzalez-Fraile, Gonzalez-Garcia,LM&Rigolin, JHEP 1403 (2014)
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68% CL range 95% CL range

Data sets used Counting pZ
T
> 90 GeV pZ

T
binned analysis Counting pZ

T
> 90 GeV pZ

T
binned analysis

7+8 TeV (�0.066, 0.058) (�0.057, 0.050) (�0.091, 0.083) (�0.080, 0.072)
(4.64+19.6 fb�1)

7+8+14 TeV (�0.030, 0.022) (�0.024, 0.019) (�0.040, 0.032) (�0.033, 0.028)
(4.64+19.6+300 fb�1)

Table 7: Expected sensitivity on g
Z

5
at the LHC for the two di↵erent procedures described

in the text.

4.4 Anomalous quartic couplings

As shown in Sect. 3.4, in the chiral expansion several operators weighted by ⇠ or higher
powers contribute to quartic gauge boson vertices without inducing any modification to
TGVs. Therefore, their coe�cients are much less constrained at present, and one can
expect still larger deviations on future studies of quartic vertices at LHC for large values
of ⇠. This is unlike in the linear expansion, in which the modifications of quartic gauge
couplings that do not induce changes to TGVs appear only when the d = 8 operators are
considered [83]. For instance, the linear operators similar to P6(h) and P11(h) are LS,0 and
LS,1 in Ref. [83].

Of the five operators giving rise to purely quartic gauge boson vertices (P6(h), P11(h),
P23(h), P24(h), P26(h)), none modifies quartic vertices including photons while all generate
the anomalous quartic vertex ZZZZ that is not present in the SM. Moreover, all these
operators but P26(h) modify the ZZW

+
W

� vertex, while only P6(h) and P11(h) also
induce anomalous contributions to W

+
W

�
W

+
W

�.
Presently, the most stringent bounds on the coe�cients of these operators are indirect,

from their one–loop contribution to the EWPD derived in Ref. [79] where it was shown
that the five operators correct ↵�T while render ↵�S = ↵�U = 0. In Table 8 we give the
updated indirect bounds using the determination of the oblique parameters in Eq. (4.24).

At the LHC these anomalous quartic couplings can be directly tested in the production
of three vector bosons (V V V ) or in vector boson fusion (VBF) production of two gauge
bosons [81]. At lower center–of–mass energies the best limits originate from the V V V

processes, while the VBF channel dominates for the 14 TeV run [80–83,136].
At the LHC with 14 TeV center-of-mass energy, the couplings c6 and c11 can be con-

strained by combining their impact on the VBF channels

pp ! jjW
+
W

� and pp ! jj(W+
W

+ +W
�
W

�) , (4.42)

where j stands for a tagging jet and the final state W ’s decay into electron or muon plus
neutrino. It was shown in Ref. [83] that the attainable 99% CL limits on these couplings
are

� 12⇥ 10�3
< c6 ⇠ < 10⇥ 10�3

, �7.7⇥ 10�3
< c11 ⇠

2
< 14⇥ 10�3 (4.43)

for an integrated luminosity of 100 fb�1. Notice that the addition of the channel pp ! jjZZ

does not improve significantly the above limits [80].

34

Counting 
Simple even counting analysis, assuming that the observed events are SM and 
looking for values of        inside the 68% and 95% CL allowed regions. The 
restriction to                               increases the sensitivity. 

        binned analysis
Simple     based on the contents of the different       distributions with no cuts. 
Same conditions of the previous method.

pZT > 90 GeV

gZ5

pZT

pZT > 90 GeV

pZT�2
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So far we have compared the phenomenology of the Higgs being a

linear                  doubletSU(2)L vs. generic                  singletSU(2)L
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What if the Higgs is a  
non elementary - doublet?

Alonso,Brivio,Gavela,LM&Rigolin, JHEP 1412 (2014) 
Hierro,LM&Rigolin, 1510.07899

So far we have compared the phenomenology of the Higgs being a

linear                  doubletSU(2)L vs. generic                  singletSU(2)L

http://arxiv.org/abs/1510.07899
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Generic Composite 
Higgs Models ⇤s  4⇡f

+
effective interactions
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Fi(h) = 1 + 2↵i
h

v
+ �i

h2

v2
+ . . .

h is embedded in a doublet of                  (reducible rep of     )

 

 If the number of operators at the high-energy is smaller than the 
generic basis at low-energy, there must be correlations among 
operators

not generic but specific

SU(2)L G
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Lhigh = Lp2

high + Lp4

high

Lp2

high = eAC

Lp4

high = eAB + eAW + c̃B⌃
eAB⌃ + c̃W⌃

eAW⌃ +
8X

i=1

c̃i eAi

At the high-scale: h still a GB together to all the others generated by           ,  
the most generic effective Lagrangian (with same Custodial breaking on SM) 

G/H
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Lhigh = Lp2

high + Lp4

high

Lp2

high = eAC

Lp4

high = eAB + eAW + c̃B⌃
eAB⌃ + c̃W⌃

eAW⌃ +
8X

i=1

c̃i eAi

eAC = �f2

4
Tr

⇣
eVµ

eVµ
⌘

eAB = �1

4
Tr

⇣
eBµ⌫

eBµ⌫
⌘

eAW = �1

4
Tr

⇣
fWµ⌫

fWµ⌫
⌘

eAB⌃ = g02Tr
⇣
⌃eBµ⌫⌃

�1 eBµ⌫
⌘

eAW⌃ = g2Tr
⇣
⌃fWµ⌫⌃

�1fWµ⌫
⌘

eA1 = g g0 Tr
⇣
⌃eBµ⌫⌃

�1fWµ⌫
⌘

eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘

eA3 = i gTr
⇣
fWµ⌫

h
eVµ, eV⌫

i⌘

eA4 = Tr
⇣
eVµ

eVµ
⌘
Tr

⇣
eVµ

eVµ
⌘

eA5 = Tr
⇣
eVµ

eV⌫

⌘
Tr

⇣
eVµ eV⌫

⌘

eA6 = Tr
⇣
(Dµ

eVµ)2
⌘

eA7 = Tr
⇣
eVµ

eVµ eV⌫
eV⌫

⌘

eA8 = Tr
⇣
eVµ

eV⌫
eVµ eV⌫

⌘

At the high-scale: h still a GB together to all the others generated by           ,  
the most generic effective Lagrangian (with same Custodial breaking on SM) 

G/H



61

eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘
Let’s concentrate on 
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eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘
Let’s concentrate on 

eA2 ! sin2

'

2f

�
P2 +

p
⇠ sin


'

f

�
P4

P2 = ig0Bµ⌫Tr(T[Vµ,V⌫ ])

P4 = ig0Bµ⌫Tr(TVµ)@⌫(h/v)
Fi(h)

distinguishing the h from the others GBs: ' ⌘ h+ h'i
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eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘
Let’s concentrate on 

eA2 ! sin2

'

2f

�
P2 +

p
⇠ sin


'

f

�
P4

P2 = ig0Bµ⌫Tr(T[Vµ,V⌫ ])

P4 = ig0Bµ⌫Tr(TVµ)@⌫(h/v)
Fi(h)

distinguishing the h from the others GBs: ' ⌘ h+ h'i

going to the limit of small ⇠

eA2 ! OB +O(⇠2)

OB = (Dµ�)
† B̂µ⌫ (D⌫�)



We recover the linear expansion, with corrections in higher powers of    .  ⇠
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eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘
Let’s concentrate on 

eA2 ! sin2

'

2f

�
P2 +

p
⇠ sin


'

f

�
P4

P2 = ig0Bµ⌫Tr(T[Vµ,V⌫ ])

P4 = ig0Bµ⌫Tr(TVµ)@⌫(h/v)
Fi(h)

distinguishing the h from the others GBs: ' ⌘ h+ h'i

going to the limit of small ⇠

eA2 ! OB +O(⇠2)

OB = (Dµ�)
† B̂µ⌫ (D⌫�)
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W a
µ⌫W

aµ⌫

Bµ⌫B
µ⌫

(Dµ�)
† (Dµ�)

eAC = �f2

4
Tr

⇣
eVµ

eVµ
⌘

eAB = �1

4
Tr

⇣
eBµ⌫

eBµ⌫
⌘

eAW = �1

4
Tr

⇣
fWµ⌫

fWµ⌫
⌘

eAB⌃ = g02Tr
⇣
⌃eBµ⌫⌃

�1 eBµ⌫
⌘

eAW⌃ = g2Tr
⇣
⌃fWµ⌫⌃

�1fWµ⌫
⌘

eA1 = g g0 Tr
⇣
⌃eBµ⌫⌃

�1fWµ⌫
⌘

eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘

eA3 = i gTr
⇣
fWµ⌫

h
eVµ, eV⌫

i⌘

eA6 = Tr
⇣
(Dµ

eVµ)2
⌘

�†Bµ⌫B
µ⌫�

�†Wµ⌫W
µ⌫�

�†Bµ⌫W
µ⌫�

(Dµ�)
† Bµ⌫ (D⌫�)

(Dµ�)
† Wµ⌫ (D⌫�)

(DµD
µ�)† (D⌫D

⌫�)

eA4
eA5

eA7
eA8

irrelevant: redundant or 
contribute to d>6 linear ops.

O�,1 O�,2 O�,3 O�,4

irrelevant: custodial breaking or 
pure Higgs corrections
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deviations from (v + h)2
elementary

vs.
composite

other type of deviations
i.e. 

doublet
vs.

singlet
eA2 ! sin2


'

2f

�
P2 +

p
⇠ sin


'

f

�
P4


