

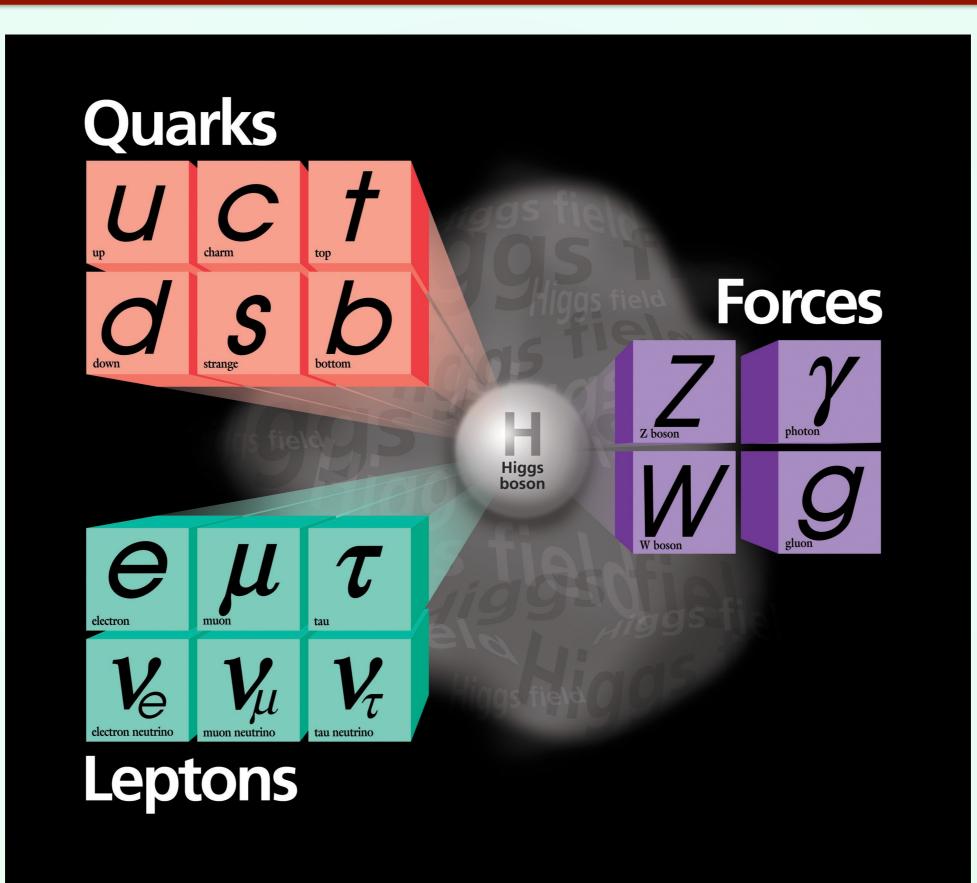
HIGGS EFFECTIVE FIELD THEORIES

Luca Merlo

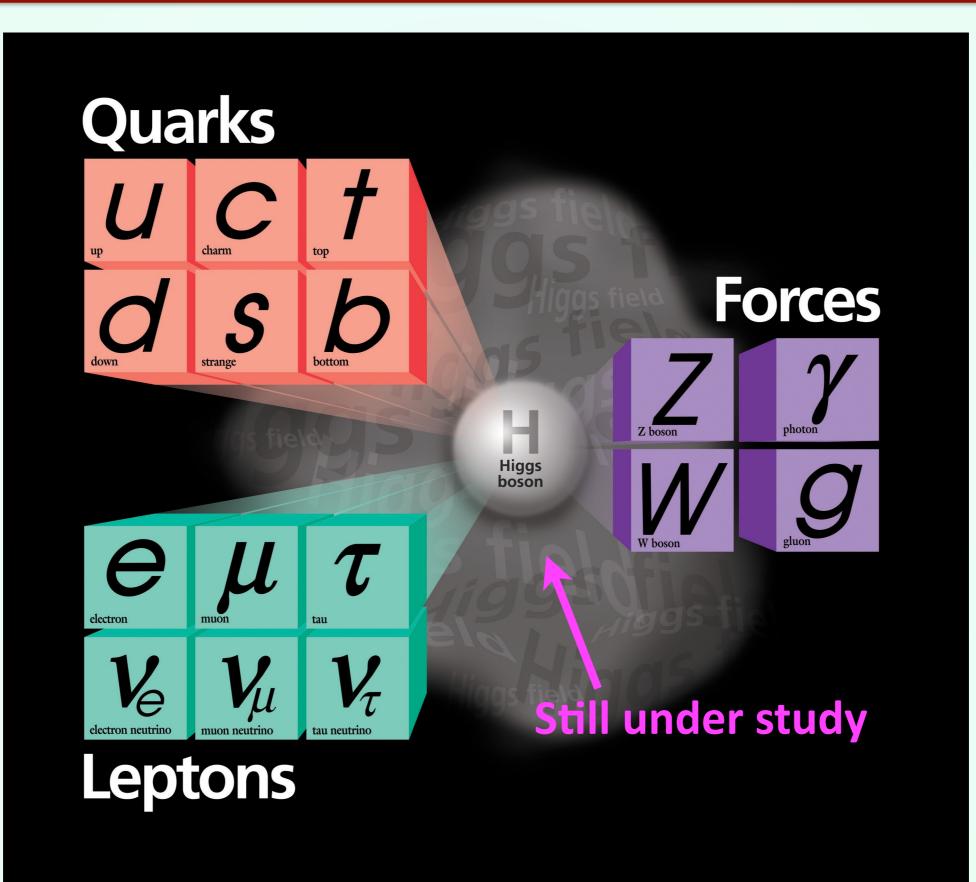
Milan, 21st of August 2021

Advanced VBS training school

Normal matter



Normal matter



Normal matter

Higgs

boson

20,HO.H. $-\frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0}-\beta_{h}[\frac{2M^{2}}{2}+$ $-\frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0}$ - igc. [a. Z^0_{\mu}(W^+_{\mu}W^+_{\nu}) $\psi^{0} \psi^{0} + 2\psi^{-} \psi^{-} W^{-} \partial_{\nu} W^{+}) + Z^{0}_{\mu} (W^{+}_{\nu} \partial_{\nu} W^{-}_{\mu}) + Z^{0}_{\mu} (W^{+}_{\nu} \partial_{\nu} W^{-}_{\mu} - W^{-}_{\mu} W^{+}_{\mu}) - \Lambda_{\nu} (W^{+}_{\mu} \partial_{\nu} W^{-}_{\mu} - W^{-}_{\nu} W^{+}_{\mu}) - \Lambda_{\nu} (W^{+}_{\mu} \partial_{\nu} W^{-}_{\mu}) + Z^{0}_{\nu} (W^{+}_{\nu} \partial_{\nu} W^{-}_{\nu}) + Z^{0}_{\nu} (W^{+}_{\nu} \partial_{\nu} W^{-}_{\nu}) + Z^{0}_{\nu} (W^{+}_{\nu})) + Z^{0}_{\nu} (W^{+}_{\nu}) + Z^{0}_{\nu} (W^{+}_{\nu})) + Z^{0}_{\nu} (W^{+}_{\nu}) + Z^{0}_{\nu} (W^{+}_{\nu})))$
$$\begin{split} \| - \frac{dgs_{w}}{\partial \omega} \partial_{\omega} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}) \| - \frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{+} \\ + A_{\mu} (W_{\nu}^{+} + \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}) \| - \frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\mu}^{+} W_{\mu}^{+} \\ \psi_{\nu}^{-} W_{\nu}^{+} W_{\nu}^{-} + g^{2} c_{\omega}^{2} (Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-} - Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}) \\ + A_{\nu} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} s_{\omega} c_{\omega} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-}) \\ - 2A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}] - g \alpha [H^{3} + H \phi^{0} \phi^{0} + 2H \phi^{+} \phi] \end{split}$$
 $(\mu^{\mu}_{\mu^{+}})^{0} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4H^{2}\phi^{+}\phi^{-}$ $\begin{array}{l} \sum_{\mu \in \mathcal{M}, \mu^{+}} \left(\phi^{0} \right) + 1 \left(\phi^{0} \right) \right) \\ \sum_{\mu \in \mathcal{M}, \mu^{+}} \left(\phi^{0} \right) \right) \\ \sum_{\mu \in \mathcal{M}, \mu^{+}} \left(\phi^{0} \right) \right) \\ \sum_{\mu \in \mathcal{M}, \mu^{+}} \left(\phi^{0} \right) \right) \\ \sum_{\mu \in \mathcal{M}, \mu^{+}} \left(\phi^{0} \right) \left(\phi^{$ $\|h\|_{H^{1}}^{+\frac{1}{2}}\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{a_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi$ $\begin{array}{l} \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}(H)\partial_{\mu}\phi) - \phi + \partial_{\mu}\phi + g_{c_{\mu}}^{-}(Z_{\mu}(H)\partial_{\mu}\phi) - \psi_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}(H)\partial_{\mu}\phi) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \phi + \partial_{\mu}\phi^{\dagger} \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \psi_{\mu}^{-}(Z_{\mu}^{-}) - \psi_{\mu}^{-}(Z_{\mu}^{-}) \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \psi_{\mu}^{-}(Z_{\mu}^{-}) - \psi_{\mu}^{-}(Z_{\mu}^{-}) \right] \\ \left[\psi_{\mu} + ig_{c_{\mu}}^{-}(Z_{\mu}^{-}) - \psi_{\mu}^{-}(Z_{\mu}^{-}) - \psi_{\mu}^{-}(Z_{\mu}^{-}) \right] \\ \left[\psi_{\mu} + ig_{\mu}^{-}(Z_{\mu}^{-}) - \psi_{\mu}^{ \frac{1}{2} \frac{1}$ $\| \psi \|_{1}^{1} = \frac{1}{2} i g^{2} \frac{s^{2}}{2} Z^{0}_{\mu} H(W^{+}_{\mu} \phi)$ -w $W_{\mu}^{+} \phi^{s} \mathcal{A}_{\mu} H(W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+}) - g^{2} \mathcal{B}_{ew}^{*} (2c_{w}^{2} - 1)Z_{\mu}^{0}$ 392 S. $(\psi_{\mu} \phi^{*} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{i}^{\lambda}$ $(\psi + \eta) d + igs_{w}A_{\mu}[-(e^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(u_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda})$ $\frac{1}{2} \left(\left(1 + \gamma^{5} \right) \nu^{\lambda} \right) + \left(\bar{e}^{\lambda} \gamma^{\mu} \left(4 s_{w}^{2} \right) \right)$ $(1-\gamma^5)e^{\lambda})+(\bar{u}_1^{\lambda})$ $\frac{i \cdot j^{b} y^{b}}{(l + \gamma^{5}) c_{\lambda \alpha} d_{j}^{\alpha}} + \frac{i g}{2\sqrt{2}} W_{\mu}^{+} [(\overline{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^{5}) e^{\lambda}) + \frac{i g}{2\sqrt{2}} W_{\mu}^{-} [(\overline{e}^{\lambda} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} C_{\lambda \alpha}^{\dagger} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} \gamma^{\mu} (1 + \gamma^{5}) \nu^{\lambda}) + (\overline{d}_{j}^{\alpha} \gamma^{\mu} (1 +$ $\int_{W_{1}}^{V_{1}} || + rac{\partial q}{\partial \lambda^{2}} rac{\partial q}{M} [-\phi^{+}(ar{
u}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(ar{e}^{\lambda}(1+\gamma^{5})u^{\lambda})] - \phi^{-}(ar{e}^{\lambda}(1+\gamma^{5})u^{\lambda})u^{\lambda}) - \phi^{-}(ar{e}^{\lambda}(1+\gamma^{5})u^{\lambda})u^{\lambda})] - \phi^{-}(ar{e}^{\lambda}$ $\frac{ig}{i[H[e^{\lambda}e^{\lambda}] + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})]} + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}($ $-\frac{g}{2M}H(u_{j}^{\lambda}u_{j}^{\lambda}) - \frac{g}{2M}H(\overline{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{M}\frac{m\lambda}{M}\phi^{0}(u_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) + \frac{ig}{M}\frac{m\lambda}{M}$ $(\hat{\sigma}_{j}^{a}) + \hat{X}^{+}(\partial^{2} - M^{2})X^{+} + \hat{X}^{-}(\partial^{2} - M^{2})X^{-} + \hat{X}^{0}(\partial^{2} - M^{0})X^{-} + \hat{X}^{0}(\partial^{$

 $\mathcal{X}^{\partial 2}Y^{+}igc_{w}W^{+}(\partial_{\mu}\bar{X}^{0}X^{-}-\partial_{\mu}\bar{X}^{+}X^{0})+igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{N})$

electron neutrino

- x-x00

x•x+

 $\frac{1}{2}gM[\bar{X}^+X^+H+\bar{X}^-X^-H+\frac{1}{c_w}\bar{X}^0X^0H]+$

 $\begin{array}{l} X^{0}-\partial_{\mu}\bar{X}^{-}X^{+})+igs_{w}W_{\mu}\left(\partial_{\mu}\bar{X}^{-}Y^{-}X^{+}\right) \\ X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) \end{array}$

muon neutrino

tau 1

Leptons

Still under study

Leptons

electron neutrino muon neutrino tau 1

 $= \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H.$

 $M^{2} \mu^{\mu} \mu^{\mu} = \frac{1}{2c_{\mu}} M \phi^{0} \phi^{0} - \frac{1}{2c_{\mu}^{2}} M \phi^{0} \phi^{0} - \frac{1}{2c_{\mu}^{2}$

 $\sum_{\mu \in \mathcal{U}^{+}} [W_{\mu}^{+}(\phi^{0})^{\prime} + 4(\phi \phi^{0}) + \frac{1}{2}g \frac{W}{\mu} \mathcal{L}_{\mu}^{0} \mathcal{L}_{\mu}^{0} \mathcal{H} - \frac{1}{2}ig [W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - \psi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - \psi^{0}\partial_{\mu}\phi^{0} - \psi^{0}\partial_{\mu$ $\|\psi_{\mu} - \psi_{\mu} - \psi_{\mu} - \psi_{\mu} - \psi_{\mu} - \psi_{\mu} - ig \frac{a_{\mu}^{2}}{c_{\mu}} M Z^{0}_{\mu} (W^{+}_{\mu} \phi)$ $\begin{array}{l} \left\{ \psi_{\mu}^{(\mu)} + ig_{e_{\mu}}^{(\mu)} (U_{\mu} \phi) - \psi_{\mu} \phi \right\} \\ \left\{ \psi_{\mu}^{(\mu)} \psi_{\mu}^{(\mu)} \phi - W_{\mu} \phi^{+} \right\} - ig_{\mu}^{(\mu)} \frac{1}{2c_{\mu}^{(\mu)}} Z_{\mu}^{0} (\phi^{+} \partial_{\mu} \phi) - \phi_{\mu}^{(\mu)} \partial_{\mu} \phi^{+} \\ \left\{ \psi_{\mu}^{(\mu)} \psi_{\mu}^{(\mu)} \phi^{-} - \phi^{-} \partial_{\mu} \phi^{+} \right\} - \frac{1}{4} g^{2} W_{\mu}^{(\mu)} W_{\mu}^{-} \left[H^{2} + (\phi^{0})^{2} + 2\phi^{+} \phi^{-} \right]$ $\frac{1}{2} \frac{1}{2} \frac{1}$ $\frac{1}{2}g^2 \frac{s^2}{2} Z^0_{\mu} \phi^0(W$ $[\phi] - \frac{1}{2} i g^2 \frac{s^2_{\mu}}{c_{\mu}} Z^0_{\mu} H(W^+_{\mu} \phi)$ $-W_{\mu}$ $\phi^+) +$ $\frac{1}{2}g^2s_wA_\mu\phi^0(W^+_\mu\phi$ $[i]_{\mu} g_{s_{\nu}} A_{\mu} H(W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+}) - g^{2} \frac{g_{\omega}}{c_{\omega}} (2c_{\omega}^{2} - 1) Z_{\mu}^{0}$ $\|f\|_{\mathcal{U}}^{q} = W_{\mu} \phi^{*} - \overline{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \overline{u}_{j}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \overline{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \overline{u}_{j}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda}$ $(\psi_{\mu}) + igs_{\omega}A_{\mu}[-(e^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(u_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) - \frac{1}{3}(d_{j}^{\lambda})$ $(\bar{a}_{w}^{1/|l+\gamma^{5})}\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{a}_{w}^{\lambda})$ $\hat{W}_{j}^{(i)}+(\hat{d}_{j}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})d_{j}^{\lambda})]+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\mathcal{D}^{\lambda}\gamma^{\mu}(1+\gamma^{\delta})e^{\lambda})+$ $\tilde{d}_{j}^{\mu}(l+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(l+\gamma^{5})\nu^{\lambda})]$ $\int_{2\sqrt{2}}^{\sqrt{2}} \int_{M}^{\sqrt{2}} \left[-\phi^{+}(\bar{
u}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) \right] \frac{ig}{ij[H(e^{i}e^{j})+i\phi^{0}(\bar{e}^{\lambda}\gamma^{\bar{s}}e^{\lambda})]} + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{\bar{s}})d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{\bar{s}})d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{\bar{s}})d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{\bar{s}})d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{\bar{s}})d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{\bar{s}})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{$ $\frac{ig}{i^{j}} C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}} \phi^{-}[m_{d}^{\lambda}(d_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(d_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(d_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(d_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1+\gamma^{5})u_{j}^$ $\begin{array}{c} \overset{(h)}{} u_{j} \\ = \underbrace{m\lambda}{2} H(u_{j}^{\lambda} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{ig \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{ig \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{ig \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{ig \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{ig \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} \phi^{0}(u_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) + \underbrace{g \begin{array}{c} m\lambda}{2} m\lambda}{2} H(\overline{d}_{j}^{\lambda} d_{j}^{\lambda}) +$ $\hat{X}_{j}^{(a_{j})} + \hat{X}^{+}(\partial^{2} - M^{2})X^{+} + \hat{X}^{-}(\partial^{2} - M^{2})X^{-} + \hat{X}^{0}(\partial^{2} - M^{2})X^{-} + \hat{X}^{0}$ $\begin{array}{c} \overset{(1)}{Y} \overset{(2)}{d_{1}} + \tilde{X}^{+} (\partial^{2} - M^{2}) X^{+} + \tilde{X}^{-} (\partial^{2} - M^{2}) X^{-} + X (\partial^{2} + X^{0}) \\ + \tilde{Y} \partial^{2} Y^{+} igc_{w} W_{\mu}^{+} (\partial_{\mu} \tilde{X}^{0} X^{-} - \partial_{\mu} \tilde{X}^{+} X^{0}) + igs_{w} W_{\mu}^{+} (\partial_{\mu} \tilde{Y} X^{-} + igc_{w} W_{\mu}^{-} (\partial_{\mu} \tilde{X}^{-} X^{0} - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W_{\mu}^{-} (\partial_{\mu} \tilde{X}^{-} Y^{-} + igc_{w} Z_{\mu}^{\mu} (\partial_{\mu} \tilde{X}^{+} X^{+} - \partial_{\mu} \tilde{X}^{0} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \tilde{X}^{+} X^{+} + \partial_{\mu} \tilde{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \tilde{X}^{+} X^{+} + H + X - X - H + \frac{1}{2w} \tilde{X}^{0} X^{0} H] + 0 \\ & = 0 \\$ $\begin{array}{c} \partial \phi^{+} - \bar{X}^{-} X^{0} \phi^{-}] + \frac{1}{2c} igM[\bar{X}^{0} X^{-} \phi^{+} - \bar{X}^{0} \rangle \\ \lambda^{+} - \bar{X}^{0} X^{+} \phi^{-}] + \frac{1}{2} igM[\bar{X}^{+} X^{+} \phi^{0} - \bar{X} \rangle \end{array}$

 $\begin{array}{l} \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - \frac{M^{2}}{2} \phi^{+} \phi^{-} - \frac{2}{2} \partial_{\mu} \phi^{-} \phi^{-} \partial_{\mu} \psi^{-} - \frac{2}{2} \partial_{\mu} \phi^{-} \phi^{-} \partial_{\mu} \psi^{-} \psi^{-} \partial_{\mu} \psi^{-} \psi^{-} \partial_{\mu} \psi^{-} \psi^{-} \partial_{\mu} \partial_{\mu} \psi^{-} \partial_{\mu} \partial_{\mu} \psi^{-} \partial_{\mu} \psi^{-} \partial_{\mu} \partial_{\mu} \psi^{-} \partial_{\mu} \psi^{-} \partial_{\mu} \psi^{-} \partial_{\mu} \partial$

 $\| \| \|_{\mu}^{p} - 2\pi \mu^{2} \mu^{-} \phi^{-})^{2} + 4(\phi^{0})^{2} \phi^{+} \phi^{-} + 4H^{2} \phi^{+} \phi^{-} + 2(\phi^{0})^{2} \phi^{+} \phi^{-} \phi^{+} \phi^{-} \phi^{+} \phi^{-} \phi^{+} \phi^{-} \phi^{-} \phi^{+} \phi^{-} \phi^{+} \phi^{-} \phi^{-} \phi^{+} \phi^{-} \phi^{-} \phi^{-} \phi^{+} \phi^{-} \phi^{+} \phi^{-} \phi^{-} \phi^{+} \phi^{-} \phi^{-} \phi^{-} \phi^{-} \phi^{+} \phi^{-} \phi^{-} \phi^{+} \phi^{-} \phi^{-} \phi^{+} \phi^{-} \phi^{-}$

+0

The state Fru X: Yis Xs\$ the $\left| \sum_{\alpha} \varphi \right|^2 - V(\phi)$ Jun ander Stady

Normal matter

Experimental Evidences

Theoretical Problems

Experimental Evidences

Theoretical Problems

Neutrino Masses

Experimental Evidences

Theoretical Problems

Neutrino Masses

Baryon Asymmetry

Experimental Evidences

Theoretical Problems

Neutrino Masses

Baryon Asymmetry

Experimental Evidences

Theoretical Problems

Neutrino Masses

Baryon Asymmetry

Dark matter

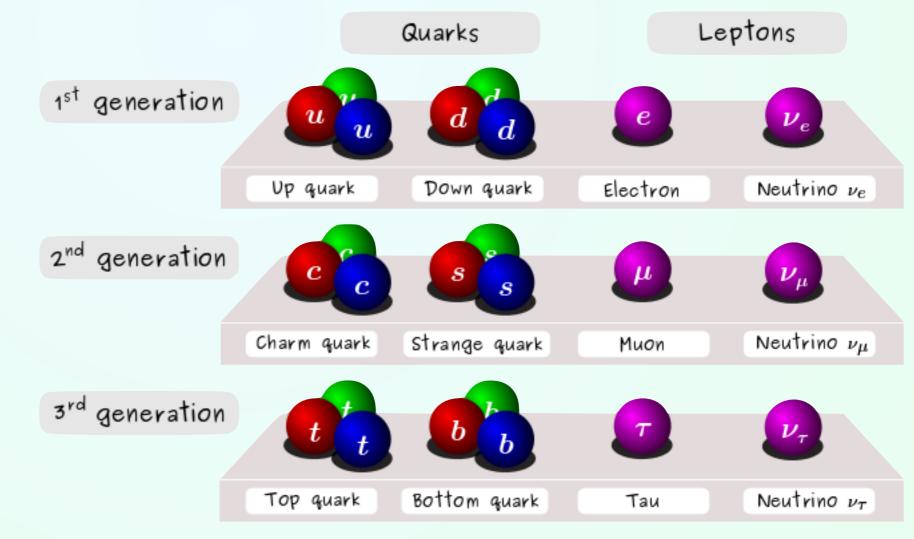
Experimental Evidences

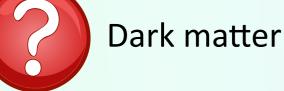
Neutrino Masses

Baryon Asymmetry

Theoretical Problems

Why 3 generations?





Experimental Evidences

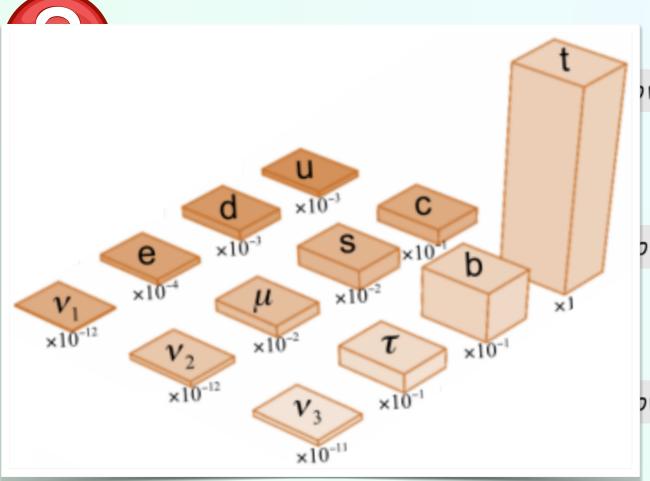
Neutrino Masses

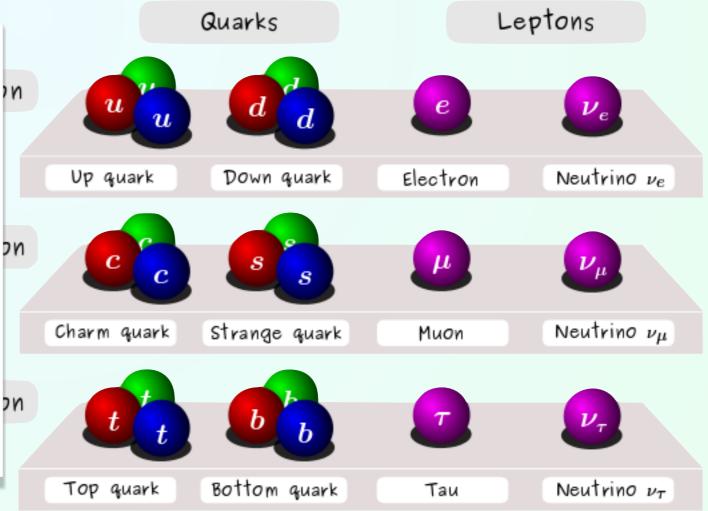
Baryon Asymmetry

Theoretical Problems

Why 3 generations?

Why so different masses & mixings?



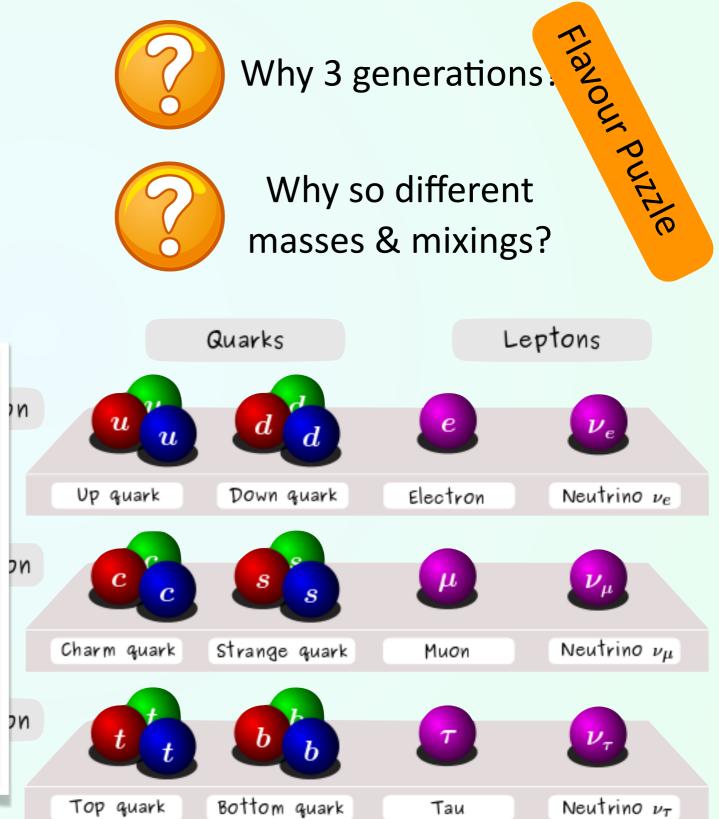


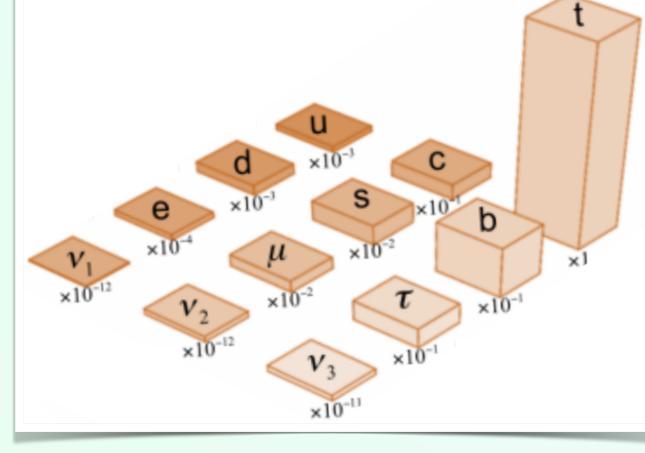
Experimental Evidences

Neutrino Masses

Baryon Asymmetry

Theoretical Problems





Experimental Evidences

Neutrino Masses

Baryon Asymmetry

Dark matter

Theoretical Problems

Why 3 generations.

Flavour puzzle Why so different masses & mixings?

Dark Energy (Cosmological Constant $\Lambda_0 \sim 10^{-123} M_{\rm P}$

Experimental Evidences

Neutrino Masses

Baryon Asymmetry

Dark matter

Theoretical Problems

Why 3 generations

Flavour puzzle Why so different masses & mixings?

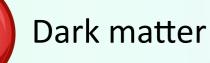
Dark Energy (Cosmological Constant $\Lambda_0 \sim 10^{-123} M_{\rm Planck}$

Strong CP Problem $heta \widetilde{G}_{\mu\nu} G^{\mu\nu}$ with $heta < 10^{-10}$

Experimental Evidences

Neutrino Masses

Baryon Asymmetry



Gravity

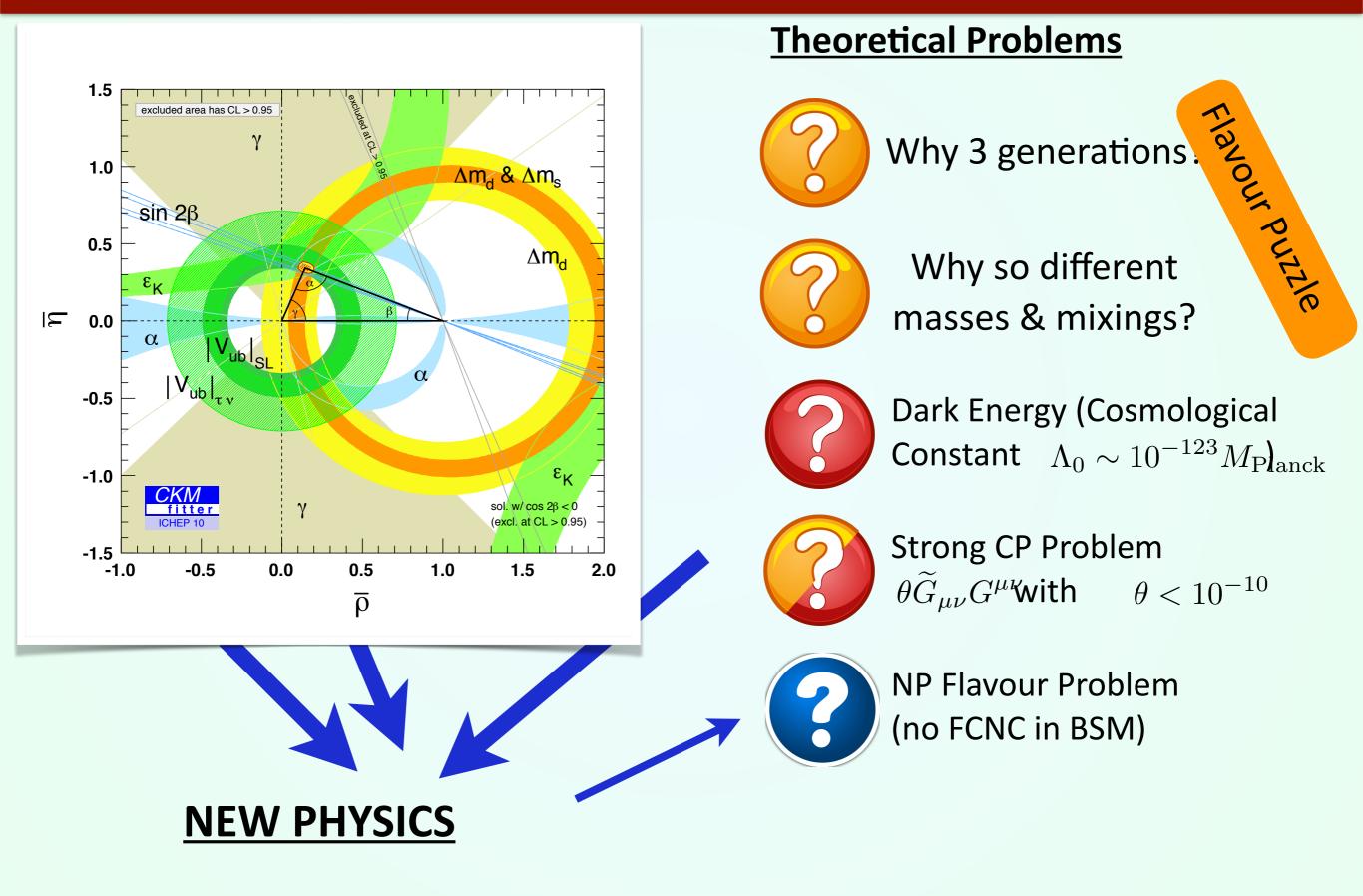
Theoretical Problems

Why 3 generations.

Flavour puzzle Why so different masses & mixings?

Dark Energy (Cosmological Constant $\Lambda_0 \sim 10^{-123} M_{\rm P}$

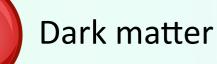
Strong CP Problem $\theta \widetilde{G}_{\mu\nu} G^{\mu\nu}$ with $\theta < 10^{-10}$

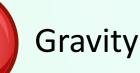


Experimental Evidences

Neutrino Masses

Baryon Asymmetry





Theoretical Problems

Why 3 generations

Flavour puzzle Why so different masses & mixings?

Dark Energy (Cosmological **Constant** $\Lambda_0 \sim 10^{-123} M_{\rm Planck}$

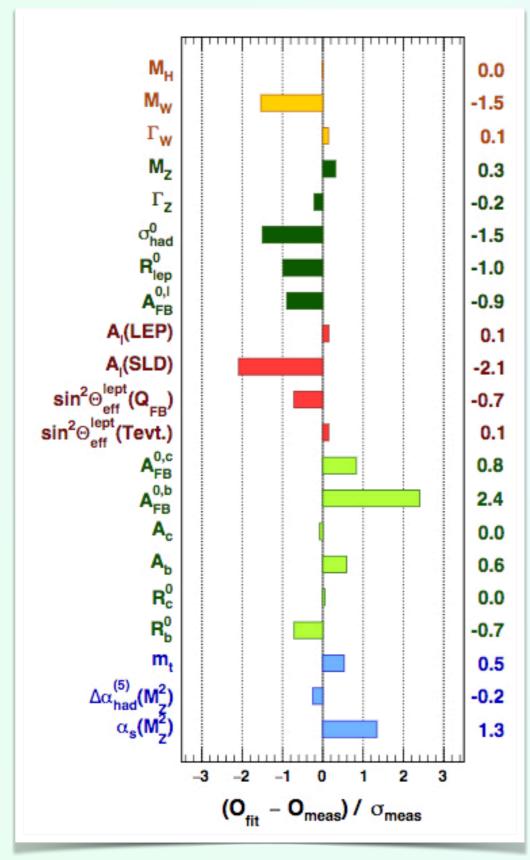
Strong CP Problem $heta \widetilde{G}_{\mu
u}G^{\mu
u}$ with $\theta < 10^{-10}$

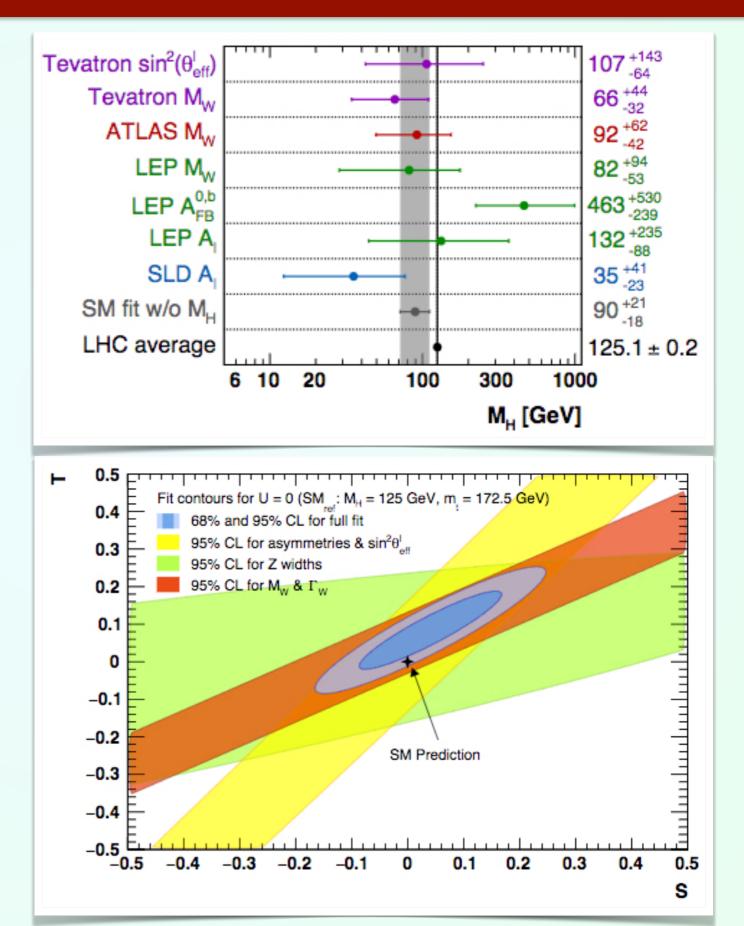
NP Flavour Problem (no FCNC in BSM)

Hierarchy Problem (in the presence of NP)

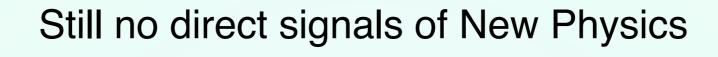
Amazing Standard Model

[The Gfitter group, 1803.01853]

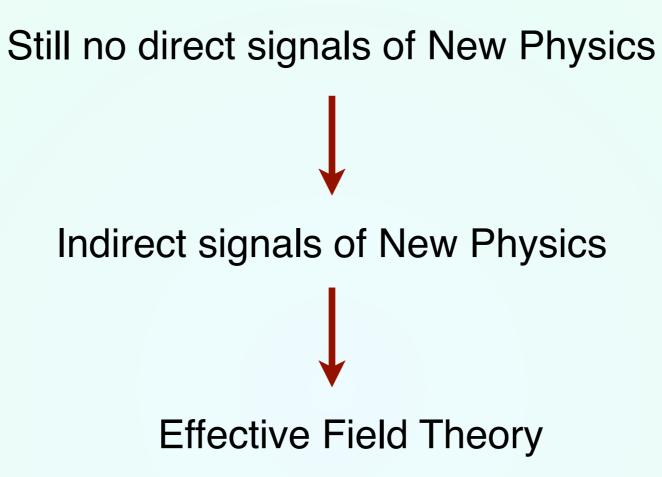


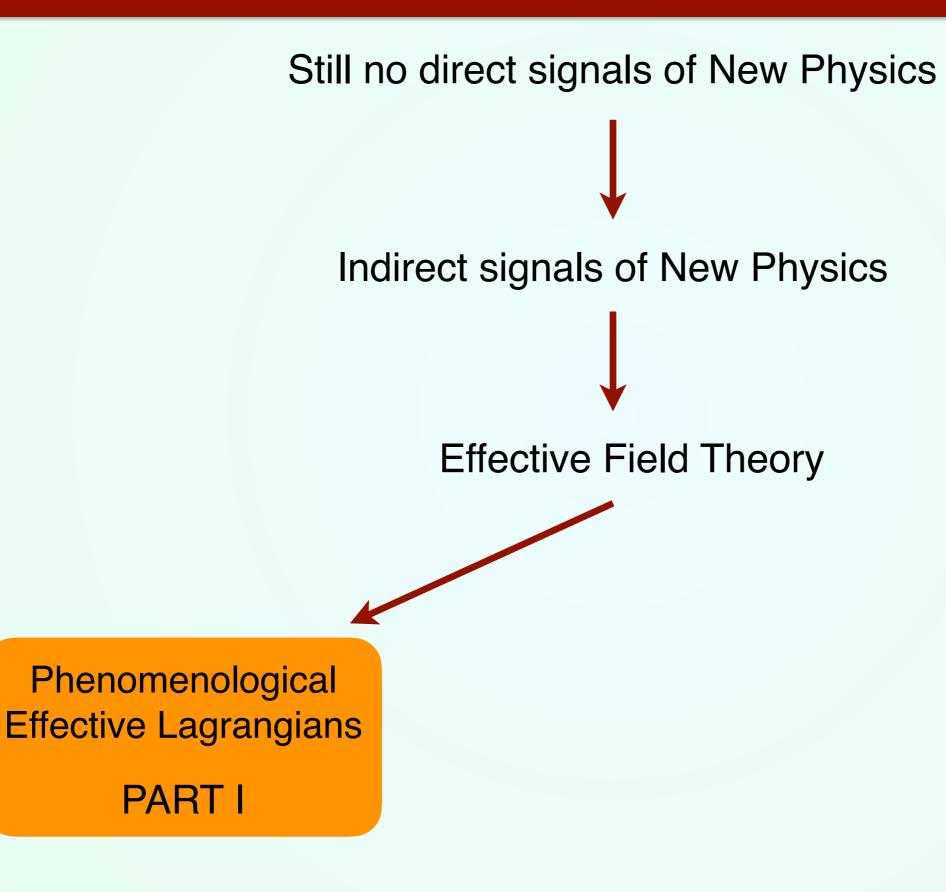


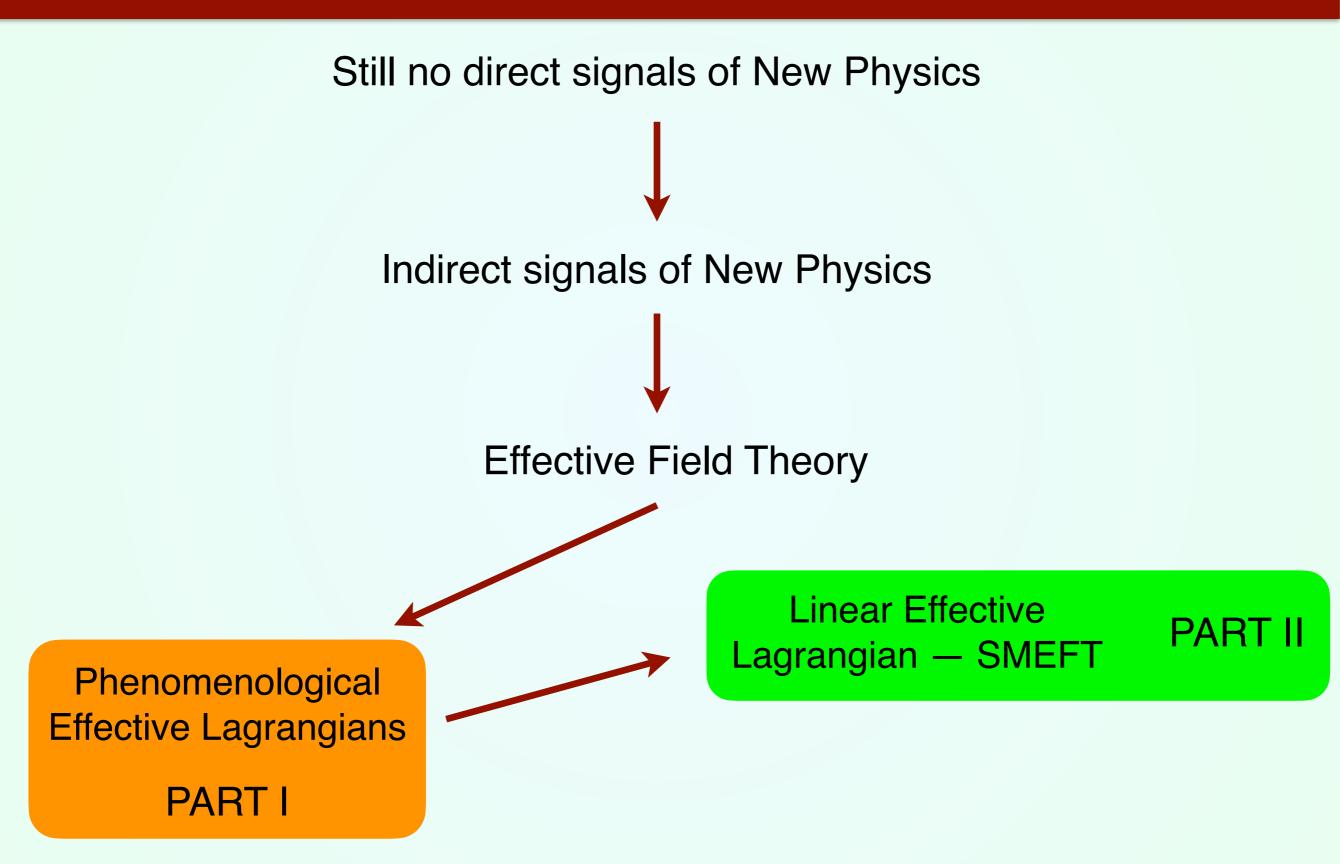
Still no direct signals of New Physics

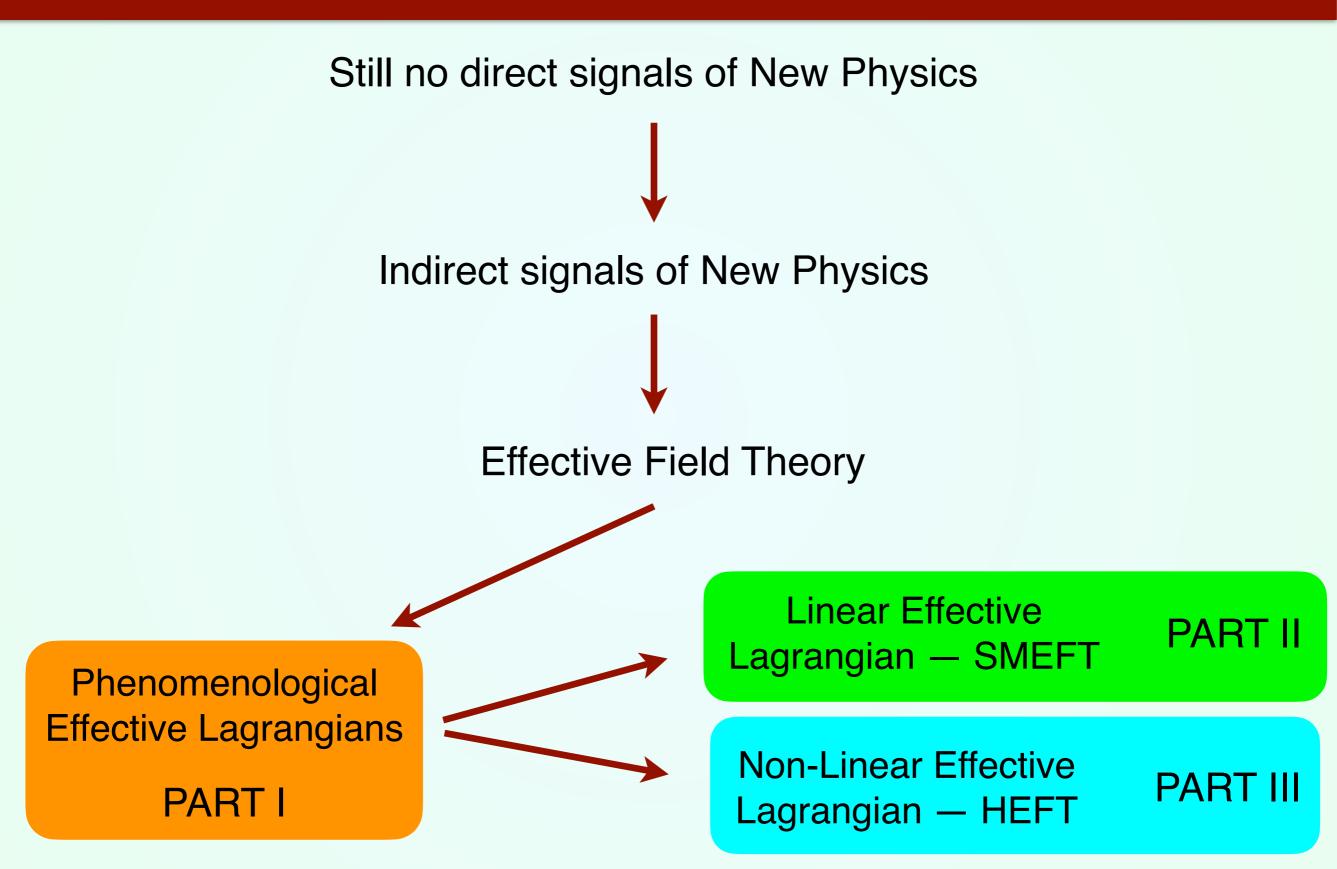


Indirect signals of New Physics









Phenomenological Lagrangians

Collections of a series of couplings that can be used to translate data into Lagrangian parameters:

Phenomenological Lagrangians

Collections of a series of couplings that can be used to translate data into Lagrangian parameters:

Triple Gauge Vertices Lag. [Hagiwara, Peccei, Zeppenfeld & Hikasa, NPB282 (1987)]

$$\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_{1}^{V} \left(W_{\mu\nu}^{+} W^{-\mu} V^{\nu} - W_{\mu}^{+} V_{\nu} W^{-\mu\nu} \right) + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} - ig_{5}^{V} \epsilon^{\mu\nu\rho\sigma} \left(W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\rho} W_{\mu}^{+} \right) V_{\sigma} + g_{6}^{V} \left(\partial_{\mu} W^{+\mu} W^{-\nu} - \partial_{\mu} W^{-\mu} W^{+\nu} \right) V_{\nu} \right\}$$
$$V \equiv \{\gamma, Z\} \qquad g_{WW\gamma} \equiv e = gs_{W} \qquad g_{WWZ} = gc_{W}$$

The SM values are: $g_1^Z = \kappa_\gamma = \kappa_Z = 1$ and $g_5^Z = g_6^\gamma = g_6^Z = 0$

Phenomenological Lagrangians

Collections of a series of couplings that can be used to translate data into Lagrangian parameters:

Triple Gauge Vertices Lag. [Hagiwara, Peccei, Zeppenfeld & Hikasa, NPB282 (1987)]

$$\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_{1}^{V} \left(W_{\mu\nu}^{+} W^{-\mu} V^{\nu} - W_{\mu}^{+} V_{\nu} W^{-\mu\nu} \right) + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} - ig_{5}^{V} \epsilon^{\mu\nu\rho\sigma} \left(W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\rho} W_{\mu}^{+} \right) V_{\sigma} + g_{6}^{V} \left(\partial_{\mu} W^{+\mu} W^{-\nu} - \partial_{\mu} W^{-\mu} W^{+\nu} \right) V_{\nu} \right\}$$
$$V \equiv \{\gamma, Z\} \qquad g_{WW\gamma} \equiv e = gs_{W} \qquad g_{WWZ} = gc_{W}$$

The SM values are: $g_1^Z = \kappa_\gamma = \kappa_Z = 1$ and $g_5^Z = g_6^\gamma = g_6^Z = 0$

NOT $SU(2)_L \times U(1)_Y$ invariant, but just $U(1)_{em}$

The gauge bosons are not always written by means of the gauge field strengths

Higgs triple vertices with gauge bosons — HVV

Higgs triple vertices with gauge bosons — HVV

When considering only the SM couplings:

[Lafaye, Plehn, Rauch, Zerwas & Dührssen, JHEP 0908 (2009)]

 $\begin{array}{l} \mathsf{SFITTER} \left\{ \begin{array}{ll} g_{xxh} \equiv g_x = g_x^{SM}(1 + \Delta_x) & \text{tree-level couplings} \\ g_{\gamma\gamma h} \equiv g_\gamma = g_\gamma^{SM}(1 + \Delta_\gamma^{SM} + \Delta_\gamma) \\ g_{ggh} \equiv g_g = g_g^{SM}(1 + \Delta_g^{SM} + \Delta_g) \end{array} \right\} \text{ loop-induced couplings} \end{array}$

Higgs triple vertices with gauge bosons — HVV

When considering only the SM couplings:

[Lafaye, Plehn, Rauch, Zerwas & Dührssen, JHEP 0908 (2009)]

 $\begin{array}{l} \mathsf{SFITTER} \left\{ \begin{array}{ll} g_{xxh} \equiv g_x = g_x^{SM}(1 + \Delta_x) & \text{tree-level couplings} \\ g_{\gamma\gamma h} \equiv g_\gamma = g_\gamma^{SM}(1 + \Delta_\gamma^{SM} + \Delta_\gamma) \\ g_{ggh} \equiv g_g = g_g^{SM}(1 + \Delta_g^{SM} + \Delta_g) \end{array} \right\} \begin{array}{l} \text{loop-induced couplings} \end{array}$

 $\left(\begin{array}{ll} \text{Equivalent parameters} & \kappa_x \equiv 1 + \Delta_x \\ \text{[LHC Higgs Cross Section Working Group, arXiv:1209.0040]} \end{array} \right)$

Higgs triple vertices with gauge bosons — HVV

When considering only the SM couplings:

[Lafaye, Plehn, Rauch, Zerwas & Dührssen, JHEP 0908 (2009)]

 $\begin{array}{l} \mathsf{SFITTER} \left\{ \begin{array}{ll} g_{xxh} \equiv g_x = g_x^{SM}(1 + \Delta_x) & \text{tree-level couplings} \\ g_{\gamma\gamma h} \equiv g_\gamma = g_\gamma^{SM}(1 + \Delta_\gamma^{SM} + \Delta_\gamma) \\ g_{ggh} \equiv g_g = g_g^{SM}(1 + \Delta_g^{SM} + \Delta_g) \end{array} \right\} \begin{array}{l} \text{loop-induced couplings} \end{array}$

 $\begin{pmatrix} \text{Equivalent parameters} & \kappa_x \equiv 1 + \Delta_x \\ \text{[LHC Higgs Cross Section Working Group, arXiv:1209.0040]} \end{pmatrix}$

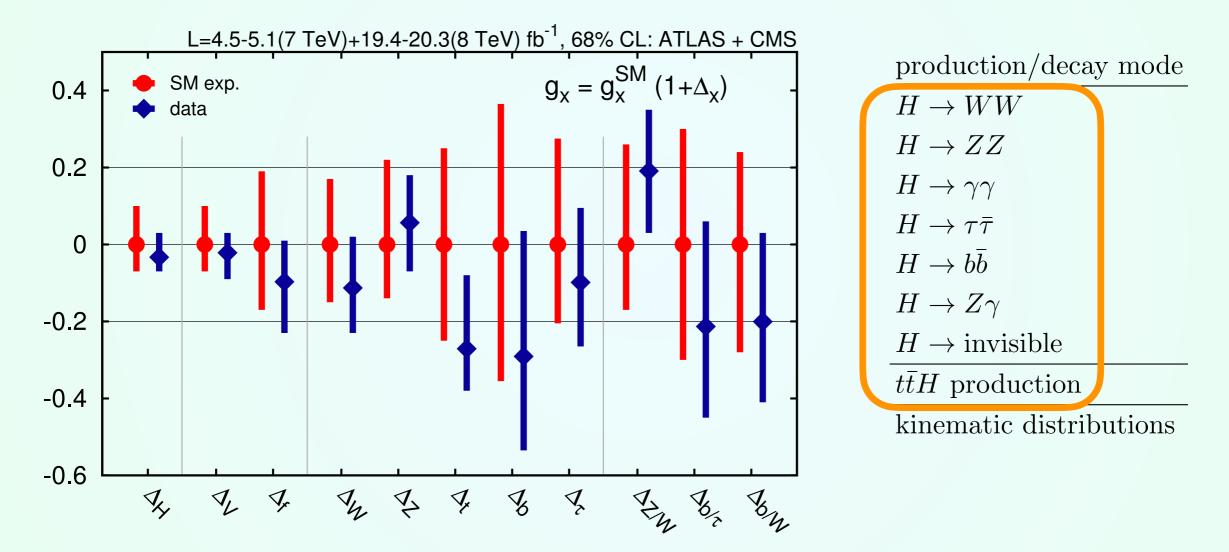
$$+ g_g^{SM} \Delta_g \frac{h}{v} G^{\mu\nu} G_{\mu\nu} + g_{\gamma}^{SM} \Delta_{\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \dots$$

Again, NOT $SU(2)_L \times U(1)_Y$ invariant, but just $U(1)_{em}$.

Results with $\Delta_g = 0 = \Delta_{\gamma}$

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Analyses based on event rates from ATLAS and CMS:

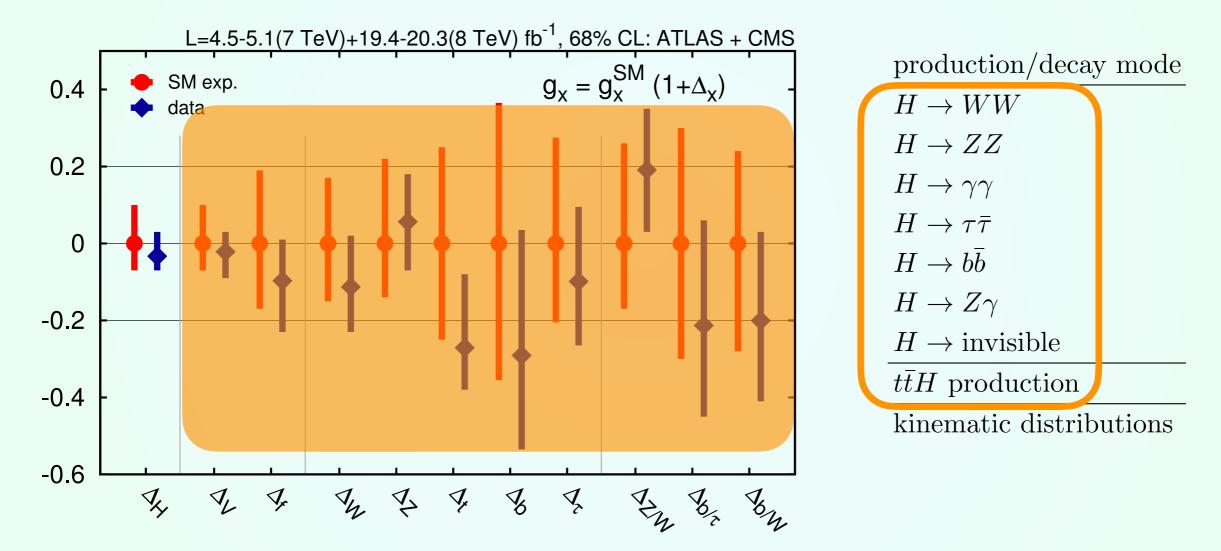


SM exp. are obtained injecting the SM Higgs signal on top of the background.

Results with $\Delta_g = 0 = \Delta_{\gamma}$

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Analyses based on event rates from ATLAS and CMS:



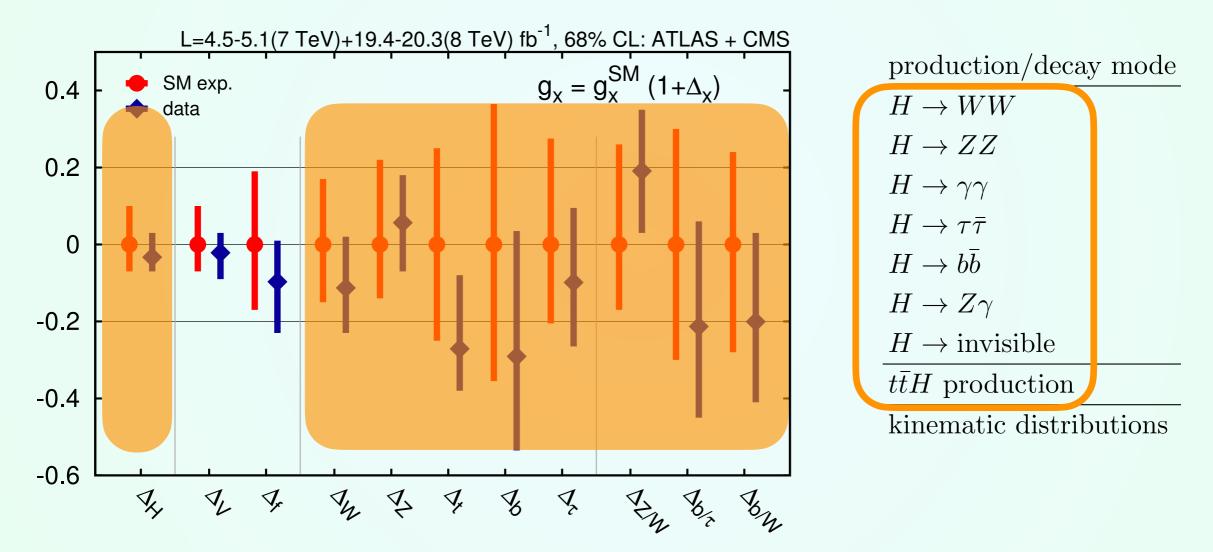
First analysis: universal modifications of h couplings

 \rightarrow Extended Higgs sector, e.g. extra Singlet, $\Delta_H \approx 3\%$

Results with $\Delta_g = 0 = \Delta_{\gamma}$

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Analyses based on event rates from ATLAS and CMS:



Second analysis: universal modifications with gauge bosons and fermions

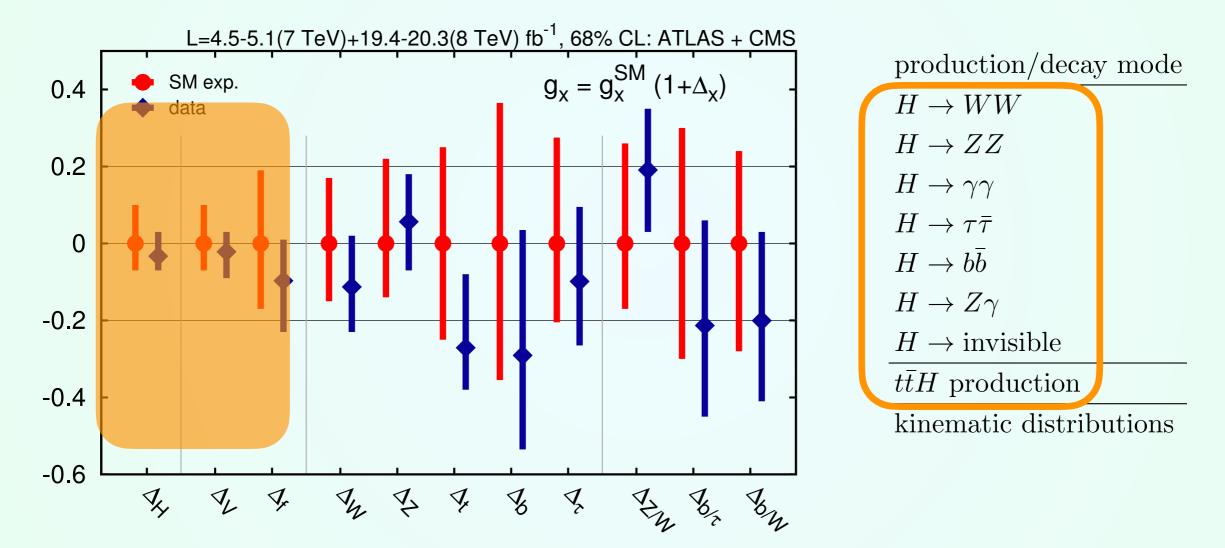
 \longrightarrow SU(2)_L scalar triplet or similar:

 $\Delta_V \approx \pm 6\%$

Results with $\Delta_g = 0 = \Delta_{\gamma}$

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Analyses based on event rates from ATLAS and CMS:



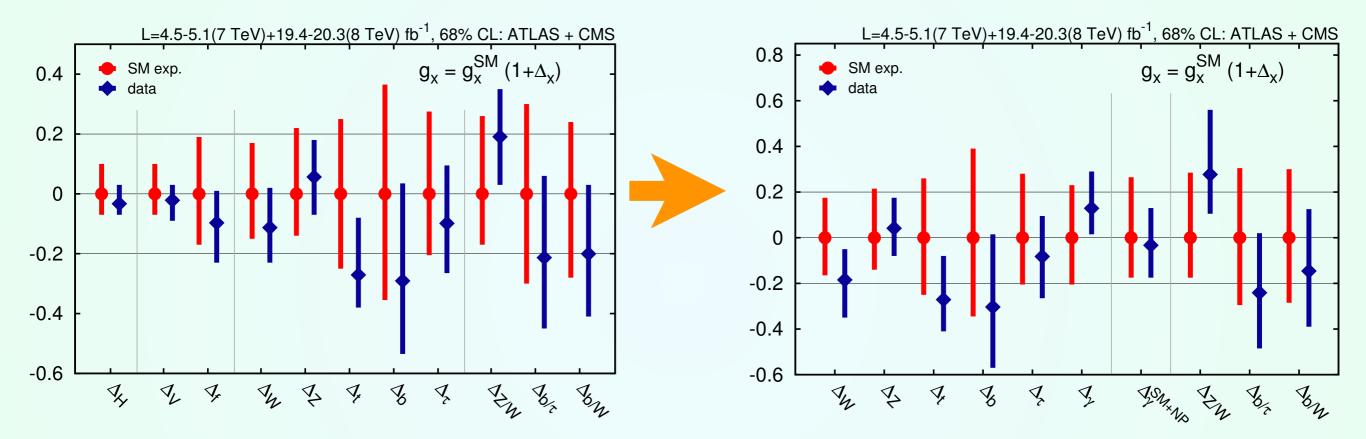
Third analysis: independent modifications of h couplings

The ratios remove systematic and theo uncertainties

Results with $\Delta_g=0$, $\Delta_{\gamma}\neq 0$

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

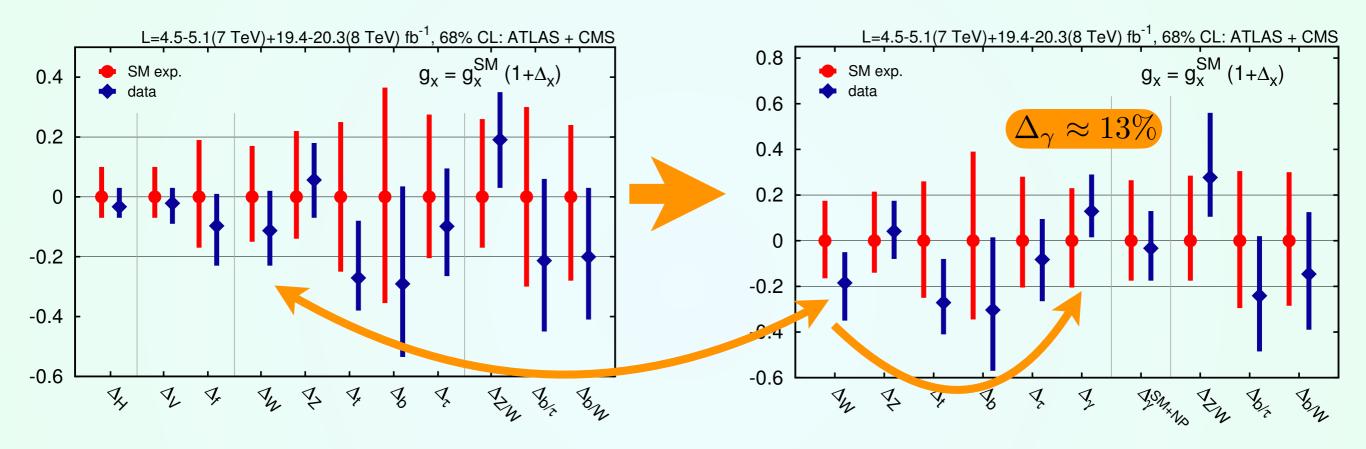
hγγ is well measured: variation of SM couplings (t, b, W) + NP contributions



Results with $\Delta_g=0$, $\Delta_{\gamma}\neq 0$

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

hyy is well measured: variation of SM couplings (t, b, W) + NP contributions

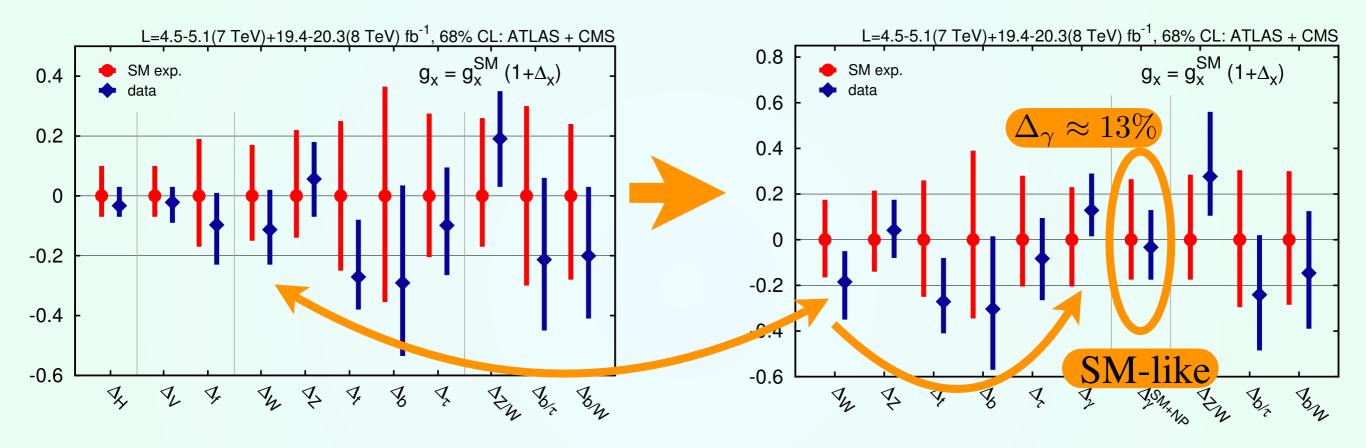


The addition of a new parameter allows larger changes in the SM couplings, but the final combination for $h\gamma\gamma$ is very compatible with the SM exp.

Results with $\Delta_g=0$, $\Delta_{\gamma}\neq 0$

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

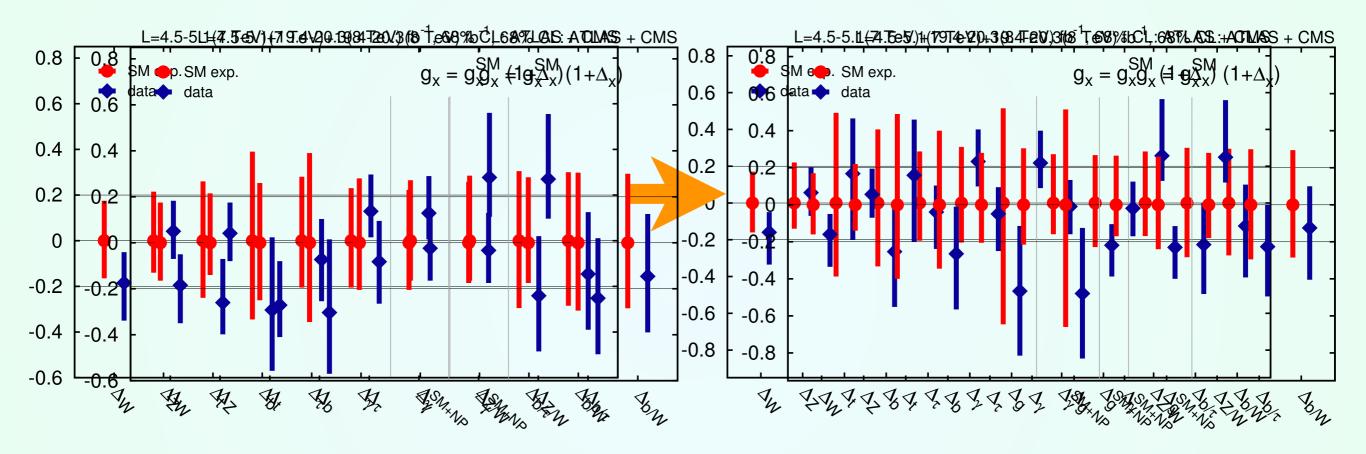
hyy is well measured: variation of SM couplings (t, b, W) + NP contributions



The addition of a new parameter allows larger changes in the SM couplings, but the final combination for $h\gamma\gamma$ is very compatible with the SM exp.

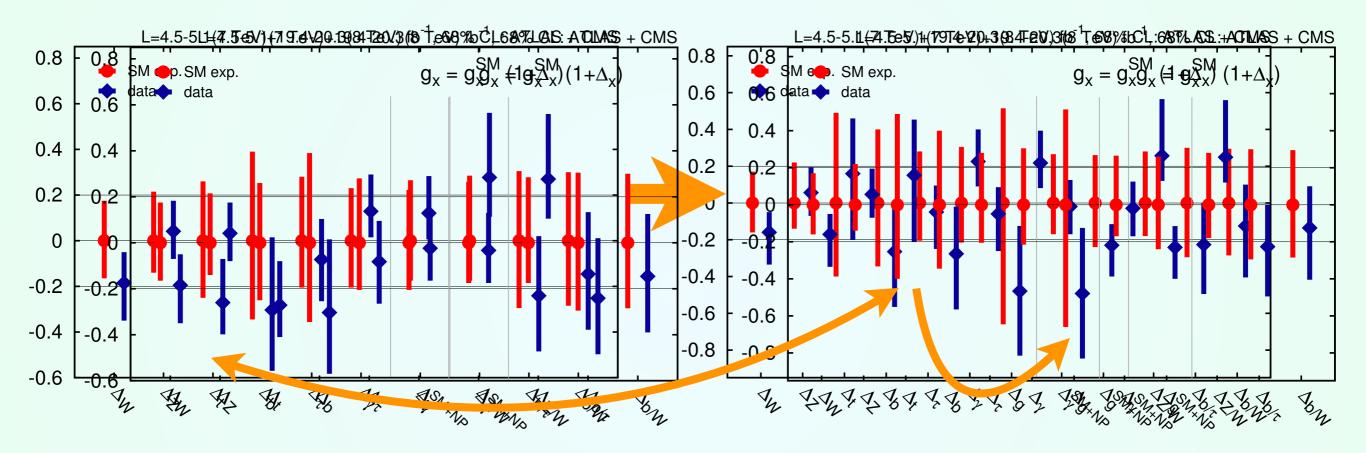
[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Adding new physics into hgg:

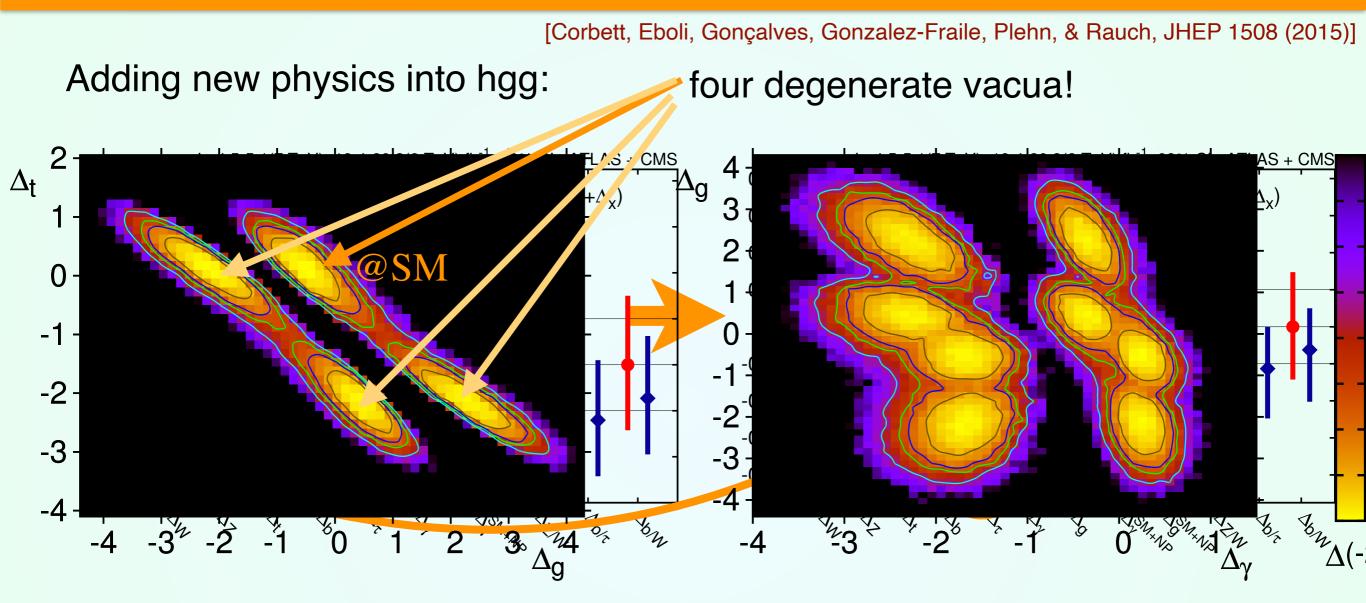


[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

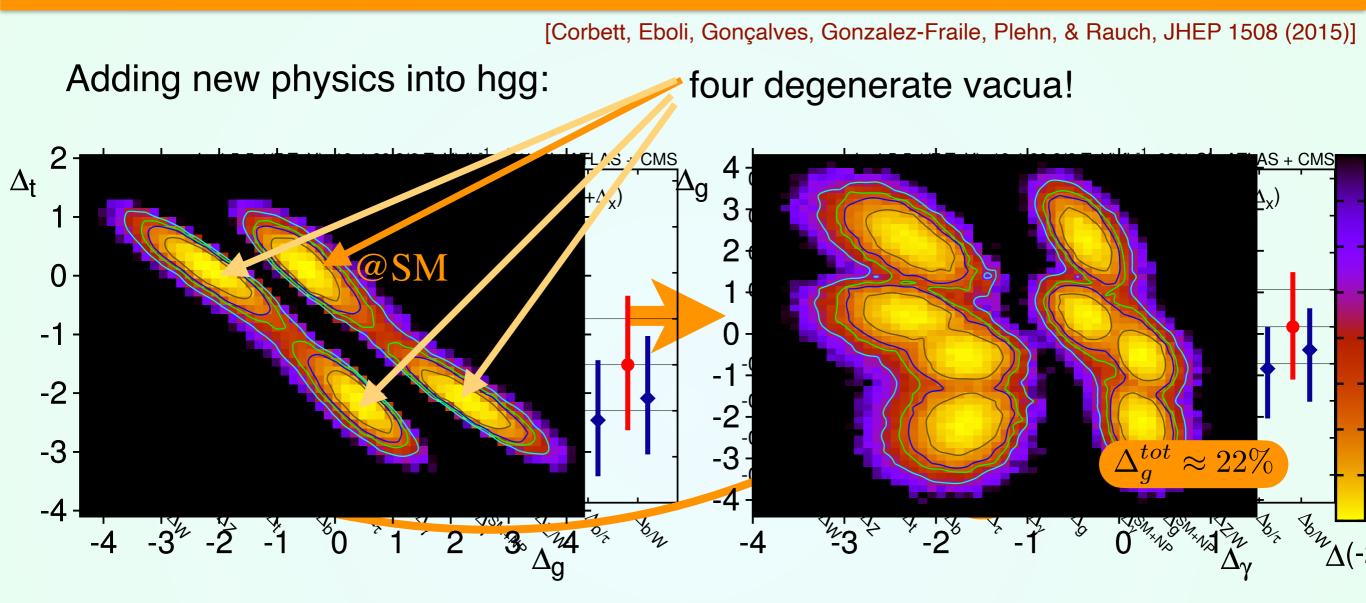
Adding new physics into hgg:



 Δ_t has much larger error bar $\leftarrow \rightarrow$ large deviation in Δ_g

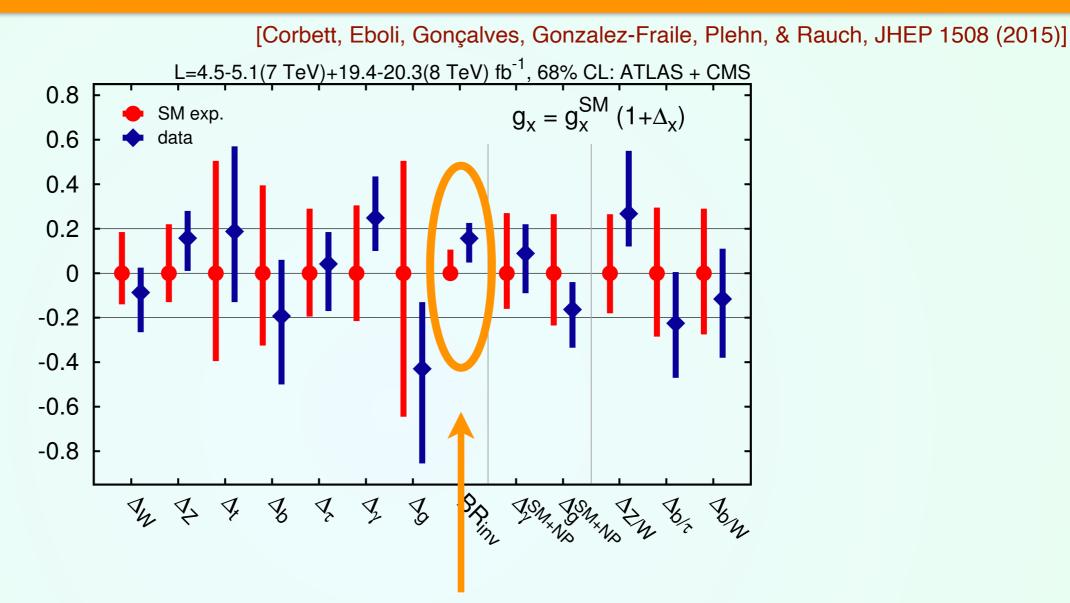


 Δ_t has much larger error bar $\leftarrow \rightarrow$ large deviation in Δ_g



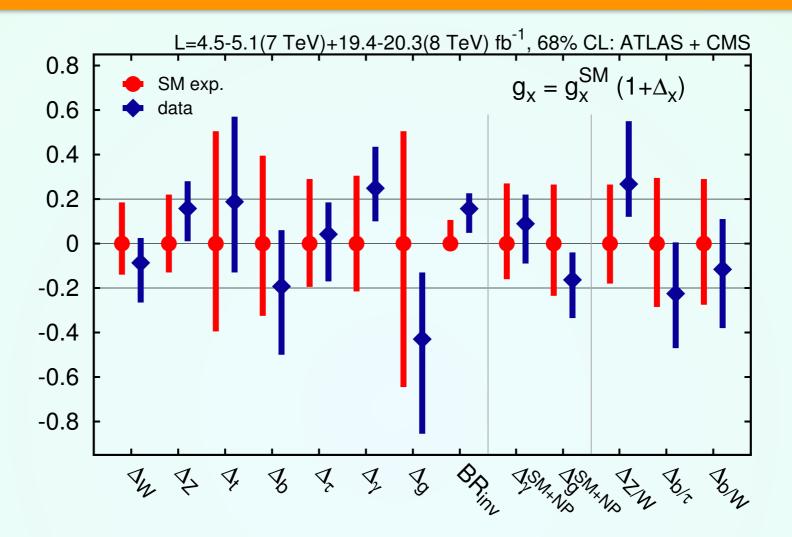
 Δ_t has much larger error bar $\leftarrow \rightarrow$ large deviation in Δ_g

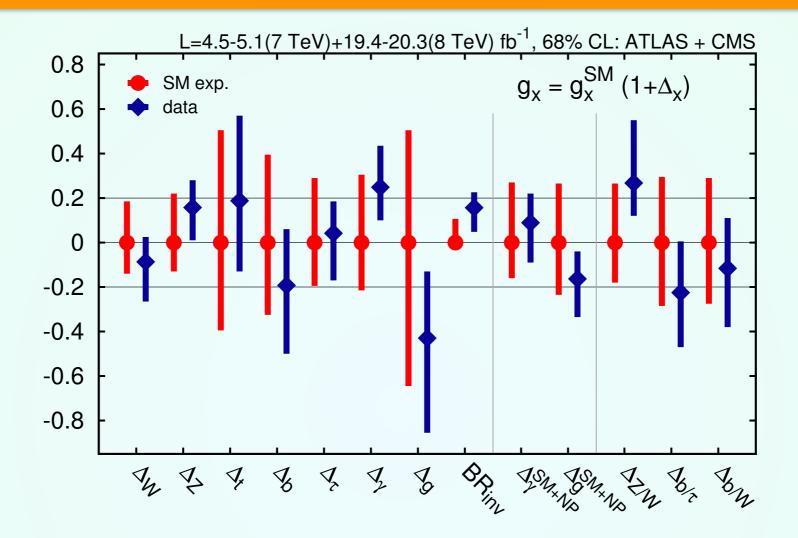
Adding the Higgs invisible BR



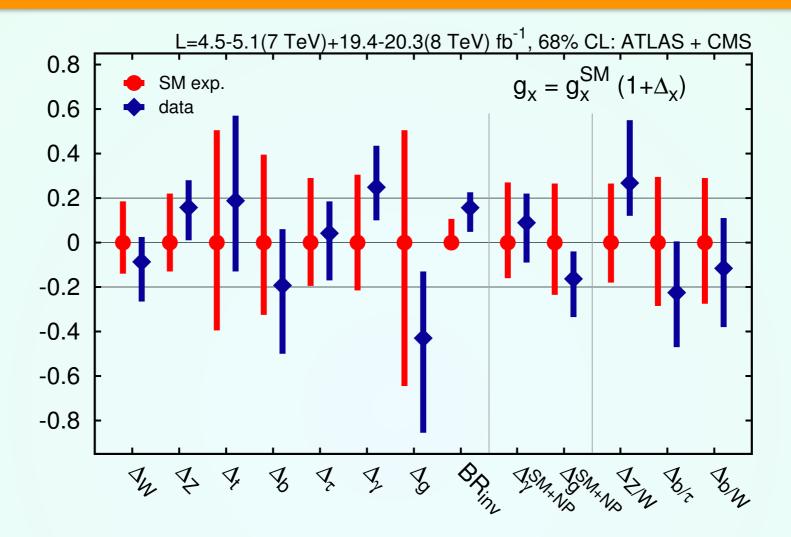
The SM prediction essentially consists in $h \to ZZ^* \to 4\nu$, $BR(h \to Inv) \approx 1\%$

The results of the fit gives $BR(h \rightarrow Inv) \approx 10\%$, without affecting much the other couplings.

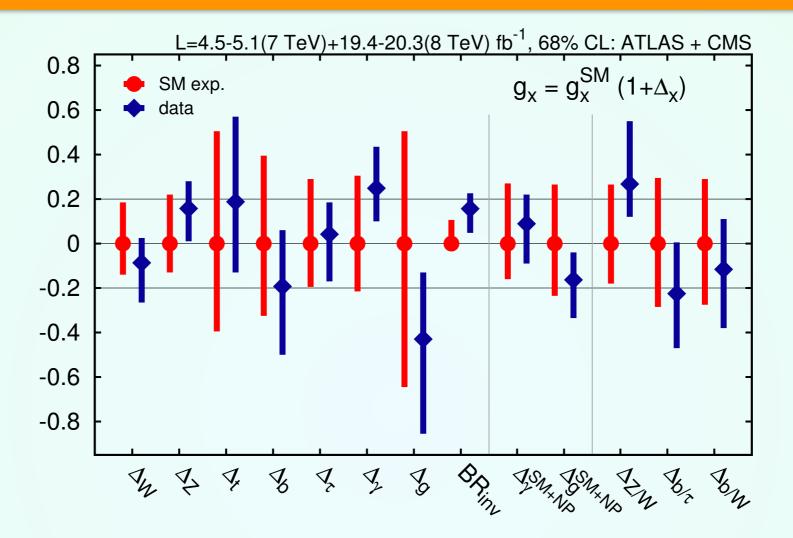




Everything is consistent with the SM



- Everything is consistent with the SM
- The Δ -framework is **not** $SU(2)_L \times U(1)_Y$ **gauge invariant** Lagrangian by itself, but it is a useful tool to interpret experimental data



- Everything is consistent with the SM
- The Δ -framework is **not** $SU(2)_L \times U(1)_Y$ **gauge invariant** Lagrangian by itself, but it is a useful tool to interpret experimental data
- We need to go beyond the Δ -framework for EWSB sector

Generic HVV Lagrangian

When considering beyond SM couplings:

$$\mathcal{L}_{HVV} = g_{Hff}h\left(\bar{f}_{R}f_{L} + h.c.\right)$$

$$+ g_{Hgg}G_{\mu\nu}^{a}G^{a\mu\nu}h + g_{H\gamma\gamma}A_{\mu\nu}A^{\mu\nu}h + g_{HZ\gamma}^{(1)}A_{\mu\nu}Z^{\mu}\partial^{\nu}h + g_{HZ\gamma}^{(2)}A_{\mu\nu}Z^{\mu\nu}h$$

$$+ g_{HZZ}^{(1)}Z_{\mu\nu}Z^{\mu}\partial^{\nu}h + g_{HZZ}^{(2)}Z_{\mu\nu}Z^{\mu\nu}h + g_{HZZ}^{(3)}Z_{\mu}Z^{\mu}h + g_{HZZ}^{(4)}Z_{\mu}Z^{\mu}\Box h$$

$$+ g_{HZZ}^{(5)}\partial_{\mu}Z^{\mu}Z_{\nu}\partial^{\nu}h + g_{HZZ}^{(6)}\partial_{\mu}Z^{\mu}\partial_{\nu}Z^{\nu}h$$

$$+ g_{HWW}^{(1)}\left(W_{\mu\nu}^{+}W^{-\mu}\partial^{\nu}h + h.c.\right) + g_{HWW}^{(2)}W_{\mu\nu}^{+}W^{-\mu\nu}h + g_{HWW}^{(3)}W_{\mu}^{+}W^{-\mu}h$$

$$+ g_{HWW}^{(4)}W_{\mu}^{+}W^{-\mu}\Box h + g_{HWW}^{(5)} + (\partial_{\mu}W^{+\mu}W_{\nu}^{-}\partial^{\nu}h + h.c.) + g_{HWW}^{(6)}\partial_{\mu}W^{+\mu}\partial_{\nu}W^{-\nu}h$$

$$V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} \qquad V = \{A, Z, W, G\}$$

In general: $g_{Hxy} = g_{Hxy}^{SM} + \Delta g_{Hxy}$ with only non-vanishing SM at tree-level $g_{HZZ}^{(3)SM} = \frac{m_Z^2}{v}$ $g_{HZZ}^{(3)SM} = \frac{m_Z^2}{v}$ $g_{HWW}^{(3)SM} = \frac{2m_Z^2 c_W^2}{v}$

The relation with the Δ formalism is trivial: $\Delta g_{Hxy} = g_{Hxy}^{SM} \Delta_{Hxy}$

Generic HVV Lagrangian

When considering beyond SM couplings:

$$\mathcal{L}_{HVV} = g_{Hff}h\left(\bar{f}_{R}f_{L} + \text{h.c.}\right)$$

$$+ g_{Hgg}G_{\mu\nu}^{a}G^{a\mu\nu}h + g_{H\gamma\gamma}A_{\mu\nu}A^{\mu\nu}h + g_{HZ\gamma}^{(1)}A_{\mu\nu}Z^{\mu}\partial^{\nu}h + g_{HZ\gamma}^{(2)}A_{\mu\nu}Z^{\mu\nu}h$$

$$+ g_{HZZ}^{(1)}Z_{\mu\nu}Z^{\mu}\partial^{\nu}h + g_{HZZ}^{(2)}Z_{\mu\nu}Z^{\mu\nu}h + g_{HZZ}^{(3)}Z_{\mu}Z^{\mu}h + g_{HZZ}^{(4)}Z_{\mu}Z^{\mu}\Box h$$

$$+ g_{HZZ}^{(5)}\partial_{\mu}Z^{\mu}Z_{\nu}\partial^{\nu}h + g_{HZZ}^{(6)}\partial_{\mu}Z^{\mu}\partial_{\nu}Z^{\nu}h$$

$$+ g_{HWW}^{(1)}\left(W_{\mu\nu}^{+}W^{-\mu}\partial^{\nu}h + \text{h.c.}\right) + g_{HWW}^{(2)}W_{\mu\nu}^{+}W^{-\mu\nu}h + g_{HWW}^{(3)}W_{\mu}^{+}W^{-\mu}h$$

$$+ g_{HWW}^{(4)}W_{\mu}^{+}W^{-\mu}\Box h + g_{HWW}^{(5)} + (\partial_{\mu}W^{+\mu}W_{\nu}^{-}\partial^{\nu}h + \text{h.c.}) + g_{HWW}^{(6)}\partial_{\mu}W^{+\mu}\partial_{\nu}W^{-\nu}h$$

$$V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} \qquad V = \{A, Z, W, G\}$$

In general: $g_{Hxy} = g_{Hxy}^{SM} + \Delta g_{Hxy}$ with only non-vanishing SM at tree-level $g_{HZZ}^{(3)SM} = \frac{m_Z^2}{v}$ $g_{HZZ}^{(3)SM} = \frac{m_Z^2}{v}$ $g_{HWW}^{(3)SM} = \frac{2m_Z^2 c_W^2}{v}$

The relation with the Δ formalism is trivial: $\Delta g_{Hxy} = g_{Hxy}^{SM} \Delta_{Hxy}$

Too many parameters for a fit now: difficult and probably inconclusive.

EXACT EW DOUBLET

S	Μ
J	

Hierarchy Problem (neutrino masses & DM & Baryon Asym)

EXACT EW DOUBLET

SM	Hierarchy Problem (neutrino masses & DM & Baryon Asym)	
SUSY	two $SU(2)_L$ doublets	

EXACT EW DOUBLET

SM	

Hierarchy Problem (neutrino masses & DM & Baryon Asym)

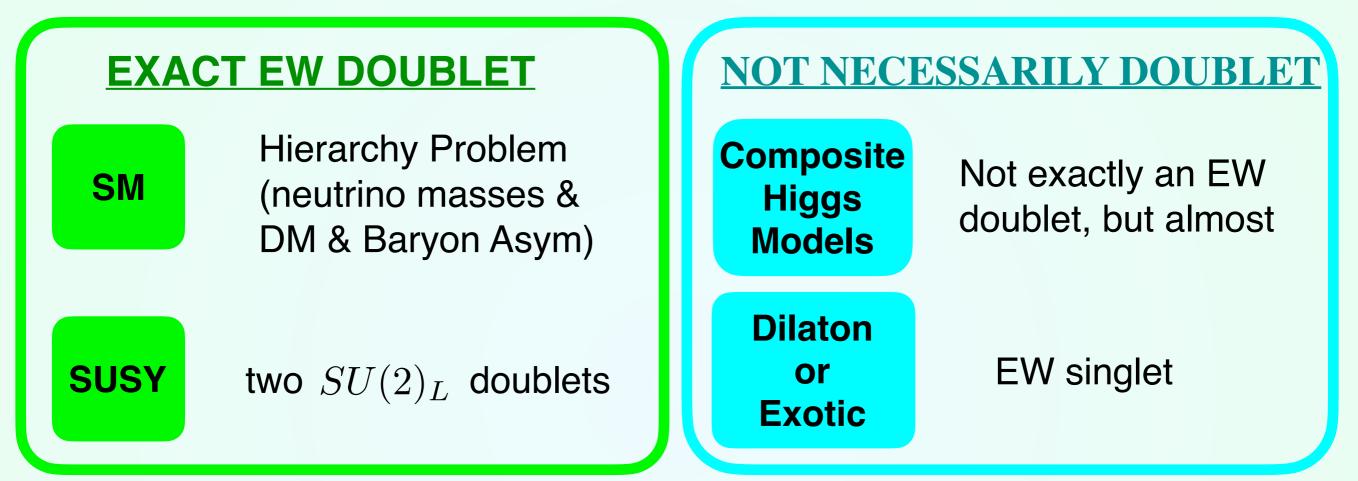
NOT NECESSARILY DOUBLET

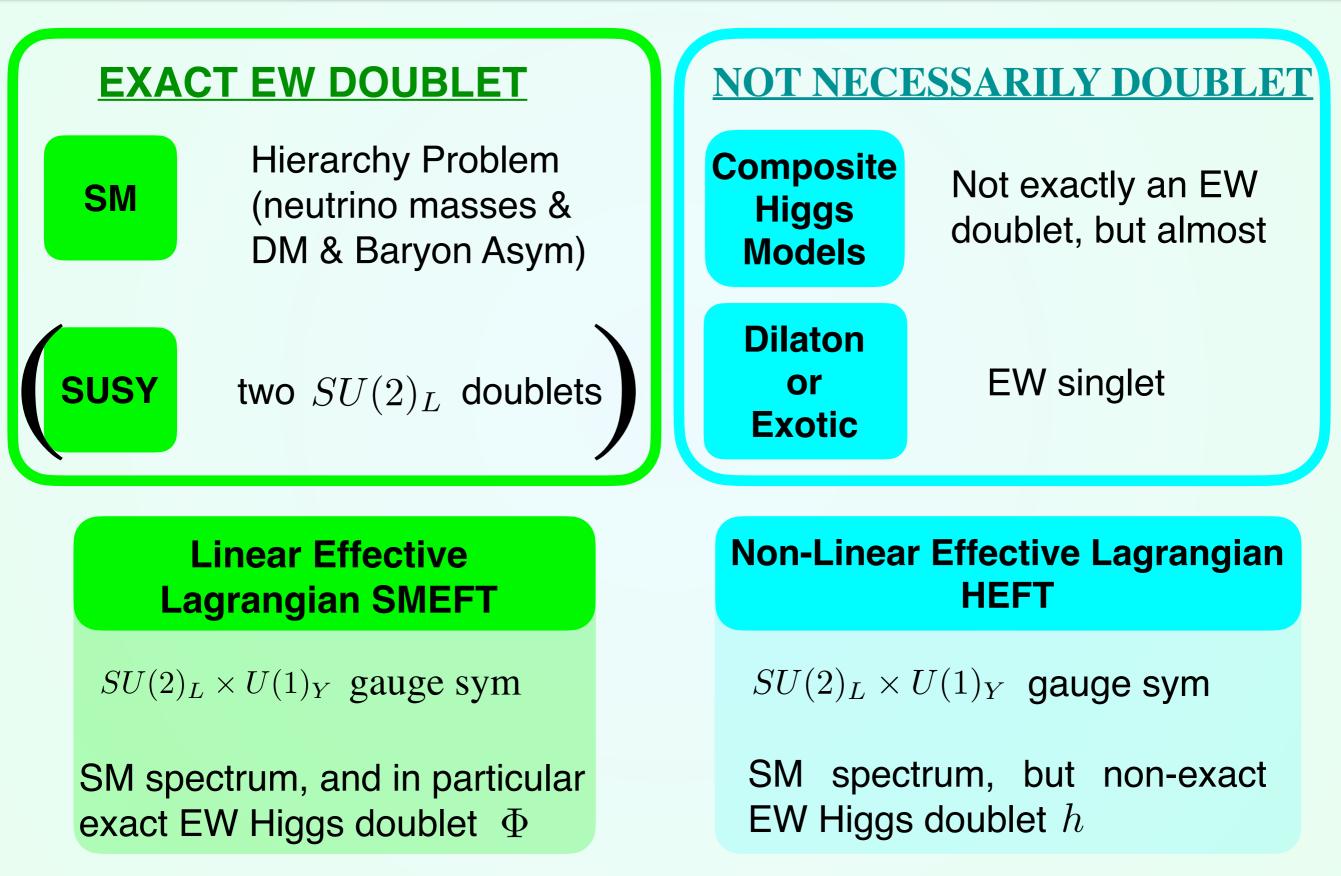
Composite Higgs Models

Not exactly an EW doublet, but almost

SUSY

two $SU(2)_L$ doublets





SMEFT

In 4 traditional space-time dimensions:

Buchmüller & Wyler, NPB 268 (1986) Grzadkowski, Iskrzynski, Misiak & Rosiek, JHEP 1010 (2010)

$$\mathcal{L}_{\text{linear}} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i + \text{higher orders}$$

with $\Lambda (\geq \text{few TeV})$ the NP scale

SMEFT

In 4 traditional space-time dimensions:

Buchmüller & Wyler, NPB 268 (1986) Grzadkowski, Iskrzynski, Misiak & Rosiek, JHEP 1010 (2010)

$$\mathcal{L}_{\text{linear}} = \mathcal{L}_{SM} + \sum_{i} \frac{f_{i}}{\Lambda^{2}} \mathcal{O}_{i} + \text{higher orders}$$

with $\Lambda (\geq \text{few TeV})$ the NP scale
$$\mathcal{L}_{SM} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} - V(h)$$

 $+ (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) + i \bar{Q} D Q + i \bar{L} D L$
 $- (\bar{Q}_{L} \Phi \mathcal{Y}_{D} D_{R} + \text{h.c.}) - (\bar{Q}_{L} \tilde{\Phi} \mathcal{Y}_{U} U_{R} + \text{h.c.})$
 $- (\bar{L}_{L} \Phi \mathcal{Y}_{L} L_{R} + \text{h.c.})$

SMEFT

 $\mathcal{L}_{\text{linear}} = \mathcal{L}_{SM} + \sum \frac{f_i}{\Lambda^2} \mathcal{O}_i + \text{higher orders}$

In 4 traditional space-time dimensions:

Buchmüller & Wyler, NPB 268 (1986) Grzadkowski, Iskrzynski, Misiak & Rosiek, JHEP 1010 (2010)

with $\Lambda (\geq \text{few TeV})$ the NP scale

 $\mathcal{L}_{SM} = -\frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} - V(h)$ $+ (D_\mu \Phi)^{\dagger} (D^\mu \Phi) + i \bar{Q} \not{D} Q + i \bar{L} \not{D} L$ $- (\bar{Q}_L \Phi \mathcal{Y}_D D_R + \text{h.c.}) - (\bar{Q}_L \tilde{\Phi} \mathcal{Y}_U U_R + \text{h.c.})$ $- (\bar{L}_L \Phi \mathcal{Y}_L L_R + \text{h.c.})$

59 (no flavour) d=6 operators preserving SM, lepton, baryon syms
 Reduction to a minimal independent set of operators: EOMs
 Choice of a suitable basis (data driven): measurable @ LHC

[Elias-Miro, Espinosa, Masso & Pomarol, JHEP 1308 (2013), JHEP 1311 (2013) Jenkins, Manohar & Trott JHEP 1310 (2013), JHEP 1401 (2014) Alonso, Jenkins, Manohar & Trott JHEP 1404 (2014)]

$$\mathcal{L}_{\text{linear}} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i$$

+ higher orders

[Elias-Miro, Espinosa, Masso & Pomarol, JHEP 1308 (2013), JHEP 1311 (2013) Jenkins, Manohar & Trott JHEP 1310 (2013), JHEP 1401 (2014) Alonso, Jenkins, Manohar & Trott JHEP 1404 (2014)]

$$\mathcal{L}_{\text{linear}} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i + i$$

+ higher orders

Only terms that modify the Higgs couplings

[Elias-Miro, Espinosa, Masso & Pomarol, JHEP 1308 (2013), JHEP 1311 (2013) Jenkins, Manohar & Trott JHEP 1310 (2013), JHEP 1401 (2014) Alonso, Jenkins, Manohar & Trott JHEP 1404 (2014)]

$$\mathcal{L}_{\text{linear}} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i + \text{higher orders}$$

Only terms that modify the Higgs couplings

Bosonic: [Hagiwara, Ishihara, Szalapski & Zeppenfeld, PRD 48 (1993)]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \qquad \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) \\ \mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3} \qquad \mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

[Elias-Miro, Espinosa, Masso & Pomarol, JHEP 1308 (2013), JHEP 1311 (2013) Jenkins, Manohar & Trott JHEP 1310 (2013), JHEP 1401 (2014) Alonso, Jenkins, Manohar & Trott JHEP 1404 (2014)]

$$\mathcal{L}_{\text{linear}} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i + \text{higher orders}$$

Only terms that modify the Higgs couplings

Bosonic: [Hagiwara, Ishihara, Szalapski & Zeppenfeld, PRD 48 (1993)]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi
\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)
\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

Fermionic:

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j}),$$

$$\mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}),$$

$$\mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}),$$

$$\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}),$$

$$\mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}),$$

$$\mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}),$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\overset{\leftrightarrow}{\mathcal{O}_{\Phi Q,ij}^{(3)}} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}),$$

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^{\dagger} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^{\dagger} + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^{\dagger} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^{\dagger} + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep?? [based on: Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)]

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^{\dagger} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^{\dagger} + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep?? [based on: Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \qquad \mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3} \\ \mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^{\dagger} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^{\dagger} + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

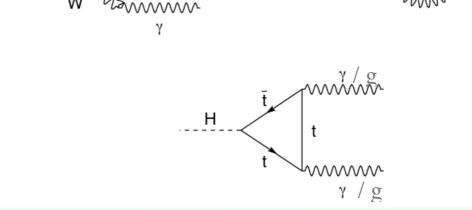
$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep?? [based on: Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)]

Η

r t

g



$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^\dagger + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep?? [based on: Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \qquad \mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3} \\ \mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

Contribute to: **HVV** VVV VVVV

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^{\dagger} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^{\dagger} + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep?? [based on: Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi
\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)
\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \qquad \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

Contribute to: **HVV** VVV VVVV scalar potential ΔT

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^\dagger + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep??

$$\begin{array}{ll}
\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}), & \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}), \\
\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\tilde{\Phi}u_{R_{j}}), & \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}), \\
\mathcal{O}_{d\Phi,ij}^{(1)} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}), & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}), \\
\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\
\mathcal{O}_{\Phi ud,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\
\mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}),
\end{array}$$

$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}),$$

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^\dagger + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep??

 $\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$ $\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}),$ $\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j}),$

Contribute to:

Yukawa Couplings

$$\begin{aligned}
\mathcal{O}_{\Phi L,ij}^{(1)} &= \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{L}_{i} \gamma^{\mu} L_{j}), \\
\mathcal{O}_{\Phi Q,ij}^{(1)} &= \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{Q}_{i} \gamma^{\mu} Q_{j}), \\
\mathcal{O}_{\Phi e,ij}^{(1)} &= \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{e}_{R_{i}} \gamma^{\mu} e_{R_{j}}), \\
\mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{u}_{R_{i}} \gamma^{\mu} u_{R_{j}}), \\
\mathcal{O}_{\Phi d,ij}^{(1)} &= \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{d}_{R_{i}} \gamma^{\mu} d_{R_{j}}), \\
\mathcal{O}_{\Phi ud,ij}^{(1)} &= \tilde{\Phi}^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{u}_{R_{i}} \gamma^{\mu} d_{R_{j}}),
\end{aligned}$$

$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}),$$

EOMs removes redondant contributions:

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^{\dagger} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^{\dagger} + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h} ,$$

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$$

$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

Which operators are the best to keep??

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j}),$$

$$\begin{aligned}
\mathcal{O}_{\Phi L,ij}^{(1)} &= \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}), \\
\overset{\leftrightarrow}{\leftrightarrow} \\
\mathcal{O}_{\Phi Q,ij}^{(1)} &= \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}), \\
\overset{\leftrightarrow}{\leftrightarrow} \\
\mathcal{O}_{\Phi e,ij}^{(1)} &= \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}), \\
\overset{\leftrightarrow}{\leftrightarrow} \\
\mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\
\overset{\leftrightarrow}{\leftrightarrow} \\
\mathcal{O}_{\Phi ud,ij}^{(1)} &= \tilde{\Phi}^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\
\overset{\leftrightarrow}{\leftrightarrow} \\
\mathcal{O}_{\Phi ud,ij}^{(1)} &= \tilde{\Phi}^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \end{aligned}$$

$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}),$$

Contribute to:

Neutral and Charged Weak Currents

A possible choice:

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j}),$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}),
\mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}),
\mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}),
\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}),
\mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}),
\mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}),$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger} (i D^{a}_{\ \mu} \Phi) (\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger} (i D^{a}_{\ \mu} \Phi) (\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}),$$

<u>A possible choice:</u>

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j}),$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

 $\mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{L}_{\tau}\gamma^{\mu}L_{j}),$ $\mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}),$ $\mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}),$ $\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}),$ $\mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}),$ $\mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(iD_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}),$ $\mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(iD_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}),$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(i \overset{\overleftarrow{D}^{a}}{D}_{\mu} \Phi)(\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(i \overset{\overleftarrow{D}^{a}}{D}_{\mu} \Phi)(\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}),$$

Remove operators that contribute tree-level to EWPO via EOMs

$$2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{BW} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i \left(-\frac{1}{2} \mathcal{O}_{\Phi L,ii}^{(1)} - \frac{1}{6} \mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3} \mathcal{O}_{\Phi u,ii}^{(1)} - \frac{1}{3} \mathcal{O}_{\Phi d,ii}^{(1)} \right)$$
$$2\mathcal{O}_W + \mathcal{O}_{BW} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} - \mathcal{O}_{\Phi Q,ii}^{(3)} \right) .$$

A possible choice:

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j}),$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{L}_{\tau}\gamma^{\mu}L_{j}), \\
\mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}), \\
\mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}), \\
\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}), \\
\mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\
\mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(iD_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$
$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi) (\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}),$$

,

$$2\mathcal{O}_{\Phi,2} + 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e (\mathcal{O}_{e\Phi,ij})^\dagger + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right) - \frac{\partial V(h)}{\partial h}$$

<u>A possible choice:</u>

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{D}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j}),$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\begin{array}{l} \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}), \\ \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}), \\ \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{c}_{R_{i}}\gamma^{\mu}c_{R_{j}}), \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}), \\ \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\ \mathcal{O}_{\Phi ud,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\ \mathcal{O}_{\Phi ud,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \end{array}$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$
$$\mathcal{O}_{\Phi L,ij} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{L}_{i} \uparrow^{\mu} \sigma_{a} L_{j}),$$
$$\overset{\leftrightarrow}{\mathcal{O}}_{\Phi Q,ij} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}{}^{a}_{\mu} \Phi) (\bar{Q}_{i} \uparrow^{\mu} \sigma_{a} Q_{j}),$$

Remove all those operators strongly constrained: Z, W currents and oblique corrections.

A possible choice:

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{D}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}),$$
$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\tilde{\Phi} u_{R_{j}}),$$
$$\mathcal{O}_{a\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}),$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\begin{array}{l} \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\overline{L}_{i}\gamma^{\mu}L_{j}), \\ \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\overline{Q}_{i}\gamma^{\mu}Q_{j}), \\ \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\overline{c}_{R_{i}}\gamma^{\mu}c_{R_{j}}), \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\overline{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}), \\ \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\overline{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\overline{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\ \mathcal{O}_{\Phi ud,ij}^{(1)} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\overline{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \end{array}$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} B_{\mu\nu} B^{\mu\nu} \Phi$$

$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$

$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

$$\mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger} (i D^{a}_{\mu} \Phi) (\bar{L}_{i} \uparrow^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger} (i D^{a}_{\mu} \Phi) (\bar{Q}_{i} \uparrow^{\mu} \sigma_{a} Q_{j})$$

* Low energy flavour interactions: strong bounds on off-diag Yukawas $(\mathcal{O}_{f\Phi})_{i\neq j}$ (maybe relevant τe and $\tau \mu$, but not for this analysis!)

A possible choice:

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{D}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\bar{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi a_{R_j}),$$

$$(\mathcal{O}_{f\Phi})_{e\Phi,33},$$

$$(\mathcal{O}_{f\Phi})_{u\Phi,33},$$

$$(\mathcal{O}_{f\Phi})_{d\Phi,33},$$

$$\begin{array}{cccc} \mathcal{O}_{\Phi L,ij}^{(1)} & \Phi^{\dagger}(i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}), \\ \mathcal{O}_{\Phi Q,ij}^{(1)} &= \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}), \\ \mathcal{O}_{\Phi e,ij}^{(1)} &= \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{c}_{R_{i}}\gamma^{\mu}c_{R_{j}}), \\ \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}), \\ \mathcal{O}_{\Phi d,ij}^{(1)} &= \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\ \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \\ \mathcal{O}_{\Phi ud,ij}^{(1)} &= \Phi^{\dagger}(iD_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}), \end{array}$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$

$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$

$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

$$\mathcal{O}_{\Phi L,ij} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}),$$

$$\mathcal{O}_{\Phi}^{(3)} = \Phi^{\dagger} (i \overset{\leftrightarrow}{D}_{a} \Phi) (\bar{D}_{\nu} \Psi) (\bar{D}_{\nu} \Psi) (\bar{D}_{\nu} \Psi) (\bar{D}_{\nu} \Psi)$$

 $(\nu \nu \mu \star) (\Im i)$

 ${m
abla}_{\Phi Q,ij}$

($\mathcal{O}_{f\Phi})_{ii}$ for 1st and 2nd generations only via Hgg and H $\gamma\gamma$ loops: negligible!

 $va \ll j$

<u>A possible choice:</u>

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{D}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\bar{\Phi} u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi a_{R_j}),$$

$$(\mathcal{O}_{f\Phi})_{e\Phi,33},$$

$$(\mathcal{O}_{f\Phi})_{u\Phi,33},$$

$$(\mathcal{O}_{f\Phi})_{d\Phi,33},$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

(1)	\leftrightarrow
	$\Phi^{\dagger}(iD \Phi)(L \mu L)$
$\bullet_{\Phi L,ij}$	${\leftrightarrow} \xrightarrow{(v \not \to \mu \not \to)(\not \to i / \neg \not \to j),} \\ \leftrightarrow$
(1)	$\overline{A^{\dagger}(D, A)}(\overline{O}, \mu O)$
$\sim_{\Phi Q,ij}$ –	$\underline{\mathbf{x}} (\mathbf{x} \mu \mathbf{x})(\mathbf{x} i + \mathbf{x} j),$
(1)	$\underbrace{\leftrightarrow} \\ \underbrace{\leftrightarrow} \\ \underbrace{\leftarrow} \\ \\ \\ \\ \underbrace{\leftarrow} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\sim_{\Phi e,ij}$ –	$\mathbf{I} (\mathbf{I} \mathbf{I} \mathbf{I}) (\mathbf{C} \mathbf{R}_i + \mathbf{C} \mathbf{R}_j),$
$O^{(1)}$	$\frac{d^{\dagger}(iD}{d} \Phi)(\overline{u} - \alpha^{\mu}u -)$
$\bullet _{\Phi u,\imath \jmath}$	$= (\mathcal{O} \mu +)(\mathcal{O} n_i + \mathcal{O} n_j),$
	$\Phi^{\dagger}(i\overrightarrow{D} \Phi)(\overrightarrow{d} \mu d)$
$\sim_{\Phi d,ij}$	$(\mathcal{O} \mathcal{D} \mu \mathcal{D})(\mathcal{O} \mathcal{R}_i / \mathcal{O} \mathcal{R}_j),$
(1)	$\widetilde{\Phi}^{\dagger}(:\widetilde{D} \to)(= - (l_{1} - l_{2})$
$-\Phi_{ud,ij}$ –	$\mathbf{I} (\boldsymbol{w}_{R_i} + \boldsymbol{w}_{R_j}),$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$

$$\mathcal{O}_{\Phi,4} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) (\Phi^{\dagger}\Phi)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger}\Phi)^{3}$$

$$\mathcal{C}^{(3)}_{\Phi L,ij} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}{}^{a}_{\mu}\Phi)(\overline{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}),$$

$$\overset{\leftrightarrow}{\mathcal{C}^{(3)}_{\Phi Q,ij}} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}{}^{a}_{\mu}\Phi)(\overline{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}),$$

 $\mathcal{O}_{\Phi,3}$ only relevant for the scalar potential

A possible choice: [based on: Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)]

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{BW} = \Phi^{\dagger} \hat{D}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}),$$

$$\mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\bar{\Phi}u_{R_j}),$$

$$\mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi a_{R_j}),$$

$$(\mathcal{O}_{f\Phi})_{e\Phi,33},$$

$$(\mathcal{O}_{f\Phi})_{u\Phi,33},$$

$$(\mathcal{O}_{f\Phi})_{d\Phi,33},$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$
$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$

$$\mathcal{O}_{\Phi,4} = \left(D_{\mu}\Phi\right)^{\dagger} \left(D^{\mu}\Phi\right) \left(\Phi^{\dagger}\Phi\right)$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3} \left(\Psi^{\dagger}\Psi\right)^{3}$$

$$\mathcal{C}^{(3)}_{\Phi L,ij} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}{}^{a}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}),$$

$$\mathcal{C}^{(3)}_{\Phi Q,ij} = \Phi^{\dagger}(i\overset{\leftrightarrow}{D}{}^{a}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}),$$

Relevant parameters for Higgs Physics:

$$\frac{f_{GG}}{\Lambda^2}, \frac{f_{WW}}{\Lambda^2}, \frac{f_{BB}}{\Lambda^2}, \frac{f_W}{\Lambda^2}, \frac{f_B}{\Lambda^2}, \frac{f_B}{\Lambda^2}, \frac{f_{\Phi,2}}{\Lambda^2}, \frac{f_{\tau}}{\Lambda^2}, \frac{f_b}{\Lambda^2}, \frac{f_t}{\Lambda^2}$$

$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \, G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \, Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \, Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \, Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \, \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \, W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \, W^{+}_{\mu} W^{-\mu} h \, , \\ \mathcal{L}_{Hff} &= g_f \bar{f}_L f_R h + \text{h.c.} \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \, G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \, Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \, Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \, Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \, \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \, W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \, W^{+}_{\mu} W^{-\mu} h , \\ \mathcal{L}_{Hff} &= g_f \bar{f}_L f_R h + \text{h.c.} \end{aligned}$$

$$g_{Hgg} = -\frac{\alpha_s}{8\pi} \frac{f_{GG}v}{\Lambda^2} \qquad g_{HZ\gamma}^{(1)} = \frac{g^2v}{2\Lambda^2} \frac{s_w(f_W - f_B)}{2c_w}$$

$$g_{H\gamma\gamma} = -\frac{g^2vs_w^2}{2\Lambda^2} \frac{f_{BB} + f_{WW}}{2} \qquad g_{HZ\gamma}^{(2)} = \frac{g^2v}{2\Lambda^2} \frac{s_w(2s_w^2f_{BB} - 2c_w^2f_{WW})}{2c_w}$$

$$g_{HZZ}^{(1)} = \frac{g^2v}{2\Lambda^2} \frac{c_w^2f_W + s_w^2f_B}{2c_w^2} \qquad g_{HWW}^{(1)} = \frac{g^2v}{2\Lambda^2} \frac{f_W}{2}$$

$$g_{HZZ}^{(2)} = -\frac{g^2v}{2\Lambda^2} \frac{s_w^4f_{BB} + c_w^4f_{WW}}{2c_w^2} \qquad g_{HWW}^{(2)} = -\frac{g^2v}{2\Lambda^2} f_{WW}$$

$$g_{HZZ}^{(3)} = m_Z^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2}\right) \qquad g_{HWW}^{(3)} = m_W^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2}\right)$$

$$g_f = -\frac{m_f}{v} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2} - \frac{v^2}{\sqrt{2}\Lambda^2}f_f\right)$$

$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \, G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \, Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \, Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \, Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \, \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \, W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \, W^{+}_{\mu} W^{-\mu} h \, , \\ \mathcal{L}_{Hff} &= g_f \bar{f}_L f_R h + \text{h.c.} \end{aligned}$$

$$\begin{split} g_{Hgg} &= -\frac{\alpha_s}{8\pi} \frac{f_{GG}v}{\Lambda^2} & g_{HZ\gamma}^{(1)} &= \frac{g^2v}{2\Lambda^2} \frac{s_w(f_W - f_B)}{2c_w} \\ g_{H\gamma\gamma} &= -\frac{g^2vs_w^2}{2\Lambda^2} \frac{f_{BB} + f_{WW}}{2} & g_{HZ\gamma}^{(2)} &= \frac{g^2v}{2\Lambda^2} \frac{s_w(2s_w^2f_{BB} - 2c_w^2f_{WW})}{2c_w} \\ g_{HZZ}^{(1)} &= \frac{g^2v}{2\Lambda^2} \frac{c_w^2f_W + s_w^2f_B}{2c_w^2} & g_{HWW}^{(1)} &= \frac{g^2v}{2\Lambda^2} \frac{f_W}{2} \\ g_{HZZ}^{(2)} &= -\frac{g^2v}{2\Lambda^2} \frac{s_w^4f_{BB} + c_w^4f_{WW}}{2c_w^2} & g_{HWW}^{(2)} &= -\frac{g^2v}{2\Lambda^2} f_{WW} \\ g_{HZZ}^{(3)} &= m_Z^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2}\right) & g_{HWW}^{(3)} &= m_W^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2}\right) \\ g_f &= -\frac{m_f}{v} \left(1 - \frac{v^2}{2\Lambda^2}f_{\Phi,2} - \frac{v^2}{\sqrt{2}\Lambda^2}f_f\right) \end{split}$$

13 free coefficients vs. 9 Lagrangian parameters

• SMEFT is a well defined EFT, invariant under $SU(2)_L \times U(1)_Y$

- SMEFT is a well defined EFT, invariant under $SU(2)_L \times U(1)_Y$
- Fewer number of parameters in the fit: easier and more constraining

- SMEFT is a well defined EFT, invariant under $SU(2)_L \times U(1)_Y$
- Fewer number of parameters in the fit: easier and more constraining
- Correlation between HVV and TGV

$$\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_1^V (W_{\mu\nu}^+ W^{-\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{-\mu\nu}) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} W_{\mu\nu}^+ W^{-\nu\rho} V_{\rho}^\mu - g_5^V \epsilon^{\mu\nu\rho\sigma} (W_{\mu}^+ \partial_{\rho} W_{\nu}^- - \partial_{\rho} W_{\mu}^+ W_{\nu}^-) V_{\sigma} \right\}$$

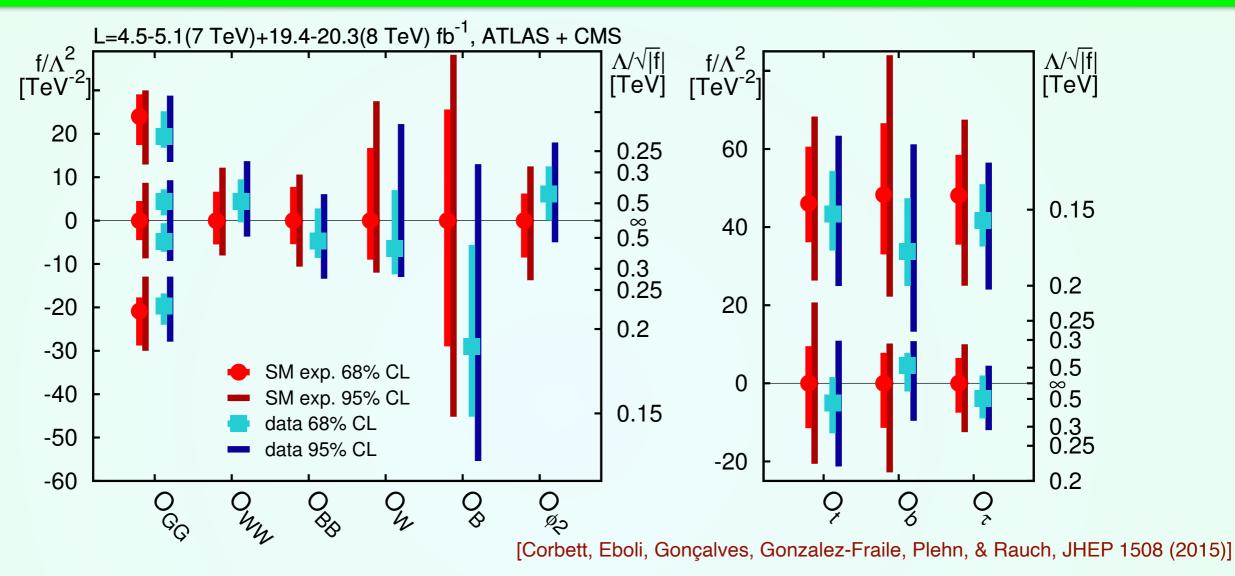
$$\Delta g_1^Z = g_1^Z - 1 = \frac{g^2 v^2}{8c_w^2 \Lambda^2} f_W$$

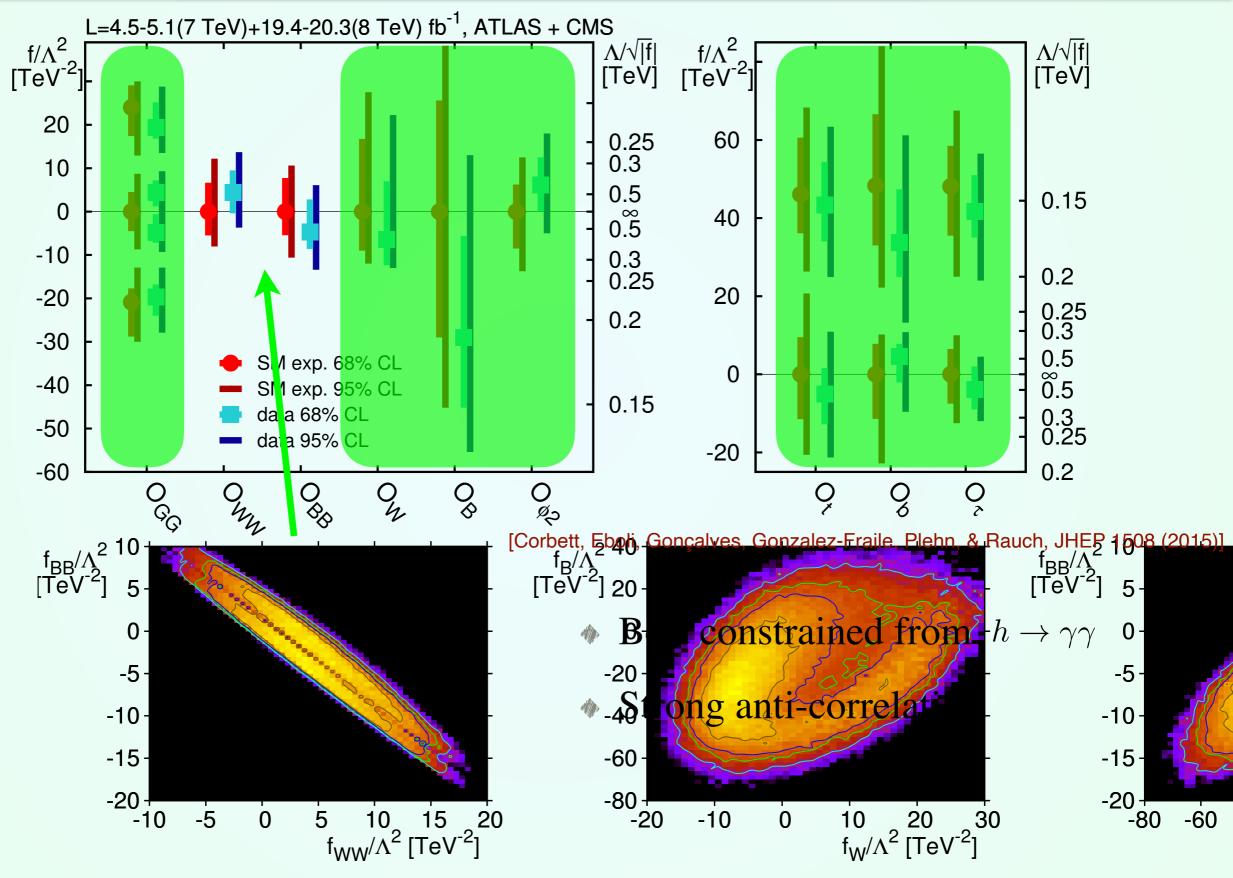
$$\Delta \kappa_\gamma = \kappa_\gamma - 1 = \frac{g^2 v^2}{8c_w^2 \Lambda^2} (f_W + f_B)$$

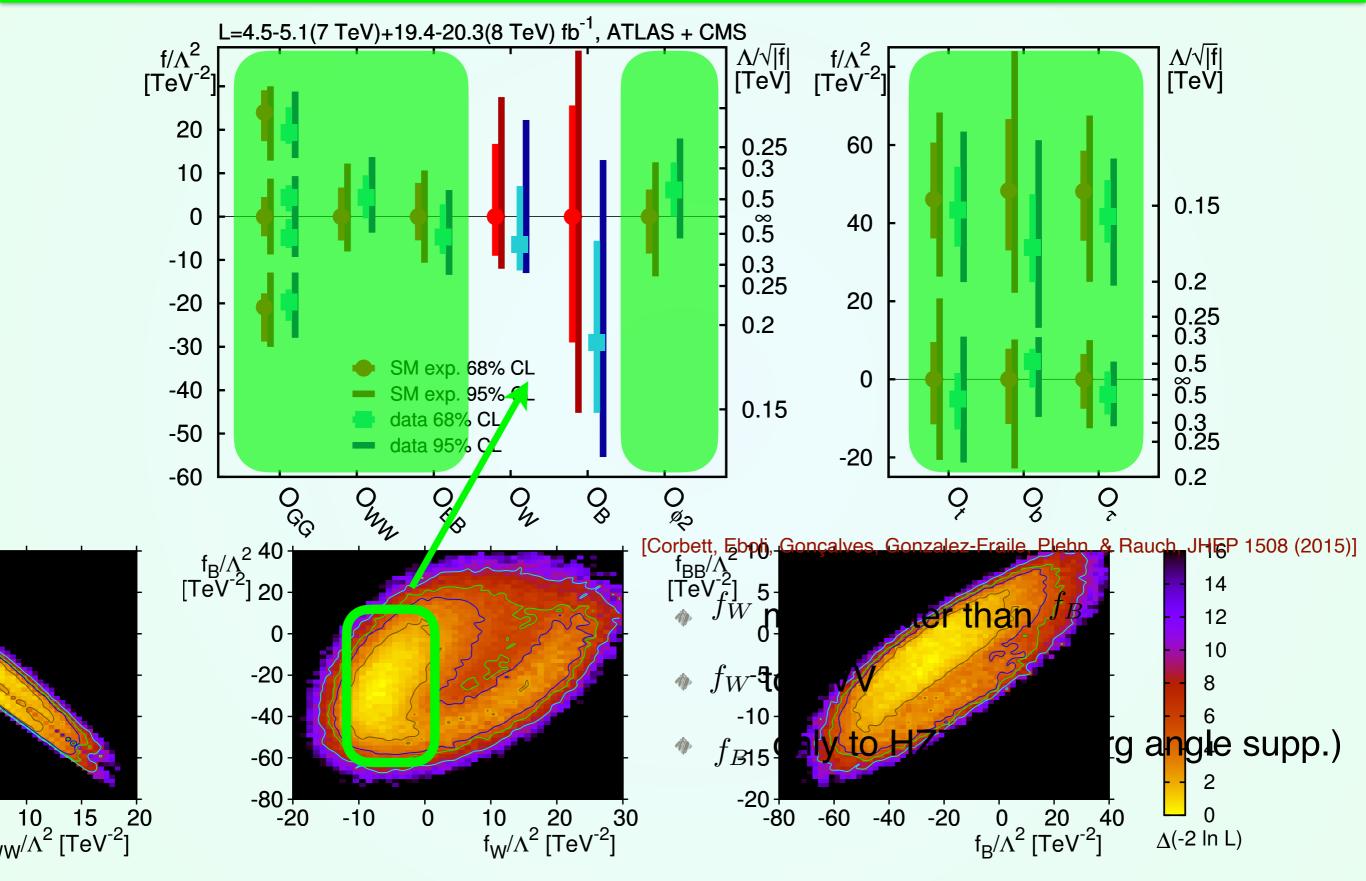
$$\Delta \kappa_Z = \kappa_Z - 1 = \frac{g^2 v^2}{8c_w^2 \Lambda^2} (c_w^2 f_W - s_w^2 f_B)$$

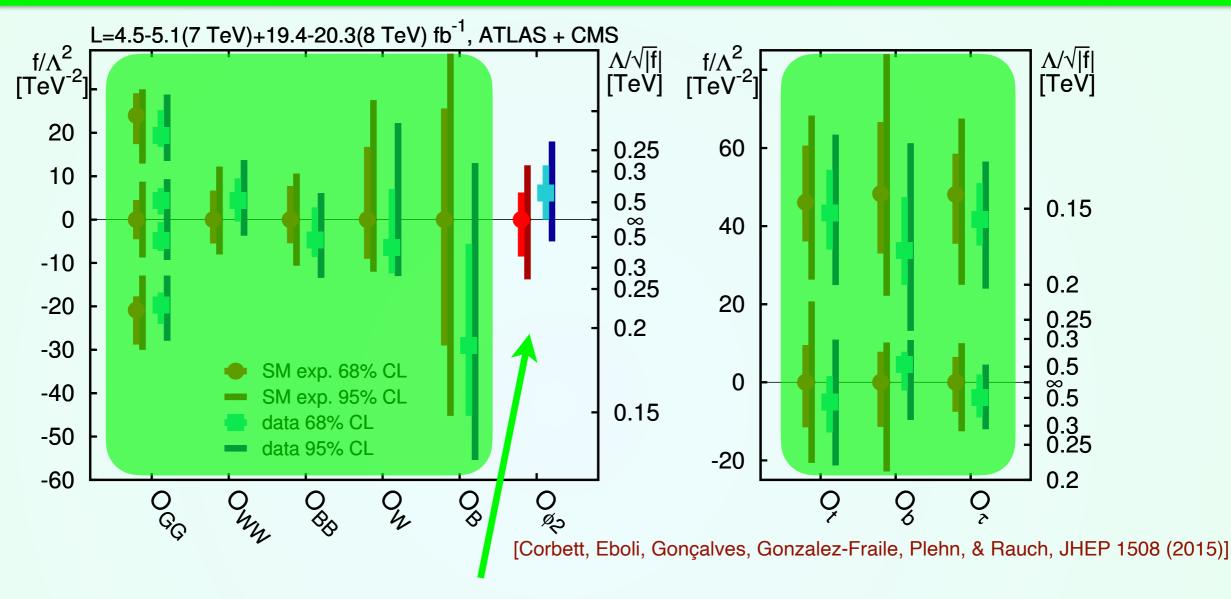
$$\lambda_\gamma = \lambda_Z = \frac{3g^2 m_W^2}{\Lambda^2} f_{WWW}$$

$$\mathcal{O}_{WWW} = -ig^3 \text{Tr} \left(W_{\mu}^\nu W_{\nu}^\rho W_{\rho}^\mu \right)$$

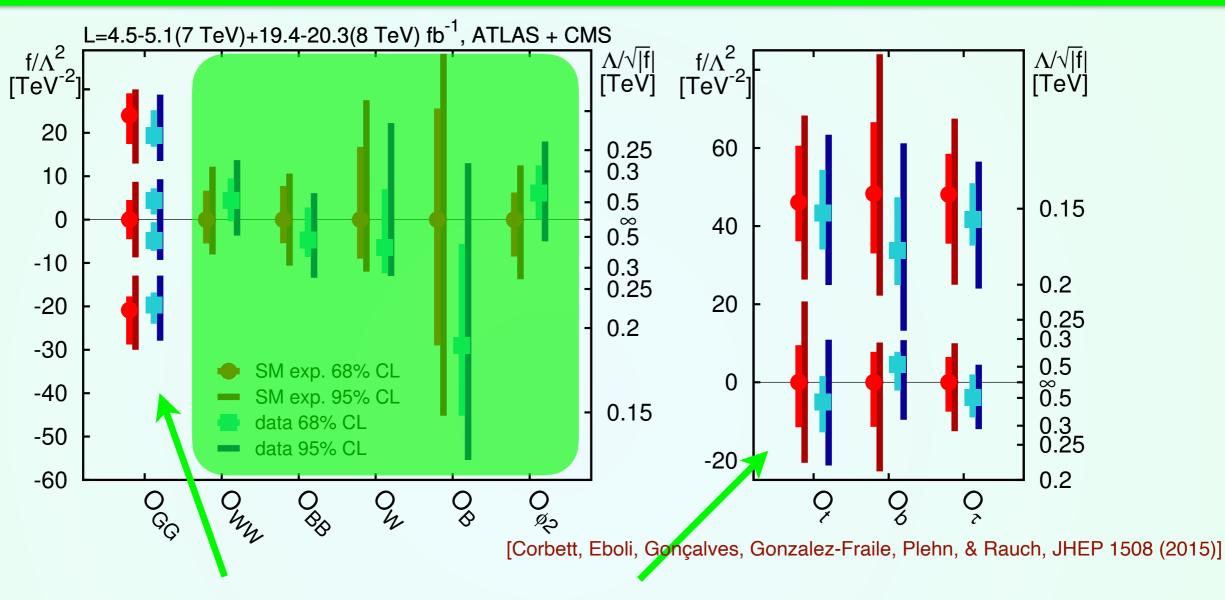




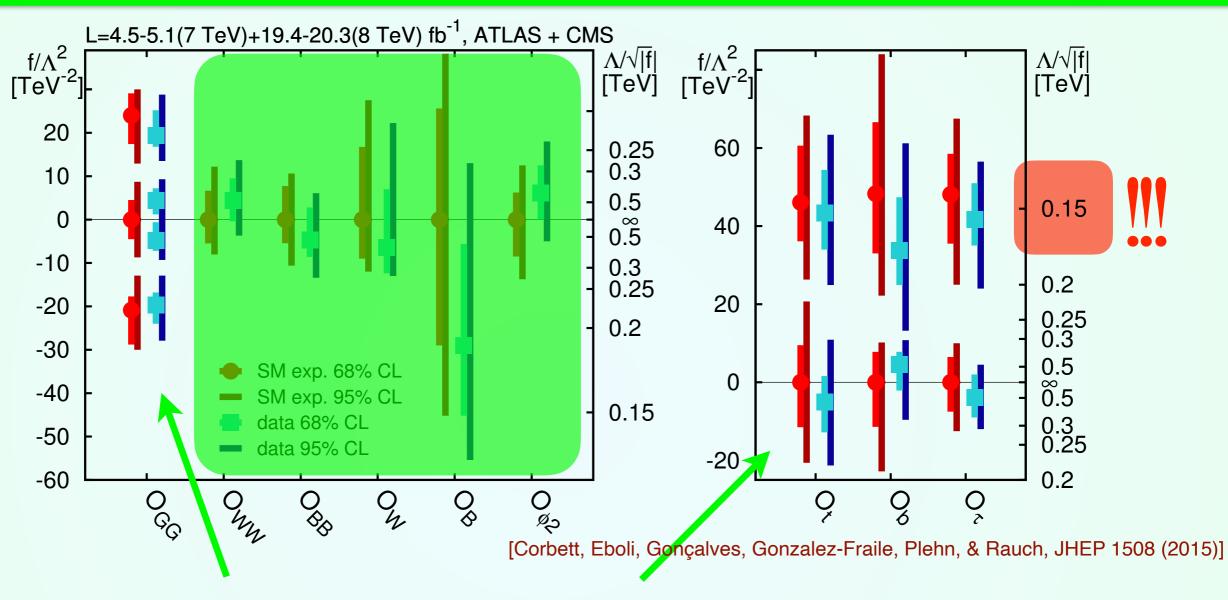




- f_{Φ^2} universal mod. of gauge bosons and fermion masses
- enters in many observables



- O_{GG} has 2x2 degenerate minima
- Between: gluon fusion too depleted
- The other 2, switching the sign of the Yukawas

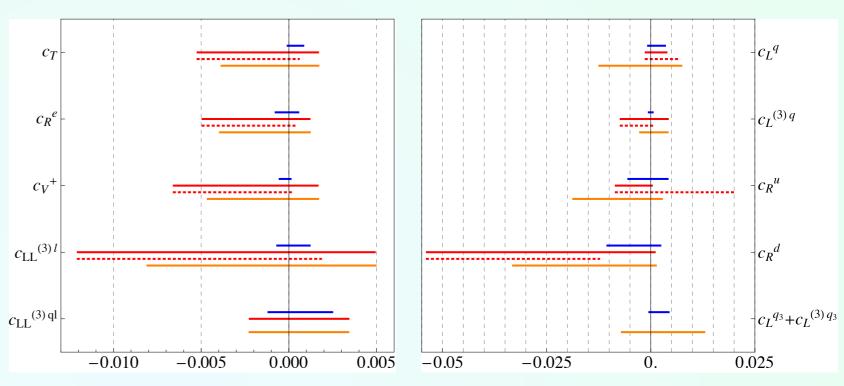


- OGG has 2x2 degenerate minima
- Between: gluon fusion too depleted
- The other 2, switching the sign of the Yukawas

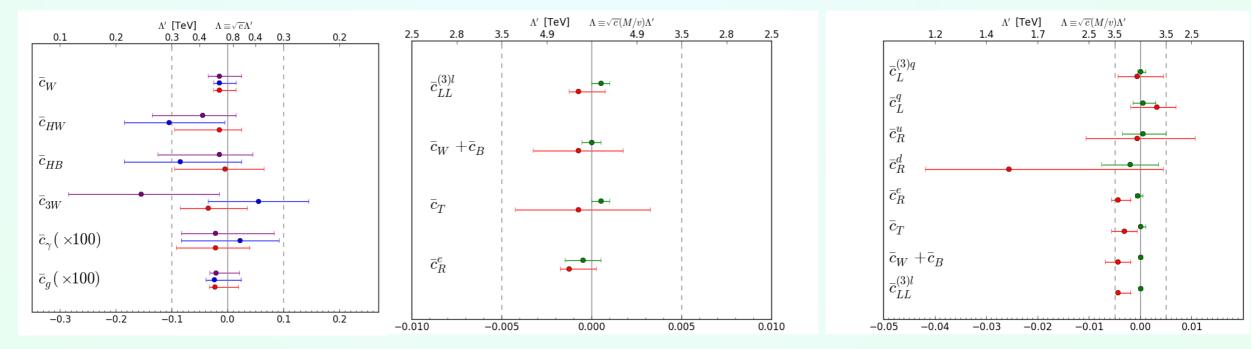
Alternative linear bases and fits

Elias-Miro, Espinosa, Masso & Pomarol, JHEP 1311(2013)

Pomerol & Riva, JHEP 1401 (2014) Gupta, Pomarol & Riva, PRD91 (2015) Falkowski & Riva, JHEP 1502 (2015)

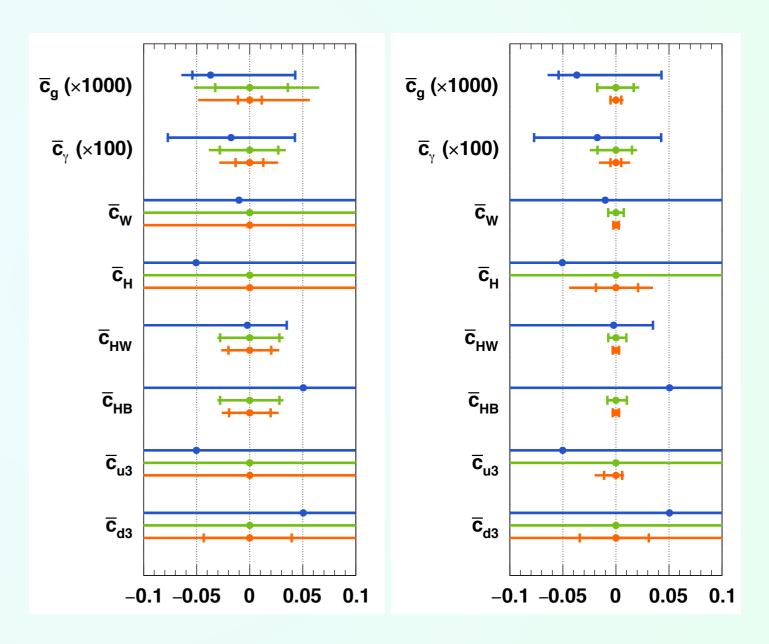


Ellis, Sanz & You, JHEP 1407 (2014) Ellis, Sanz & You, JHEP 1503 (2015)



Alternative linear bases and fits

Englert, Kogler, Schulz & Spannowsky, arXiv: 1511.05170



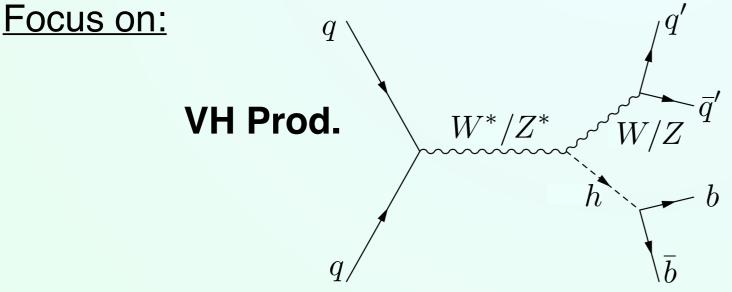
Beyond Rate-Based Analysis

Anomalous Lorentz couplings modify the Kinematic distributions:

$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \, G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \, A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \, Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \, Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \, Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \, \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \, W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \, W^{+}_{\mu} W^{-\mu} h \, , \\ \mathcal{L}_{Hff} &= g_{f} \overline{f_{L}} f_{R} h + \text{h.c.} \\ g^{(1)}_{HZZ} &= \frac{g^{2} v}{2\Lambda^{2}} \, \frac{c^{2}_{w} f_{W} + s^{2}_{w} f_{B}}{2c^{2}_{w}} \qquad g^{(1)}_{HWW} = \frac{g^{2} v}{2\Lambda^{2}} \, \frac{f_{W}}{2} \\ g^{(2)}_{HZZ} &= -\frac{g^{2} v}{2\Lambda^{2}} \, \frac{s^{4}_{w} f_{BB} + c^{4}_{w} f_{WW}}{2c^{2}_{w}} \qquad g^{(2)}_{HWW} = -\frac{g^{2} v}{2\Lambda^{2}} \, f_{WW} \end{aligned}$$

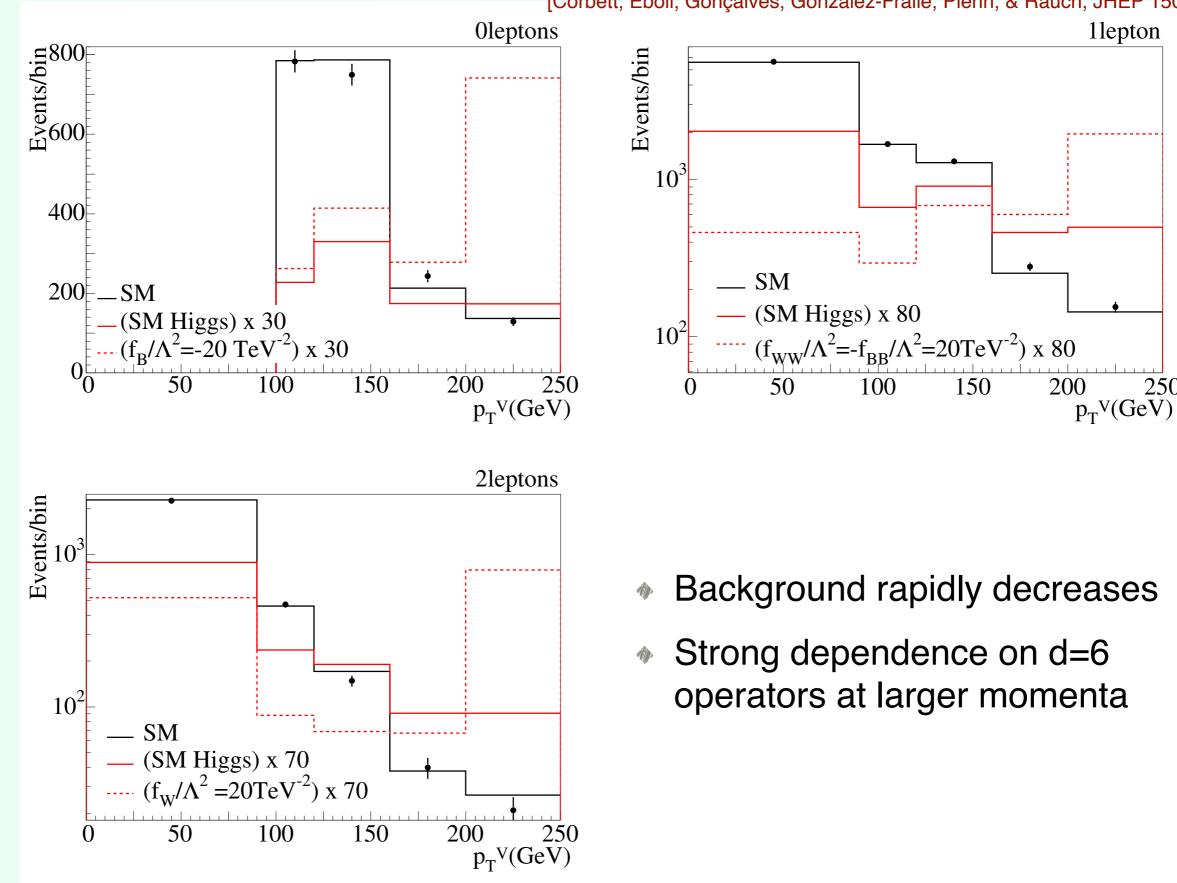
Beyond Rate-Based Analysis

Anomalous Lorentz couplings modify the Kinematic distributions:



• variable with large flow in the production vertex: \mathbf{p}_T^V

tagging with 2 b's and 0, 1, 2
 leptons



Kinematic distributions from ATLAS $h \rightarrow bb$ (1409.6212)

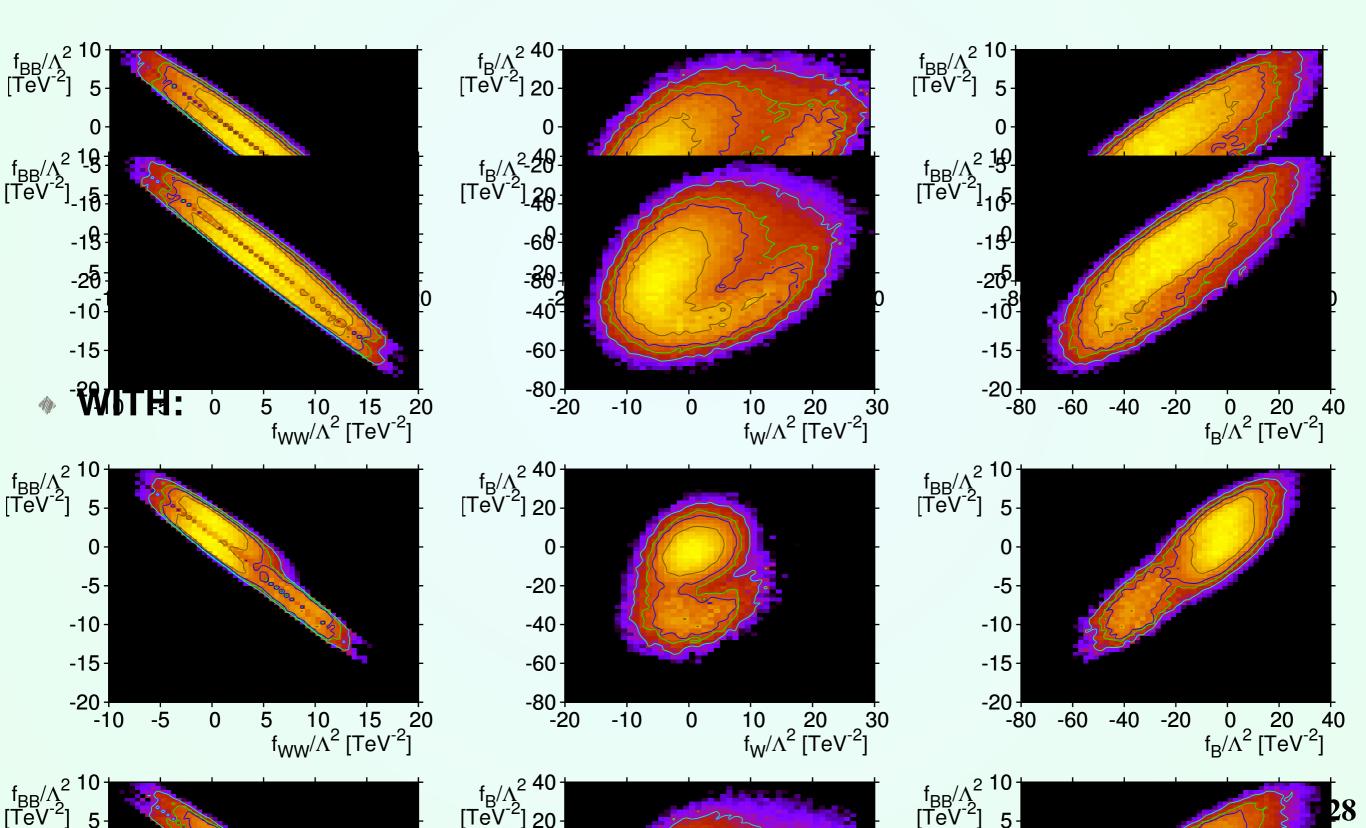
250

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]

Results with Kinematics

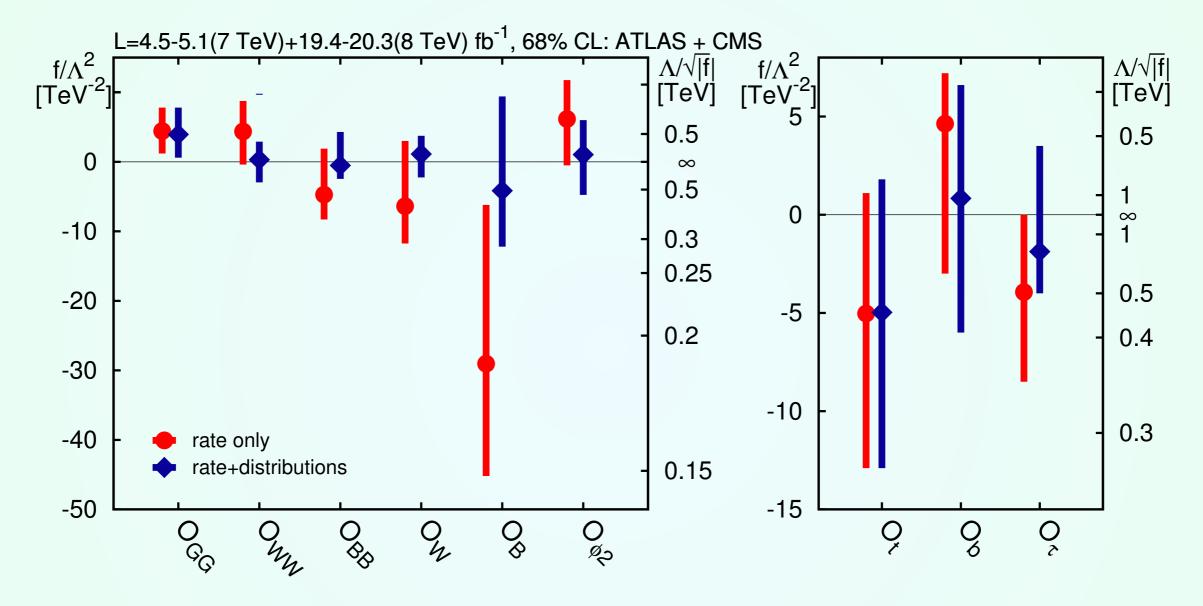
Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (201

WITHOUT:



Results with Kinematics

[Corbett, Eboli, Gonçalves, Gonzalez-Fraile, Plehn, & Rauch, JHEP 1508 (2015)]



- Biggest impact of Kinematics on O_B, O_W, O_{BB}, O_{WW} , respectively.
- Energy scales probed by Run I are 300-500 GeV (O(1) coeff.)

Correlation between HVV and TGV: Example

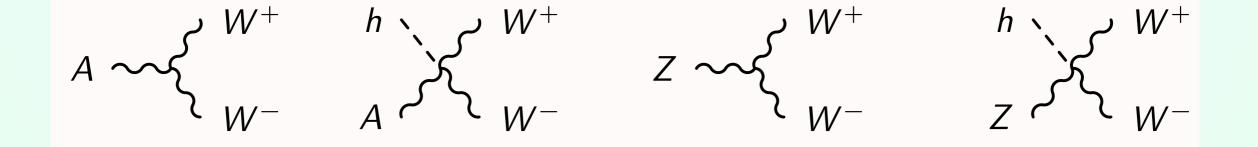
 $\mathcal{O}_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi)$

Correlation between HVV and TGV: Example

 $\mathcal{O}_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi)$

In unitary gauge can be rewritten as:

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h)$$

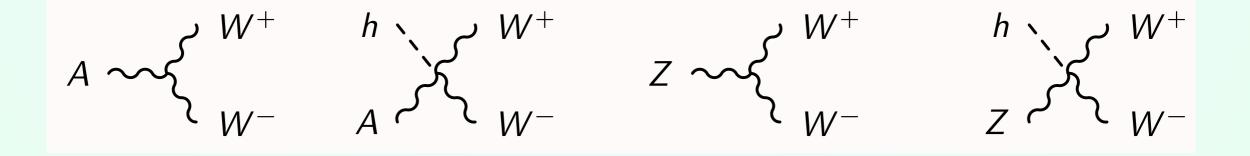


Correlation between HVV and TGV: Example

$$\mathcal{O}_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi)$$

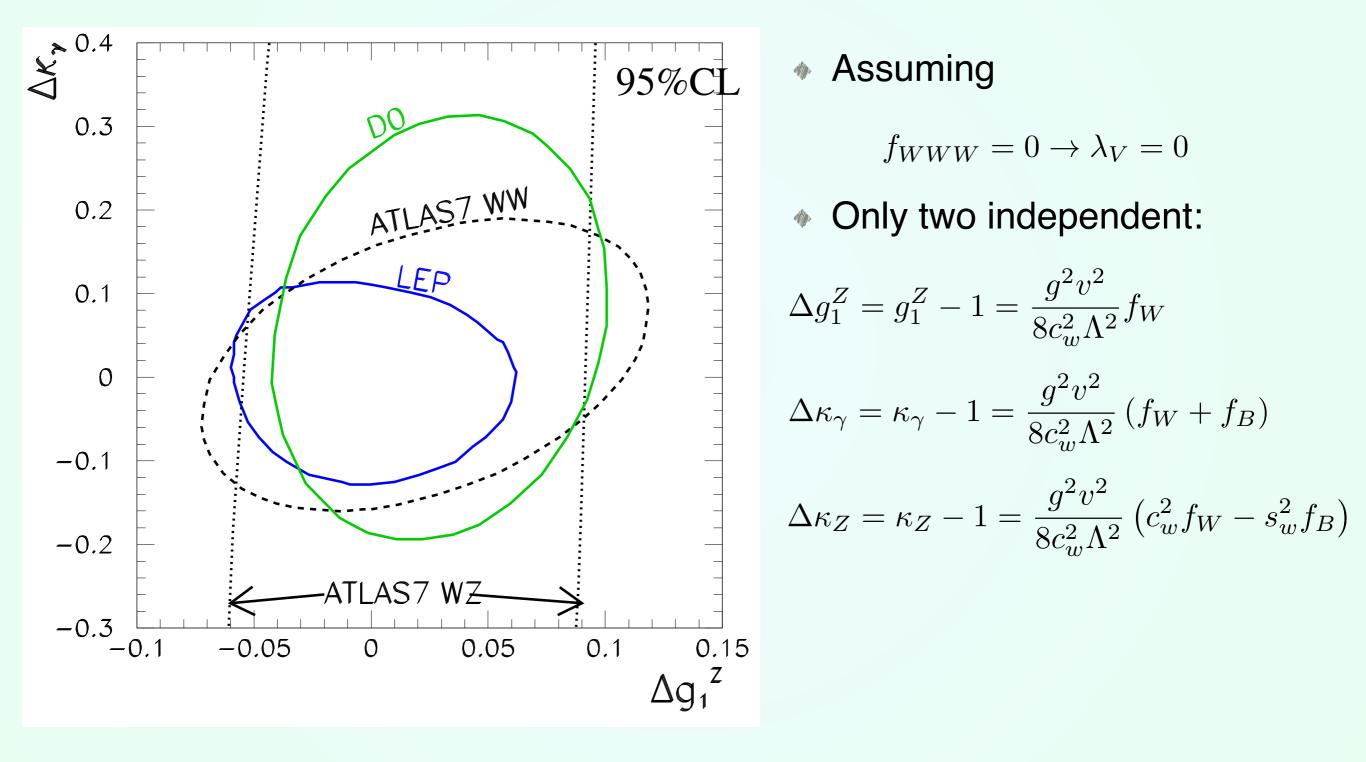
In unitary gauge can be rewritten as:

$$\mathcal{O}_B = \frac{ieg^2}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^2 - \frac{ie^2 g}{8\cos\theta_W} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^2 - \frac{eg}{4\cos\theta_W} A_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h) + \frac{e^2}{4\cos^2\theta_W} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h)$$



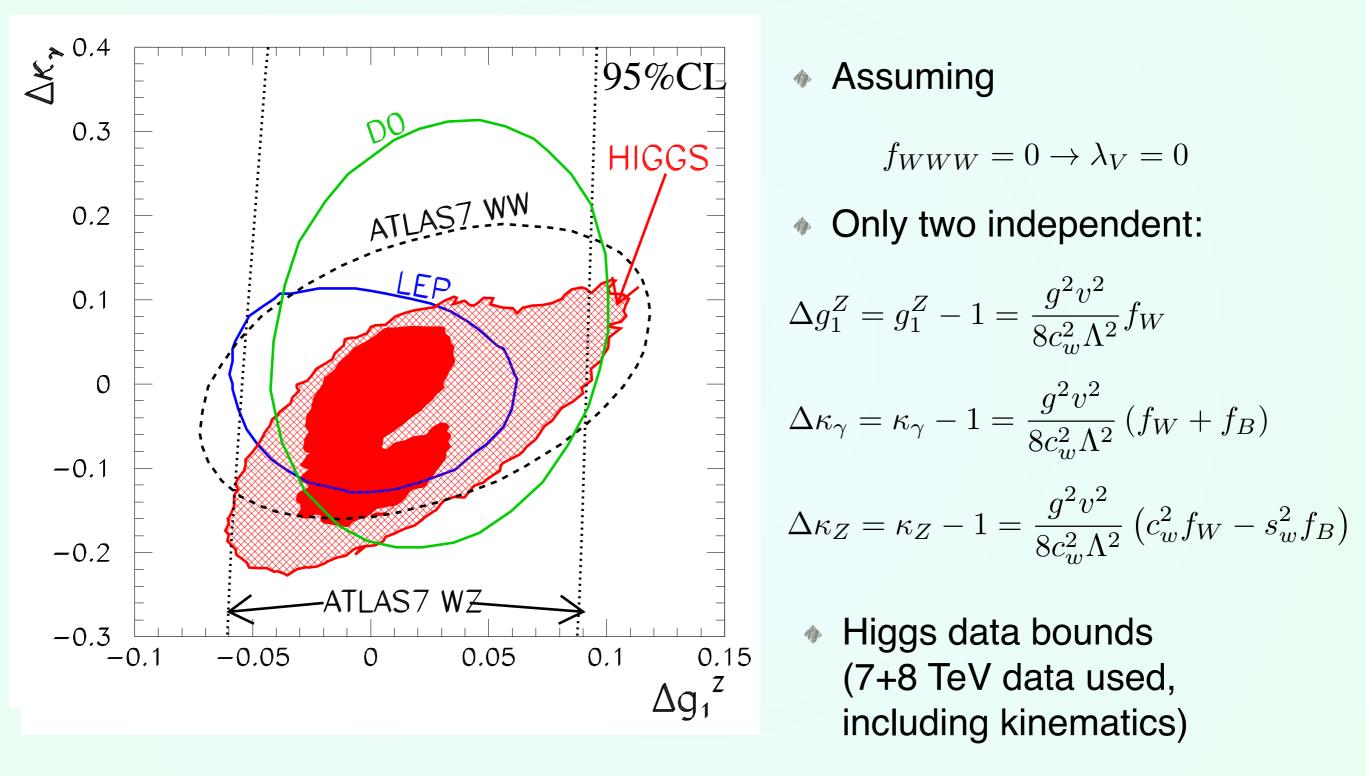
All these couplings are correlated!!

Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRL 111 (2013)



Interplay HVV and TGV

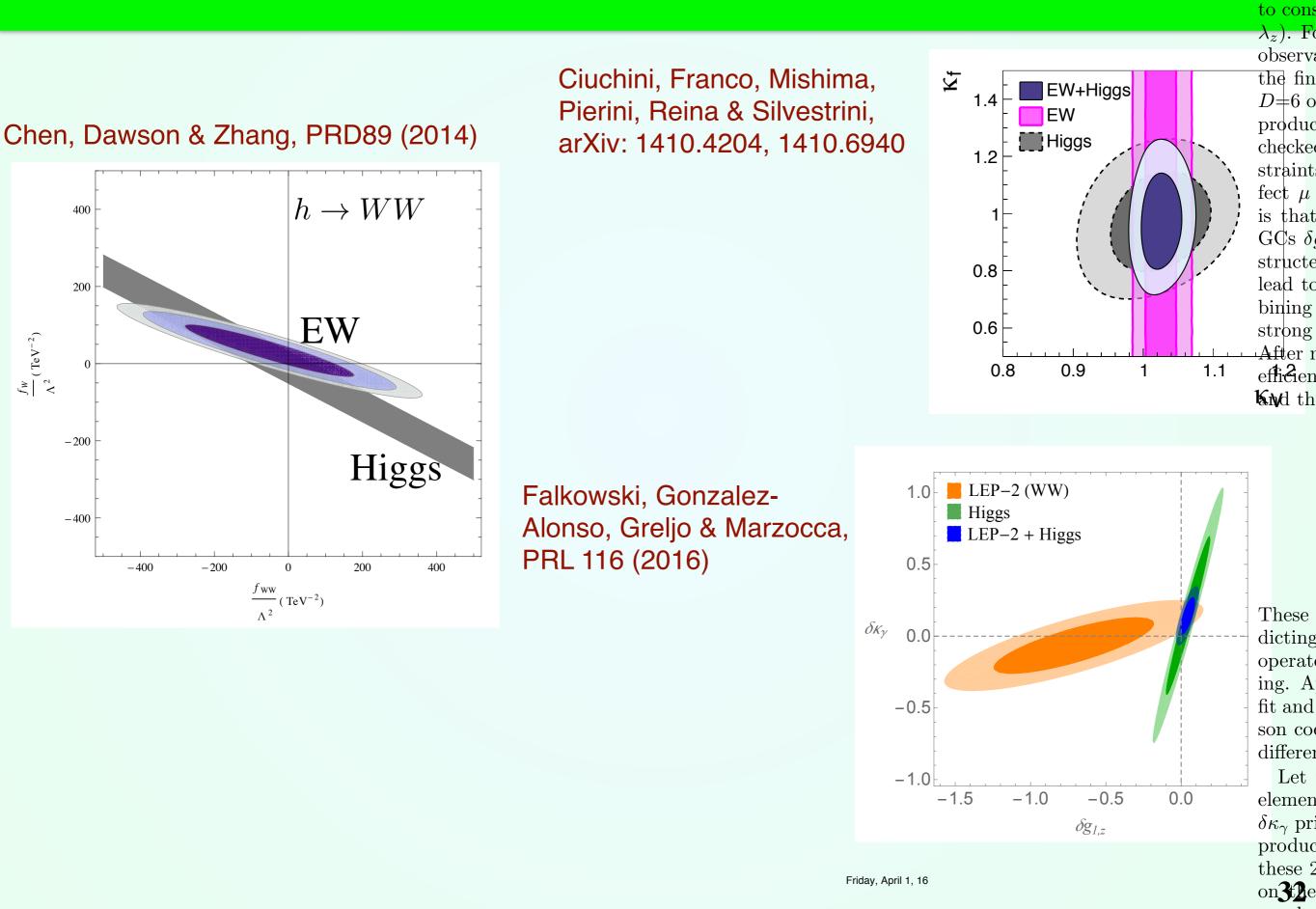
Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRL 111 (2013)



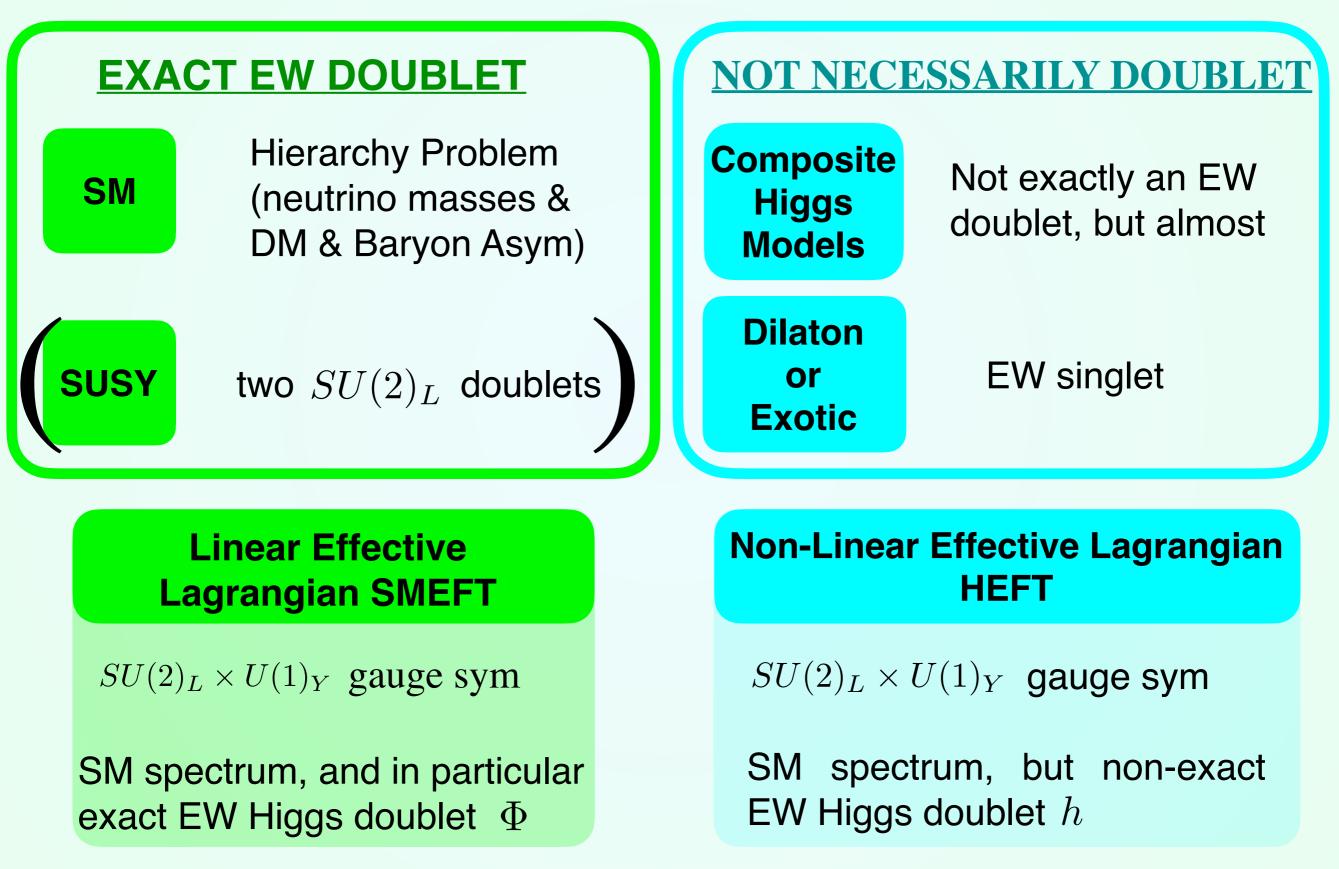
Other similar studies

measu

tions or respon



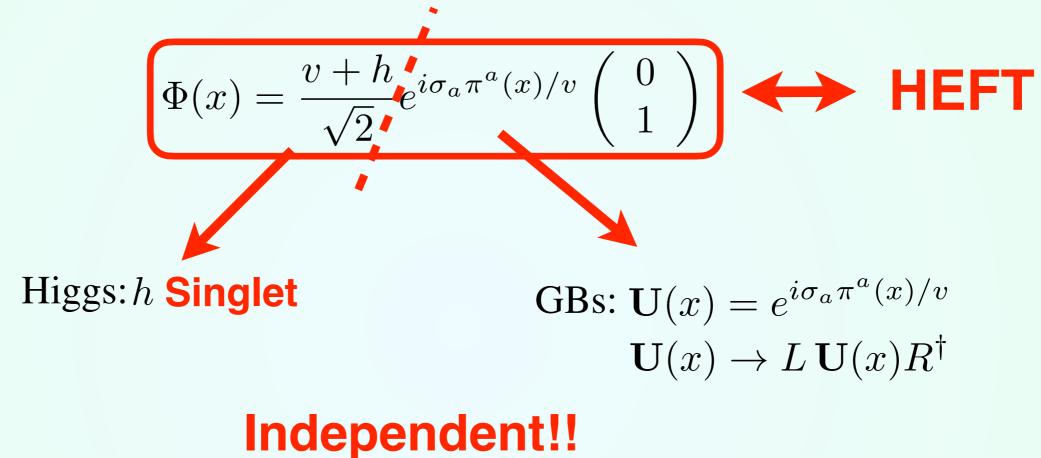
Which Higgs?



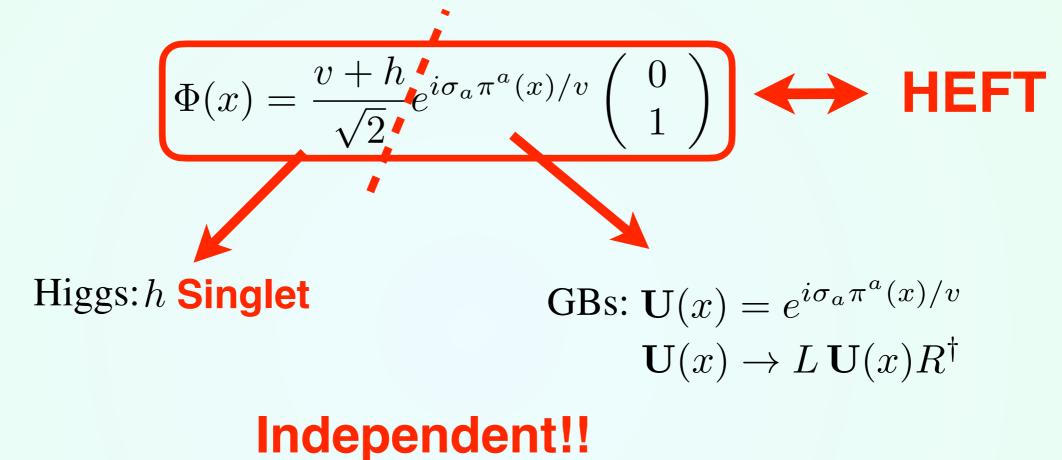
SMEFT: constructed with

$$\Phi(x) = \frac{v+h}{\sqrt{2}} e^{i\sigma_a \pi^a(x)/v} \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

SMEFT: constructed with



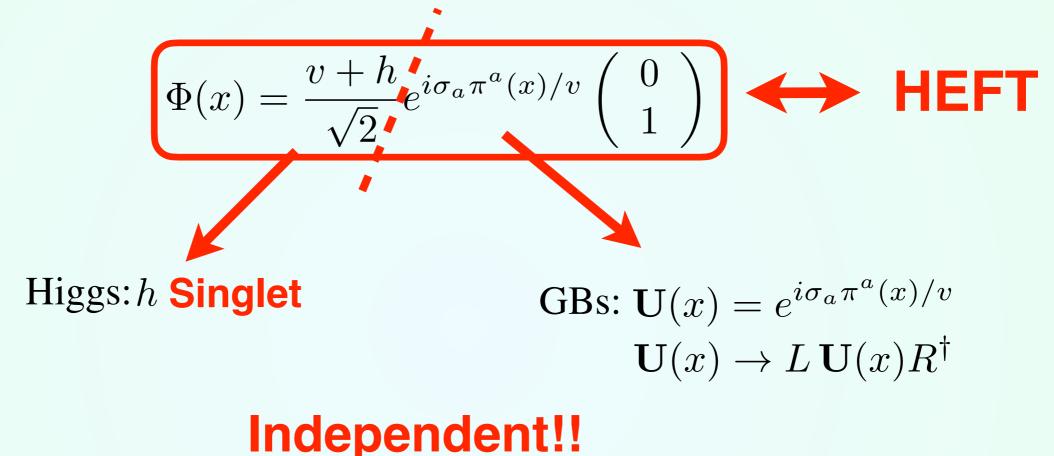
SMEFT: constructed with



Being h a singlet: generic functions of h

$$\mathcal{F}_i(h) = 1 + 2\alpha_i \frac{h}{v} + \beta_i \frac{h^2}{v^2} + \dots$$

SMEFT: constructed with



Alla.

Being *h* a singlet: generic functions of h $\mathcal{F}_i(h) = 1 + 2\alpha_i \frac{h}{n} + \beta_i \frac{h^2}{n^2} + \dots$

Being $\mathbf{U}(x)$ vs. h independent, many more operators can be constructed

 $\mathbf{U}(x)$ is a 2x2 adimensional matrix. This leads to a fundamental difference between the linear and chiral Lagrangians:

 $\mathbf{U}(x)$ is a 2x2 adimensional matrix. This leads to a fundamental difference between the linear and chiral Lagrangians:

SMEFT

- $\,{}_{\diamond}\,$ The GBs are in the Higgs doublet $\,\Phi\,$
- $\ast \ \Phi$ has dimension 1 in mass

U(x) is a 2x2 adimensional matrix. This leads to a fundamental difference between the linear and chiral Lagrangians:

SMEFT

HEFT

• The $\mathbf{U}(x)$ matrix is adimensional and any its extra insertions do not lead to any suppression

U(x) is a 2x2 adimensional matrix. This leads to a fundamental difference between the linear and chiral Lagrangians:

SMEFT

- $\ast \ \Phi$ has dimension 1 in mass

HEFT

 The U(x) matrix is adimensional and any its extra insertions do not lead to any suppression

The dimension of the leading low-energy operators differs

 $\mathbf{U}(x)$ is a 2x2 adimensional matrix. This leads to a fundamental difference between the linear and chiral Lagrangians:

SMEFT

- Φ has dimension 1 in mass
- d=4+n operators are suppressed by Λ_{NP}^n

HEFT

 The U(x) matrix is adimensional and any its extra insertions do not lead to any suppression

The dimension of the leading low-energy operators differs

▲ Investigate on the signals of decorrelations: due to the nature of the chiral expansion vs. the linear one, and due to $\mathcal{F}_i(h) \neq \left(1 + \frac{h}{v}\right)^2$ SMEFT HEFT
d = 6
(Brivio, Corbett, Eboli, Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM&Rigolin, JHEP 1403 (2014)]

U(x) is a 2x2 adimensional matrix. This leads to a fundamental difference between the linear and chiral Lagrangians:

SMEFT

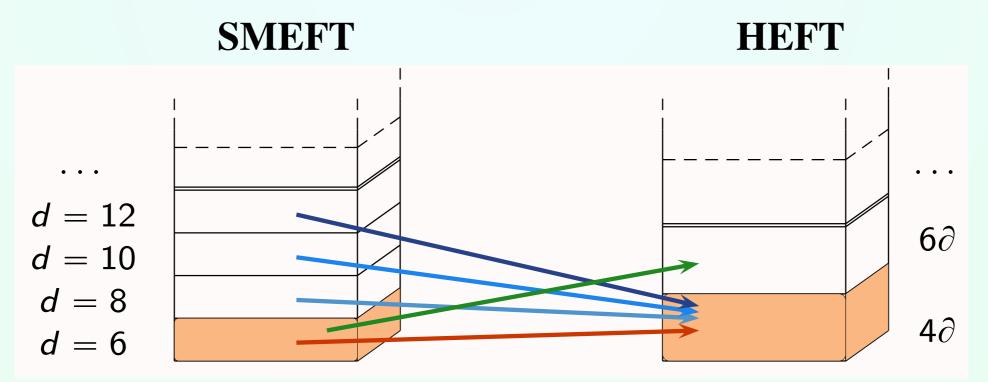
- Φ has dimension 1 in mass
- d=4+n operators are suppressed by Λ_{NP}^n

HEFT

 The U(x) matrix is adimensional and any its extra insertions do not lead to any suppression

The dimension of the leading low-energy operators differs

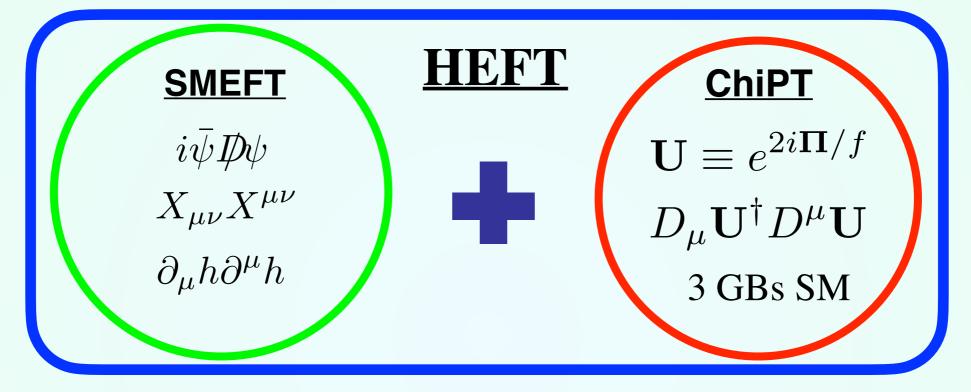
Study the anomalous signals present in the chiral, but absent in the linear



[Brivio,Corbett,Eboli,Gavela,Gonzalez-Fraile, Gonzalez-Garcia,LM&Rigolin, JHEP 1403 (2014)]

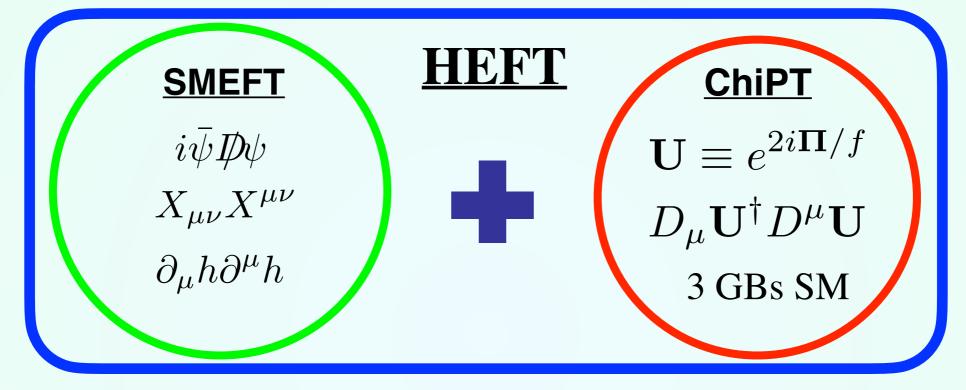
What is HEFT?

The Higgs Effective Field Theory (HEFT) is a fusion of SMEFT and ChiPT



What is HEFT?

The Higgs Effective Field Theory (HEFT) is a fusion of SMEFT and ChiPT

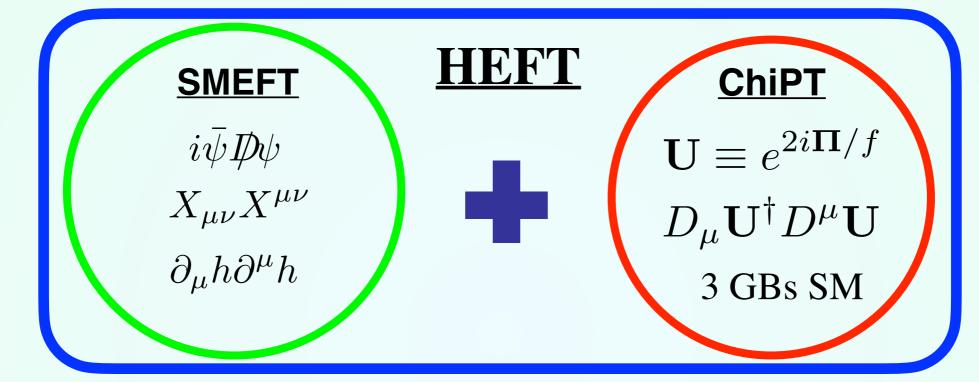


HEFT describes an extended class of "Higgs" models:

Standard Model SMEFT Technicolor-like ansatz Dilator-Like models Composite Higgs models Alonso,Brivio,Gavela,LM&Rigolin, JHEP 12 (2014) 034 Hierro,LM&Rigolin, arXiv:1510.07899

What is HEFT?

The Higgs Effective Field Theory (HEFT) is a fusion of SMEFT and ChiPT



Building blocks:

$\mathbf{V}_{\mu}\equiv\left(\mathbf{D}_{\mu}\mathbf{U} ight)\mathbf{U}^{\dagger}$	$\mathbf{V} \to L \mathbf{V} L^{\dagger}$	$I \subset SU(2)$
$\mathbf{T}\equiv\mathbf{U}\sigma_{3}\mathbf{U}^{\dagger}$	$\mathbf{T} \to L \mathbf{T} L^{\dagger}$	$L \in SU(2)_L$

 $\psi_{L,R}$

$$A_{\mu} \qquad X_{\mu\nu}$$

h singlet of SM syms: arbitrary $\mathcal{F}(h) = \sum_{i=0} a_i \left(\frac{h}{f}\right)^i$

The HEFT Lagrangian

Azatov, Contino & Galloway JHEP 1204 (2012) Alonso, Gavela, LM, Rigolin & Yepes, JHEP 1206 (2012) Alonso, Gavela, LM, Rigolin & Yepes, PLB 722 (2013) Alonso, Gavela, LM, Rigolin & Yepes, PRD 87 (2013) Buchalla, Cata & Krause, NPB 880 (2014) Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM, Rigolin & Yepes, JHEP 1410 (2014)

$$\mathcal{L}_{HEFT} = \mathcal{L}_{0} + \Delta \mathcal{L}$$

$$\mathcal{L}_{0} = -\frac{1}{4} G^{\alpha}_{\mu\nu} \mathcal{G}^{\alpha\,\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a\,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{v^{2}}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}) \mathcal{F}_{C}(h) - V(h) + i \bar{Q}_{L} \not{D} Q_{L} + i \bar{Q}_{R} \not{D} Q_{R} + i \bar{L}_{L} \not{D} L_{L} + i \bar{L}_{R} \not{D} L_{R} + \frac{v}{\sqrt{2}} \left(\bar{Q}_{L} \mathbf{U} \mathcal{Y}_{Q}(h) Q_{R} + \text{h.c.} \right) - \frac{v}{\sqrt{2}} \left(\bar{L}_{L} \mathbf{U} \mathcal{Y}_{L}(h) L_{R} + \text{h.c.} \right)$$

The HEFT Lagrangian

Azatov, Contino & Galloway JHEP 1204 (2012) Alonso, Gavela, LM, Rigolin & Yepes, JHEP 1206 (2012) Alonso, Gavela, LM, Rigolin & Yepes, PLB 722 (2013) Alonso, Gavela, LM, Rigolin & Yepes, PRD 87 (2013) Buchalla, Cata & Krause, NPB 880 (2014) Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM, Rigolin & Yepes, JHEP 1410 (2014)

$$\mathcal{L}_{HEFT} = \mathcal{L}_{0} + \Delta \mathcal{L}$$

$$\mathcal{L}_{0} = -\frac{1}{4} G^{\alpha}_{\mu\nu} \mathcal{G}^{\alpha\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{v^{2}}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}) \mathcal{F}_{C}(h) - V(h) + i \bar{Q}_{L} \vec{D} Q_{L} + i \bar{Q}_{R} \vec{D} Q_{R} + i \bar{L}_{L} \vec{D} L_{L} + i \bar{L}_{R} \vec{D} L_{R} + \frac{v}{\sqrt{2}} \left(\bar{Q}_{L} \mathbf{U} \mathcal{Y}_{Q}(h) Q_{R} + \text{h.c.} \right) - \frac{v}{\sqrt{2}} \left(\bar{L}_{L} \mathbf{U} \mathcal{Y}_{L}(h) L_{R} + \text{h.c.} \right)$$

The HEFT Lagrangian

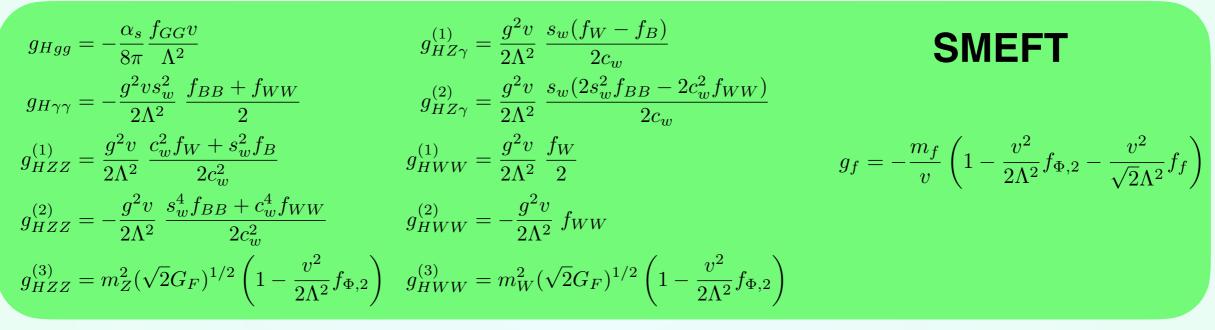
Alonso, Gavela, LM, Rigolin & Yepes, PLB 722 (2013)
Alonso, Gavela, LM, Rigolin & Yepes, PRD 87 (2013)
Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM, Rigolin & Yepes, JHEP 1410 (2014)
Gavela, Kanshin, Machado & Saa, JHEP 1503 (2015)
Brivio, Gonzalez-Fraile, Gonzalez-Garcia & LM, Eur.Phys.J. C76 (2016) 416

$$\mathcal{L}_{HEFT} = \mathcal{L}_0 + \Delta \mathcal{L}$$

- 145 (no flavour) operators preserving SM, lepton, baryon syms, up to NLO in the renormalisation procedure (4 derivatives & d=6)
- Reduction to a minimal independent set of operators: EOMs
- Choice of a suitable basis (data driven): measurable @ LHC.
- Analysis on similar lines as for SMEFT

 $\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \ G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \ A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \ Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \ Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \ Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \ \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \ W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \ W^{+}_{\mu} W^{-\mu} h \\ , \\ \mathcal{L}_{Hff} &= g_f \bar{f}_L f_R h + \text{h.c.} \end{aligned}$

$$\mathcal{L}_{HVV} = g_{Hgg} G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} A_{\mu\nu} Z^{\mu\nu} h + g^{(1)}_{HZZ} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} Z_{\mu} Z^{\mu} h + g^{(1)}_{HWW} (W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.}) + g^{(2)}_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} W^{+}_{\mu} W^{-\mu} h ,$$



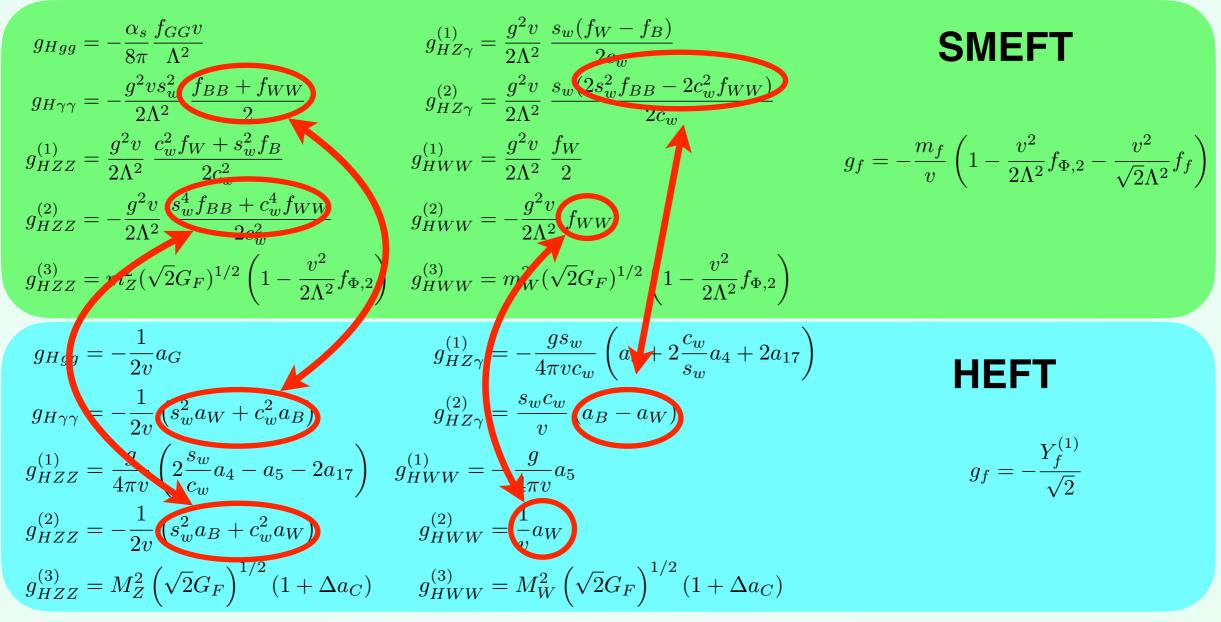
$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \ G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \ A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \ Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \ Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \ Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \ \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \ W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \ W^{+}_{\mu} W^{-\mu} h , \end{aligned}$$

$$\begin{aligned} g_{Hgg} &= -\frac{\alpha_s}{8\pi} \frac{f_{GGV}}{\Lambda^2} & g_{HZ\gamma}^{(1)} = \frac{g^2 v}{2\Lambda^2} \frac{s_w(f_W - f_B)}{2c_w} & \text{SMEFT} \\ g_{H\gamma\gamma} &= -\frac{g^2 v s_w^2}{2\Lambda^2} \frac{f_{BB} + f_{WW}}{2} & g_{HZ\gamma}^{(2)} = \frac{g^2 v}{2\Lambda^2} \frac{s_w(2s_w^2 f_{BB} - 2c_w^2 f_{WW})}{2c_w} \\ g_{HZZ}^{(1)} &= \frac{g^2 v}{2\Lambda^2} \frac{c_w^2 f_W + s_w^2 f_B}{2c_w^2} & g_{HWW}^{(1)} = \frac{g^2 v}{2\Lambda^2} \frac{f_W}{2} & g_f = -\frac{m_f}{v} \left(1 - \frac{v^2}{2\Lambda^2} f_{\Phi,2} - \frac{v^2}{\sqrt{2}\Lambda^2} f_f\right) \\ g_{HZZ}^{(2)} &= -\frac{g^2 v}{2\Lambda^2} \frac{s_w^4 f_{BB} + c_w^4 f_{WW}}{2c_w^2} & g_{HWW}^{(2)} = -\frac{g^2 v}{2\Lambda^2} f_{WW} \\ g_{HZZ}^{(3)} &= m_Z^2 (\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2} f_{\Phi,2}\right) & g_{HWW}^{(3)} = m_W^2 (\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2} f_{\Phi,2}\right) \\ g_{HZZ} &= -\frac{1}{2v} a_G & g_{HZ\gamma}^{(1)} = -\frac{gs_w}{4\pi v c_w} \left(a_5 + 2\frac{c_w}{s_w} a_4 + 2a_{17}\right) \\ g_{H\gamma\gamma} &= -\frac{1}{2v} \left(s_w^2 a_W + c_w^2 a_B\right) & g_{HZ\gamma}^{(2)} = \frac{s_w c_w}{v} (a_B - a_W) \\ g_{HZZ}^{(2)} &= -\frac{g}{2v} \left(s_w^2 a_H + c_w^2 a_B\right) & g_{HZ\gamma}^{(2)} = \frac{1}{v} a_W \\ g_{HZZ}^{(2)} &= -\frac{1}{2v} \left(s_w^2 a_B + c_w^2 a_W\right) & g_{HWW}^{(2)} = \frac{1}{v} a_W \\ g_{HZZ}^{(3)} &= -\frac{M_f}{2v} \left(\sqrt{2}G_F\right)^{1/2} (1 + \Delta a_C) & g_{HWW}^{(3)} = M_W^2 \left(\sqrt{2}G_F\right)^{1/2} (1 + \Delta a_C) \end{aligned}$$

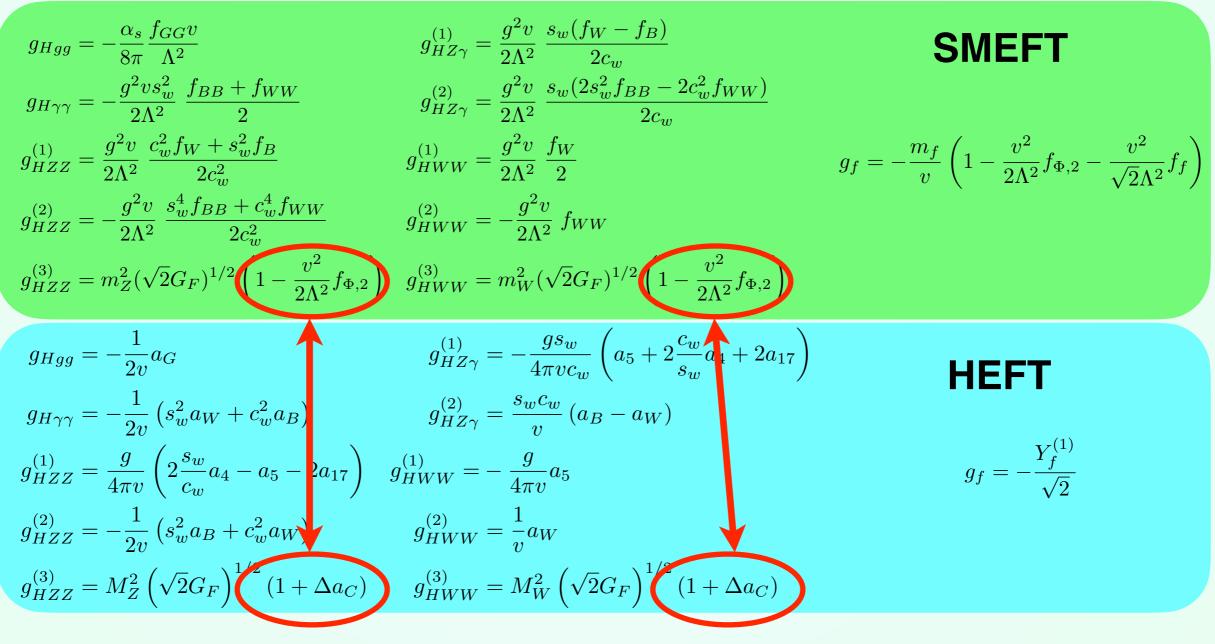
$$\mathcal{L}_{HVV} = g_{Hgg} G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} A_{\mu\nu} Z^{\mu\nu} h + g^{(1)}_{HZZ} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} Z_{\mu} Z^{\mu} h + g^{(1)}_{HWW} (W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.}) + g^{(2)}_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} W^{+}_{\mu} W^{-\mu} h ,$$

$$g_{H\gamma\gamma} = -\frac{1}{2v} \left(s_w^2 a_W + c_w^2 a_B \right) \qquad g_{HZ\gamma}^{(2)} = \frac{s_w c_w}{v} \left(a_B - a_W \right) g_{HZZ}^{(1)} = \frac{g}{4\pi v} \left(2\frac{s_w}{c_w} a_4 - a_5 - 2a_{17} \right) \qquad g_{HWW}^{(1)} = -\frac{g}{4\pi v} a_5 \qquad g_f = -\frac{Y_f^{(1)}}{\sqrt{2}} g_{HZZ}^{(2)} = -\frac{1}{2v} \left(s_w^2 a_B + c_w^2 a_W \right) \qquad g_{HWW}^{(2)} = \frac{1}{v} a_W g_{HZZ}^{(3)} = M_Z^2 \left(\sqrt{2}G_F \right)^{1/2} \left(1 + \Delta a_C \right) \qquad g_{HWW}^{(3)} = M_W^2 \left(\sqrt{2}G_F \right)^{1/2} \left(1 + \Delta a_C \right)$$

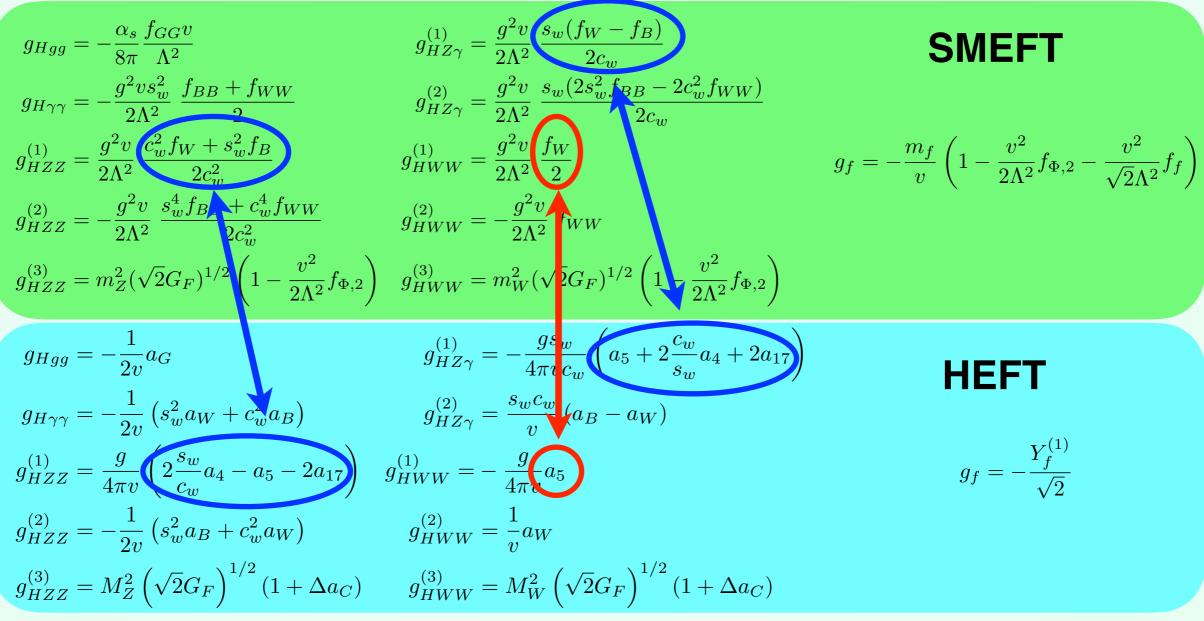
$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \ G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \ A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \ Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \ Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \ Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \ \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \ W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \ W^{+}_{\mu} W^{-\mu} h , \end{aligned}$$



$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \ G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \ A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \ Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \ Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \ Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \ \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \ W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \ W^{+}_{\mu} W^{-\mu} h , \end{aligned}$$

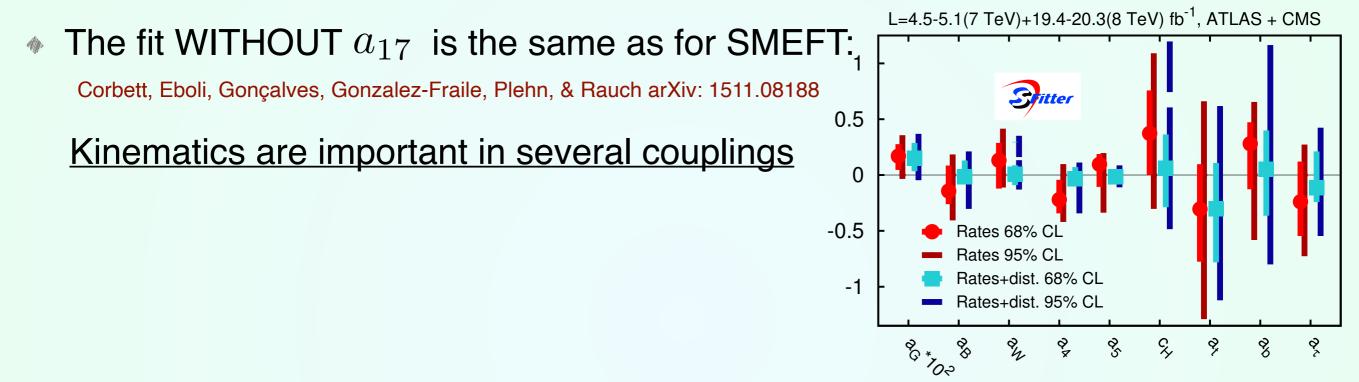


$$\begin{aligned} \mathcal{L}_{HVV} &= g_{Hgg} \ G^{a}_{\mu\nu} G^{a\mu\nu} h + g_{H\gamma\gamma} \ A_{\mu\nu} A^{\mu\nu} h + g^{(1)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZ\gamma} \ A_{\mu\nu} Z^{\mu\nu} h \\ &+ g^{(1)}_{HZZ} \ Z_{\mu\nu} Z^{\mu} \partial^{\nu} h + g^{(2)}_{HZZ} \ Z_{\mu\nu} Z^{\mu\nu} h + g^{(3)}_{HZZ} \ Z_{\mu} Z^{\mu} h \\ &+ g^{(1)}_{HWW} \ \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} h + \text{h.c.} \right) + g^{(2)}_{HWW} \ W^{+}_{\mu\nu} W^{-\mu\nu} h + g^{(3)}_{HWW} \ W^{+}_{\mu} W^{-\mu} h , \end{aligned}$$

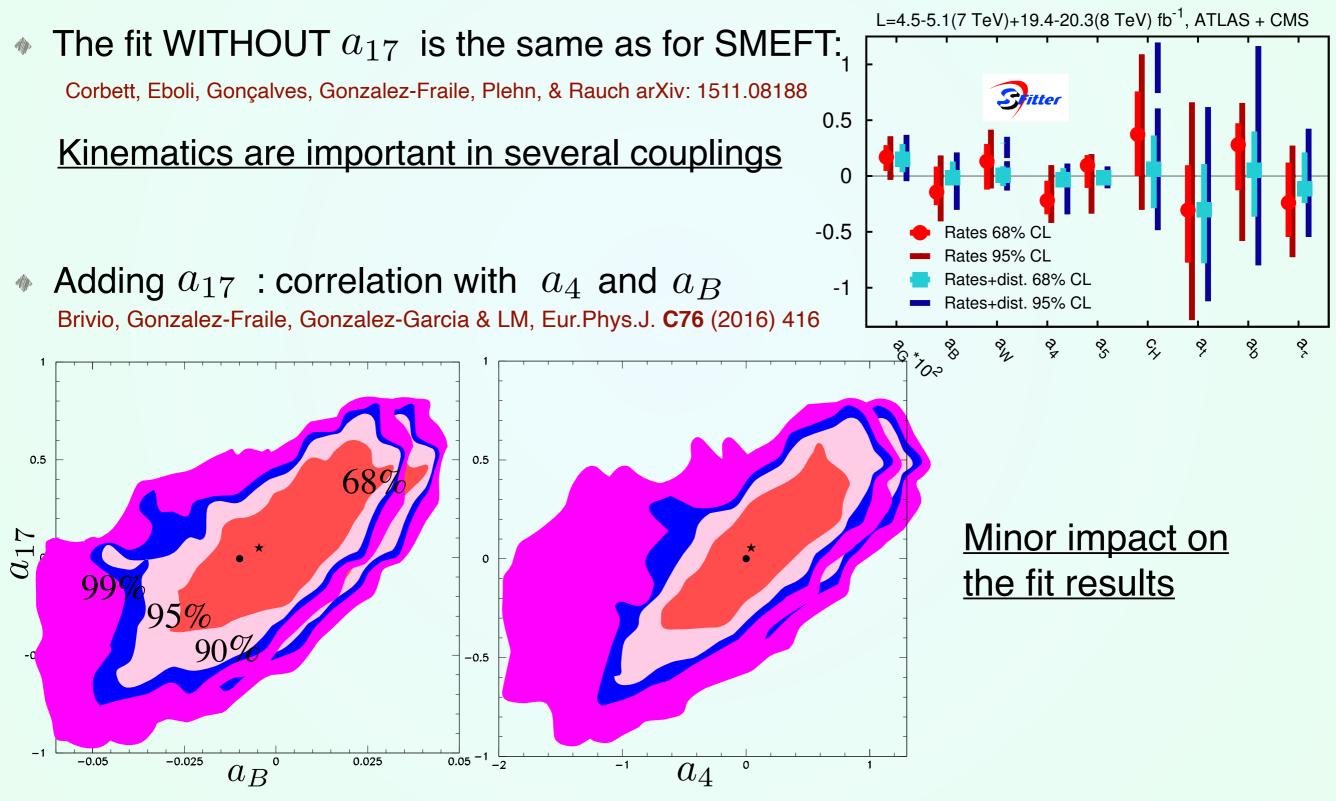


The HVV analysis for HEFT has 10 parameters vs 9 in SMEFT:

The HVV analysis for HEFT has 10 parameters vs 9 in SMEFT:



The HVV analysis for HEFT has 10 parameters vs 9 in SMEFT:



The h functions

The functions $\mathcal{F}_i(h) \equiv g(h, f)$ are generic functions of h/f (and can be derived only once a fundamental model is chosen). It is common to write,

$$\mathcal{F}_i(h) = 1 + 2\alpha_i \frac{h}{v} + \beta_i \frac{h^2}{v^2} + \dots$$

with α_i , β_i generic functions that could contain powers of $\xi \equiv v^2/f^2$.

The h functions

The functions $\mathcal{F}_i(h) \equiv g(h, f)$ are generic functions of h/f (and can be derived only once a fundamental model is chosen). It is common to write,

$$\mathcal{F}_i(h) = 1 + 2\alpha_i \frac{h}{v} + \beta_i \frac{h^2}{v^2} + \dots$$

with α_i , β_i generic functions that could contain powers of $\xi \equiv v^2/f^2$. If we consider the SM as a reference, the combinations $c_i \mathcal{F}_i(h)$ become:

$$\frac{f_{BW}}{f^2} \mathcal{O}_{BW} = \frac{f_{BW}}{f^2} \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \Phi(x) = \frac{v+h}{\sqrt{2}} \mathbf{U} \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$= f_{BW} \frac{gg'}{8} B_{\mu\nu} \operatorname{Tr}(\mathbf{T} W^{\mu\nu}) \left(\frac{v+h}{f}\right)^2$$

$$= f_{BW} \xi \frac{gg'}{8} B_{\mu\nu} \operatorname{Tr}(\mathbf{T} W^{\mu\nu}) \left(1 + \frac{h}{v}\right)^2$$

$$= c_1 gg' B_{\mu\nu} \operatorname{Tr}(\mathbf{T} W^{\mu\nu}) \mathcal{F}_1(h) = c_1 \mathcal{P}_1(h)$$

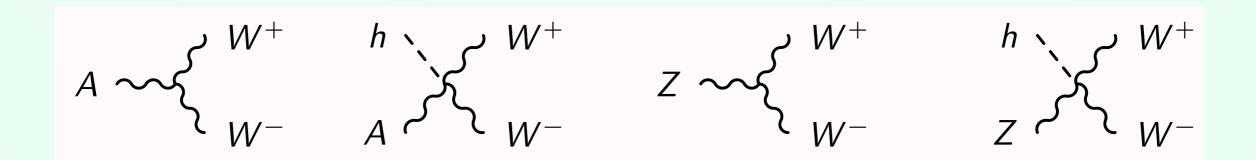
with
$$c_1 = \frac{f_{BW}}{8} \xi$$
 $\alpha_1 = 1$ $\beta_1 = 1$

More important effects when comparing TGV and HVV: for example

 $\mathcal{O}_B = (D_\mu \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_\nu \Phi)$

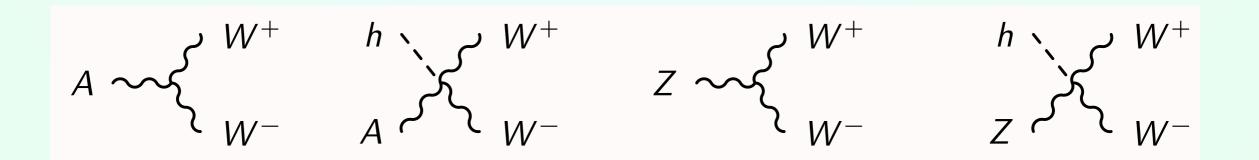
More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h)$$



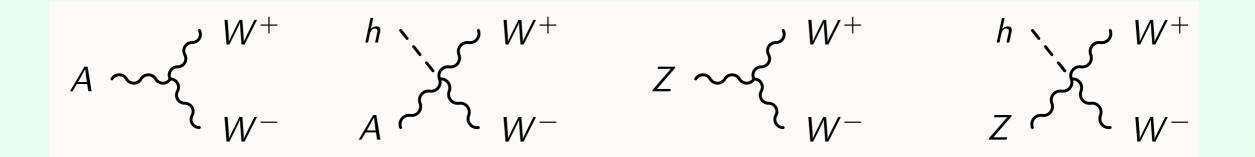
More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2}$$
$$- \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h)$$
$$\mathcal{O}_{B} = \frac{v^{2}}{16} \mathcal{P}_{2}(h) + \frac{v^{2}}{8} \mathcal{P}_{4}(h) \quad \text{with} \quad \mathcal{F}_{i}(h) = \left(1 + \frac{h}{v}\right)^{2}$$
$$\mathcal{P}_{2}(h) = i B_{\mu\nu} \operatorname{Tr}\left(\mathbf{T}\left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}\right]\right) \mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = i B_{\mu\nu} \operatorname{Tr}\left(\mathbf{T}\left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}\right]\right) \mathcal{F}_{2}(h)$$



More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2}$$
$$- \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h)$$
$$\mathcal{O}_{B} = \frac{v^{2}}{16} \mathcal{P}_{2}(h) + \frac{v^{2}}{8} \mathcal{P}_{4}(h) \quad \text{with} \quad \mathcal{F}_{i}(h) = \left(1 + \frac{h}{v}\right)^{2}$$
$$\mathcal{P}_{2}(h) = 2ieg^{2} A_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h) - 2\frac{ie^{2}g}{\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = -\frac{eg}{\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h) + \frac{e^{2}}{\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h)$$



Decorrelations

More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) \mathcal{O}_{B} = \frac{v^{2}}{16} \mathcal{P}_{2}(h) + \frac{v^{2}}{8} \mathcal{P}_{4}(h) \quad \text{with} \quad \mathcal{F}_{i}(h) = \left(1 + \frac{h}{v}\right)^{2} \mathcal{P}_{2}(h) = 2ieg^{2} A_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h) - 2\frac{ie^{2}g}{\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h) \mathcal{P}_{4}(h) = -\frac{eg}{\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h) + \frac{e^{2}}{\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h)$$

due to the decorrelation in the $\mathcal{F}_i(h)$ functions: i.e.

[coo alco laidari&Tratt 1207 1051]

Decorrelations

More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2}$$
$$- \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h)$$
$$\mathcal{O}_{B} = \frac{v^{2}}{16} \mathcal{P}_{2}(h) + \frac{v^{2}}{8} \mathcal{P}_{4}(h) \quad \text{with} \quad \mathcal{F}_{i}(h) = \left(1 + \frac{h}{v}\right)^{2}$$
$$\mathcal{P}_{2}(h) = 2ieg^{2} A_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h) - 2\frac{ie^{2}g}{\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = -\frac{eg}{\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h) + \frac{e^{2}}{\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h)$$

due to the nature of the chiral operators (different *c_i* coefficients): i.e.

$$\begin{array}{c} h \searrow W^{+} \\ A \swarrow W^{-} \end{array} \quad \text{vs.} \quad A \sim \swarrow \\ h \end{array}$$

HEFT (bosonic) basis

 $\mathcal{P}_B(h) = -\frac{1}{\Lambda} B_{\mu\nu} B^{\mu\nu} \mathcal{F}_B$ $\mathcal{P}_G(h) = -\frac{1}{\Lambda} G^a_{\mu\nu} G^{a\mu\nu} \mathcal{F}_G$ $\mathcal{P}_1(h) = B_{\mu\nu} \operatorname{Tr}(\mathbf{T} W^{\mu\nu}) \mathcal{F}_1$ $\mathcal{P}_3(h) = \frac{i}{4\pi} \operatorname{Tr}(W_{\mu\nu}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_3$ $\mathcal{P}_5(h) = \frac{i}{4\pi} \operatorname{Tr}(W_{\mu\nu} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_5$ $\mathcal{P}_8(h) = \frac{1}{(4\pi)^2} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}_{\nu}) \partial^{\mu} \mathcal{F}_8 \partial^{\nu} \mathcal{F}_8'$ $\mathcal{P}_{12}(h) = (\mathrm{Tr}(\mathbf{T}W_{\mu\nu}))^2 \mathcal{F}_{12}$ $\mathcal{P}_{14}(h) = \frac{\varepsilon^{\mu\nu\rho\lambda}}{4\pi} \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{V}_{\nu}W_{\rho\lambda}) \mathcal{F}_{14}$ $\mathcal{P}_{18}(h) = \frac{1}{(4\pi)^2} \operatorname{Tr}(\mathbf{T}[\mathbf{V}_{\mu}, \mathbf{V}_{\nu}]) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{18}$ $\mathcal{P}_{21}(h) = \frac{1}{(4\pi)^2} (\mathrm{Tr}(\mathbf{T}\mathbf{V}_{\mu}))^2 \partial_{\nu} \mathcal{F}_{21} \partial^{\nu} \mathcal{F}'_{21}$ $\mathcal{P}_{23}(h) = \frac{1}{(4\pi)^2} \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu}) (\operatorname{Tr}(\mathbf{T}\mathbf{V}_{\nu}))^2 \mathcal{F}_{23}$ $\mathcal{P}_{26}(h) = \frac{1}{(4\pi)^2} (\operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\nu}))^2 \mathcal{F}_{26}$

$$\mathcal{P}_{W}(h) = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} \mathcal{F}_{W}$$

$$\mathcal{P}_{DH}(h) = (\partial_{\mu} \mathcal{F}_{DH}(h) \partial^{\mu} \mathcal{F}'_{DH}(h))^{2}$$

$$\mathcal{P}_{2}(h) = \frac{i}{4\pi} B_{\mu\nu} \operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{2}$$

$$\mathcal{P}_{4}(h) = \frac{i}{4\pi} B_{\mu\nu} \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{4}$$

$$\mathcal{P}_{6}(h) = \frac{1}{(4\pi)^{2}} (\operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu}))^{2} \mathcal{F}_{6}$$

$$\mathcal{P}_{11}(h) = \frac{1}{(4\pi)^{2}} (\operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu}))^{2} \mathcal{F}_{11}$$

$$\mathcal{P}_{13}(h) = \frac{i}{4\pi} \operatorname{Tr}(\mathbf{T}W_{\mu\nu}) \operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{13}$$

$$\mathcal{P}_{17}(h) = \frac{i}{4\pi} \operatorname{Tr}(\mathbf{T}W_{\mu\nu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{17}$$

$$\mathcal{P}_{20}(h) = \frac{1}{(4\pi)^{2}} \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu}) \partial_{\nu} \mathcal{F}_{20} \partial^{\nu} \mathcal{F}'_{20}$$

$$\mathcal{P}_{22}(h) = \frac{1}{(4\pi)^{2}} \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\nu}) \partial^{\mu} \mathcal{F}_{22} \partial^{\nu} \mathcal{F}'_{22}$$

$$\mathcal{P}_{24}(h) = \frac{1}{(4\pi)^{2}} \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\nu}) \mathcal{F}_{24}$$

Connection with the Linear Basis

We can repeat the previous exercise and see the connection among the bases:

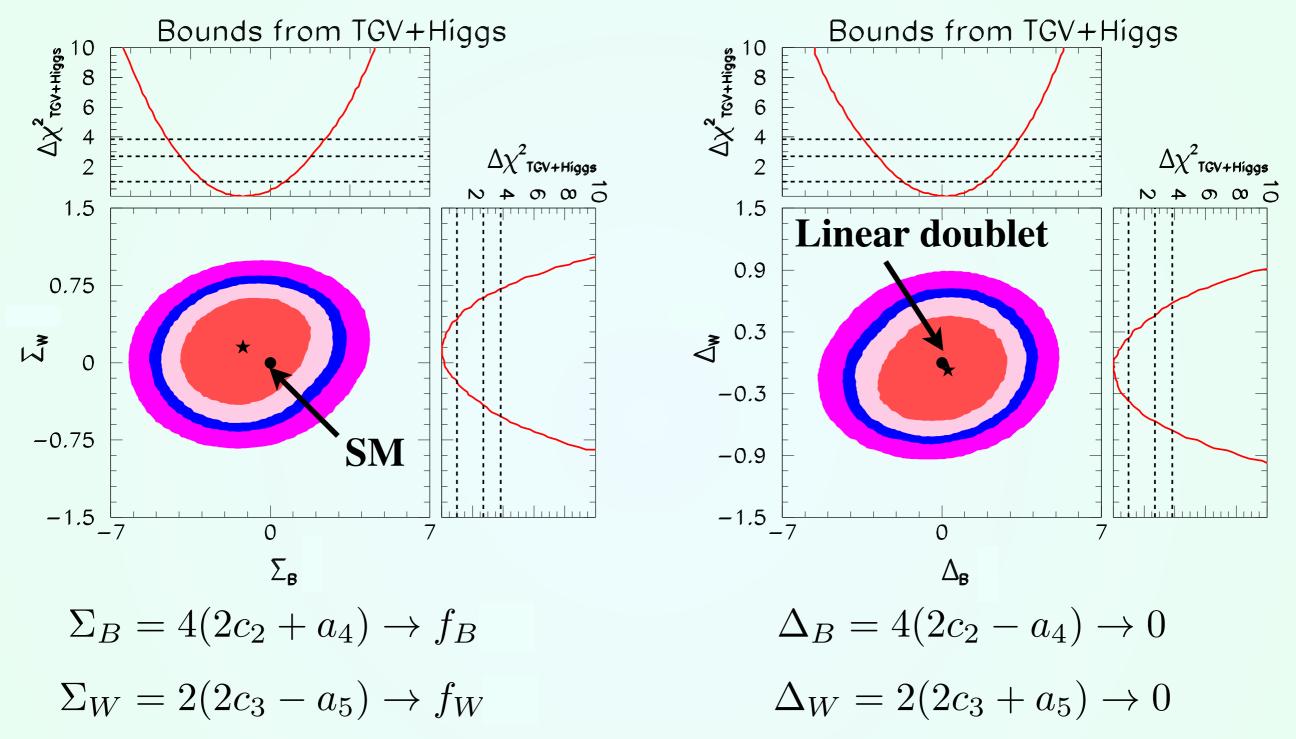
$$\begin{aligned} \mathcal{O}_{BB}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{B}(h) & \mathcal{O}_{WW}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{W}(h) \\ \mathcal{O}_{GG}/f^{2} &= -\frac{2\xi}{g_{s}^{2}}\mathcal{P}_{G}(h) & \mathcal{O}_{BW}/f^{2} &= \frac{\xi}{8}\mathcal{P}_{1}(h) \\ \mathcal{O}_{B}/f^{2} &= \frac{\xi}{16}\mathcal{P}_{2}(h) + \frac{\xi}{8}\mathcal{P}_{4}(h) & \mathcal{O}_{W}/f^{2} &= \frac{\xi}{8}\mathcal{P}_{3}(h) - \frac{\xi}{4}\mathcal{P}_{5}(h) \\ \mathcal{O}_{\Phi,1}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{H}(h) - \frac{\xi}{4}\mathcal{F}(h)\mathcal{P}_{T}(h) & \mathcal{O}_{\Phi,2}/f^{2} &= \xi\mathcal{P}_{H}(h) \\ \mathcal{O}_{\Phi,4}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{H}(h) + \frac{\xi}{2}\mathcal{F}(h)\mathcal{P}_{C}(h) \\ \mathcal{O}_{\Box\Phi}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{\Box H}(h) + \frac{\xi}{8}\mathcal{P}_{6}(h) + \frac{\xi}{4}\mathcal{P}_{7}(h) - \xi\mathcal{P}_{8}(h) - \frac{\xi}{4}\mathcal{P}_{9}(h) - \frac{\xi}{2}\mathcal{P}_{10}(h) \end{aligned}$$

with in general $\mathcal{F}(h) = 1 + 2\frac{h}{v} + \frac{h^2}{v^2}$

We added two pure-*h* operators:

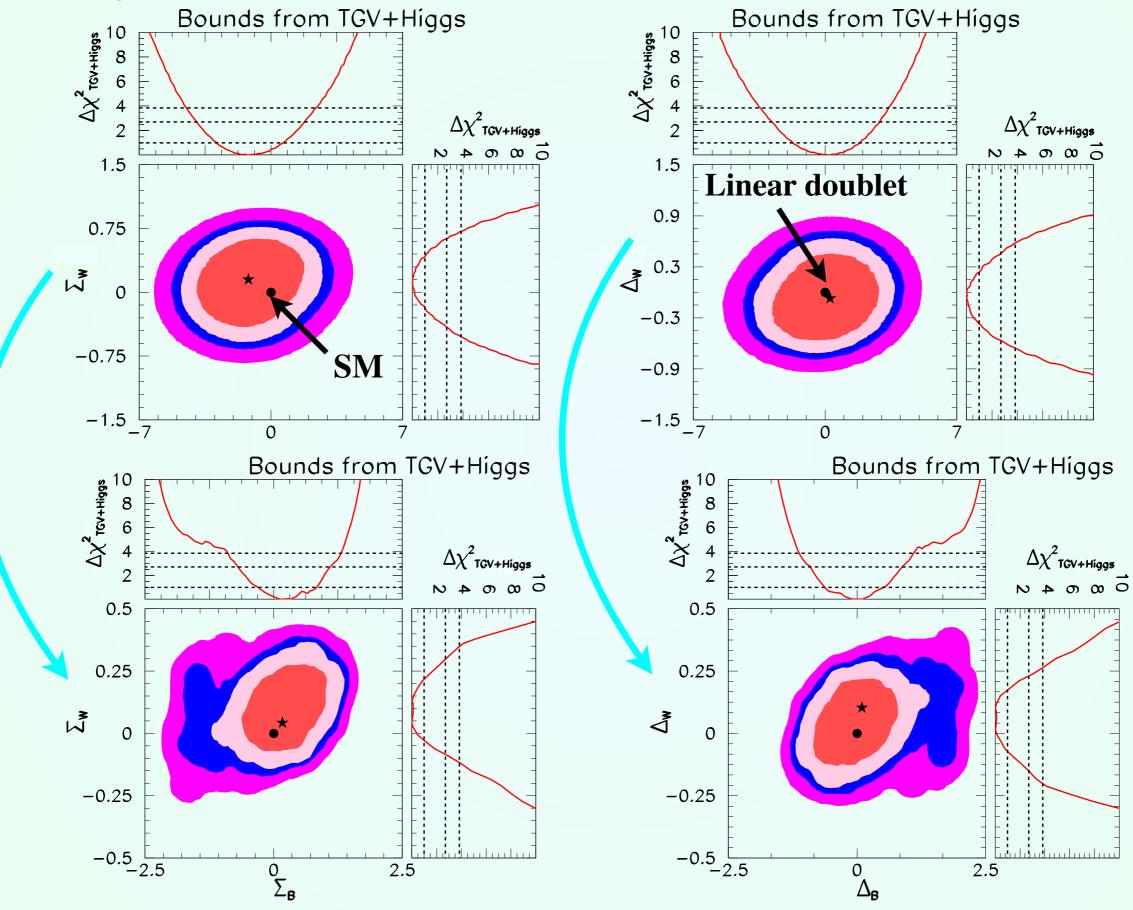
$$\mathcal{P}_{H}(h) = \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} h) \mathcal{F}_{H}(h) \qquad \qquad \mathcal{P}_{\Box H} = \frac{1}{v^{2}} (\partial_{\mu} \partial^{\mu} h)^{2} \mathcal{F}_{\Box H}(h)$$

Considering all the couplings together:



Data: Tevatron D0 and CDF Collaborations and LHC, CMS, and ATLAS Collaborations at 7 TeV and 8 TeV for final states $\gamma\gamma$, W+W-, ZZ, Z γ , b⁻b, and $\tau\tau^-$

Brivio, Gonzalez-Fraile, Gonzalez-Garcia & LM, Eur.Phys.J. C76 (2016) 416
 Adding the data from kinematic distributions:

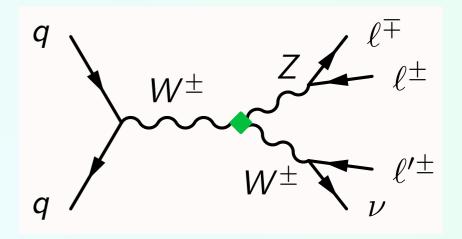


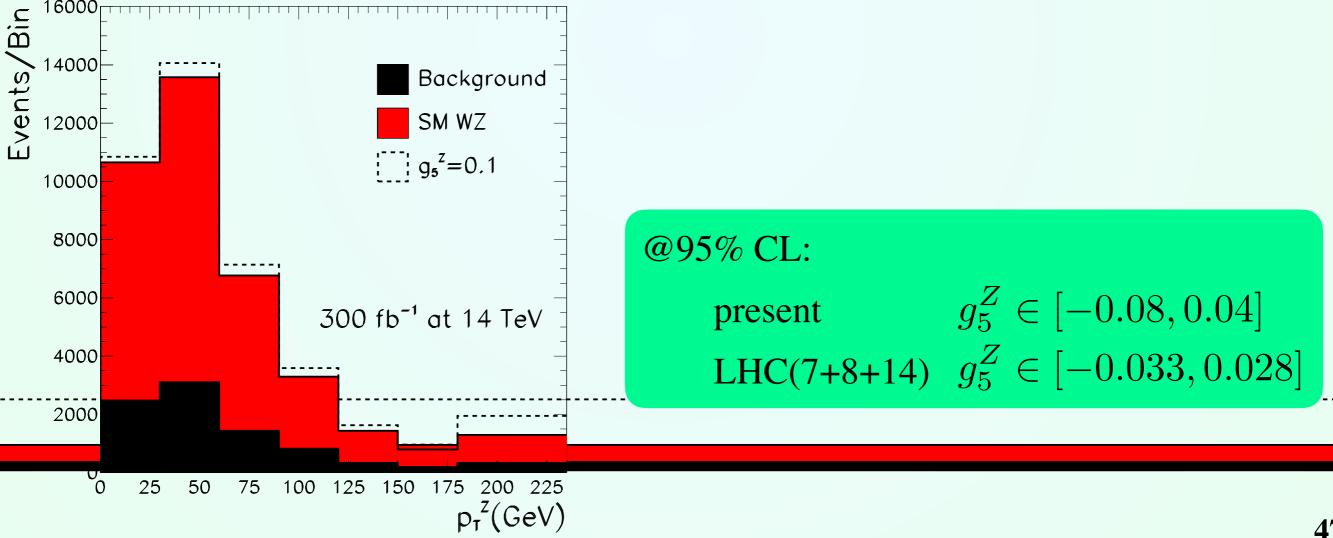
New Signals

Brivio, Corbett, Eboli, Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM& Rigolin, JHEP 1403 (2014)

Signals expected in the chiral basis, but not in the linear one (d=8)

number of expected events (WZ production) with respect to the Z p_T



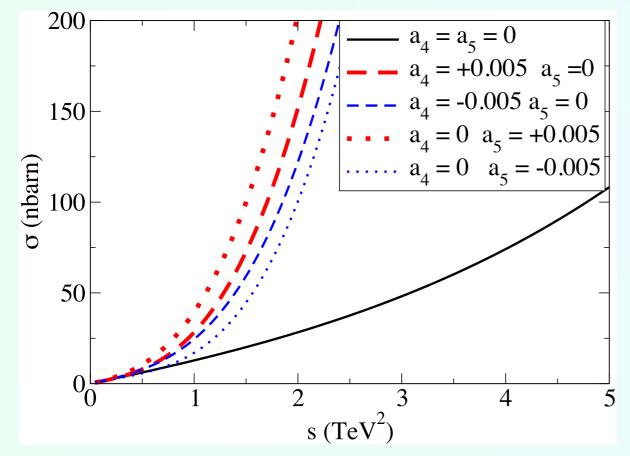


Longitudinal Gauge Bosons

As U is so special in HEFT, why don't study the physics associated to the SM GBs

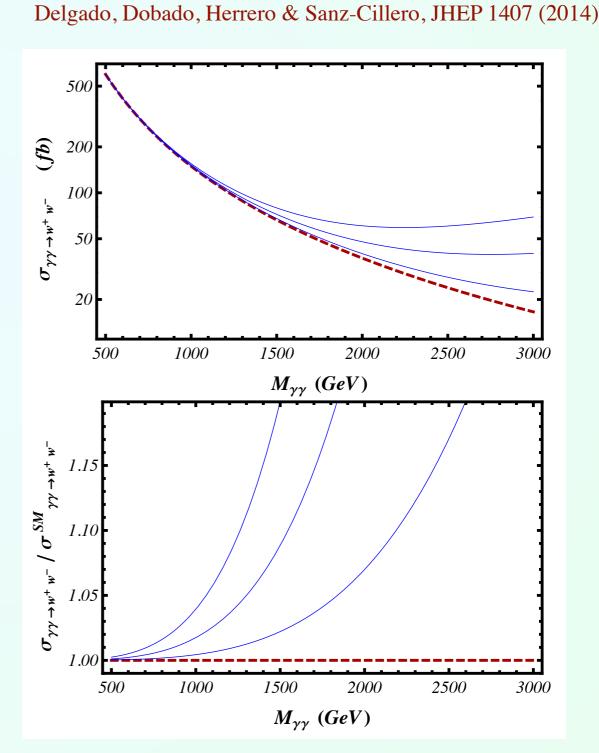
Scattering of $W_L W_L$ and $Z_L Z_L$

Delgado, Dobado & Llanes-Estrada, JHEP 1402 (2014)



Similar studies in:

Espriu & Yencho, PRD87 (2013) Espriu, Mescia & Yencho, PRD88 (2013) Cross section for $\gamma \gamma \rightarrow W_L^+ W_L^-$



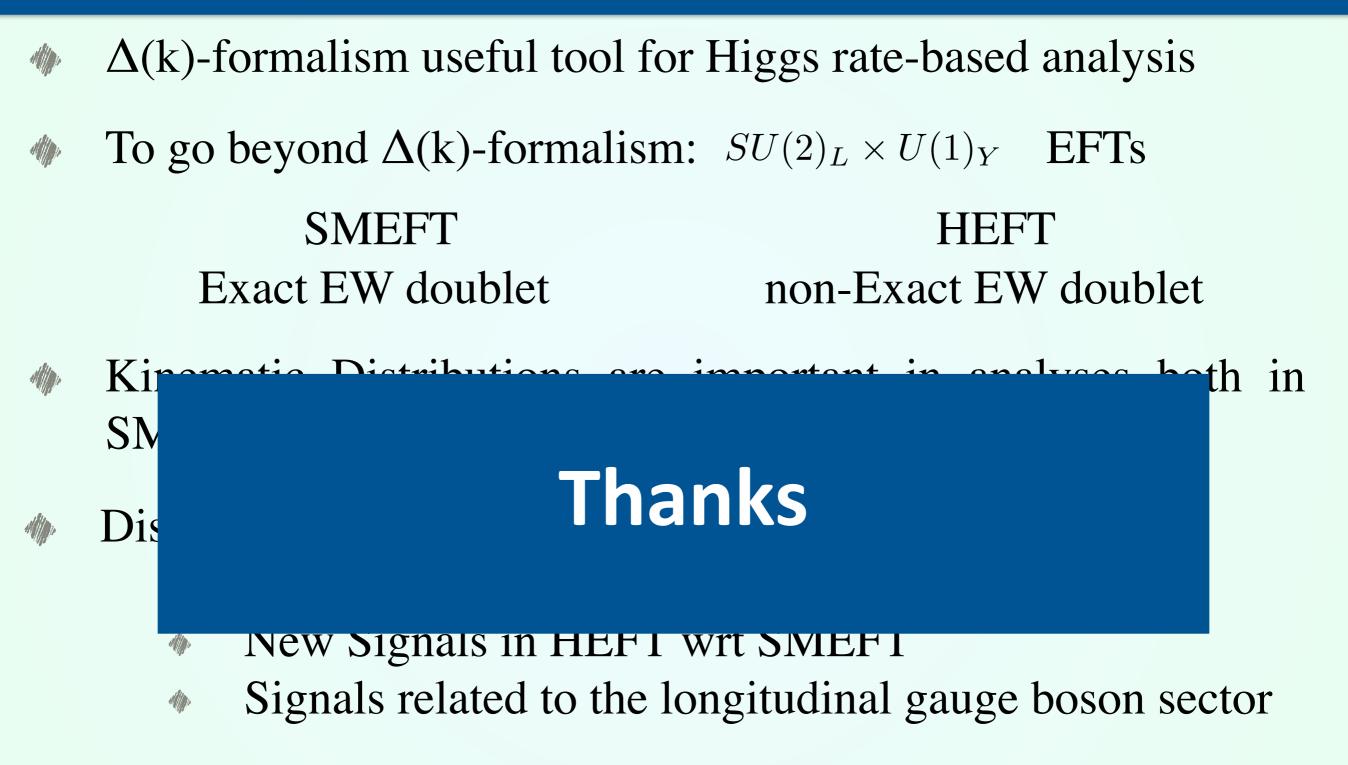
 $\langle \!\!\!/ \!\!\!/ \rangle = \Delta(k)$ -formalism useful tool for Higgs rate-based analysis

- $\Delta(k)$ -formalism useful tool for Higgs rate-based analysis
- To go beyond $\Delta(k)$ -formalism: $SU(2)_L \times U(1)_Y$ EFTs SMEFT HEFT Exact EW doublet non-Exact EW doublet

- $\Delta(k)$ -formalism useful tool for Higgs rate-based analysis
- To go beyond $\Delta(k)$ -formalism: $SU(2)_L \times U(1)_Y$ EFTs SMEFT HEFT Exact EW doublet non-Exact EW doublet
- Kinematic Distributions are important in analyses both in SMEFT and in HEFT

- $\Delta(k)$ -formalism useful tool for Higgs rate-based analysis
- To go beyond $\Delta(k)$ -formalism: $SU(2)_L \times U(1)_Y$ EFTs SMEFT HEFT Exact EW doublet non-Exact EW doublet
- Kinematic Distributions are important in analyses both in SMEFT and in HEFT
- Distinguishing between SMEFT and HEFT is crucial:
 - Decorrelation signals in HEFT wrt SMEFT
 - New Signals in HEFT wrt SMEFT
 - Signals related to the longitudinal gauge boson sector

- $\Delta(k)$ -formalism useful tool for Higgs rate-based analysis
- To go beyond $\Delta(k)$ -formalism: $SU(2)_L \times U(1)_Y$ EFTs SMEFT HEFT Exact EW doublet non-Exact EW doublet
- Kinematic Distributions are important in analyses both in SMEFT and in HEFT
- Distinguishing between SMEFT and HEFT is crucial:
 - Decorrelation signals in HEFT wrt SMEFT
 - New Signals in HEFT wrt SMEFT
 - Signals related to the longitudinal gauge boson sector
- Next data analysis could shed light on the Higgs nature, if NP is in the few-TeV region



Next data analysis could shed light on the Higgs nature, if NP is in the few-TeV region

Validity of SMEFT

From Falkowski's talk at ATLAS meeting

Example BSM Model: SU(2)LxU(1) vector resonances

Fine-tuned SU(2)_L × U(1)_Y model: $u \overline{d} \rightarrow Z_L W_L^+$ AA,Gonzalez-Alonso, Greljo,Marzocca,Son in progress ωs_0/2 \sqrt{s} [GeV]

HEFT basis

Gavela, Jenkins, Manohar & LM, arXiv: 1601.0755 Assuming B and L conservation, and no BSM custodial breaking

Assuming D and L conscivation, and no DSW customar oreaking									
Operator	d_p	N_{χ}	NDA form						
$\psi^2 \mathbf{U}$	3	1	$\Lambda \psi^2 \mathbf{U} \mathcal{F}_{\psi^2 \mathbf{U}}(h)$	$\checkmark \Lambda \bar{\psi}_L \mathbf{U} \psi_R \mathcal{F}_{\psi^2 \mathbf{U}}(h)$					
X^2	4	2	$X^2 \mathcal{F}_{X^2}(h)$						
$\psi^2 D$	4	2	$\psi^2 D$	\checkmark $i\bar{\psi}D\psi$					
$(\partial h)^2$	4	2	$(\partial h)^2$	A 2					
\mathbf{V}^2	4	2	$rac{\Lambda^2}{(4\pi)^2} \mathbf{V}^2 \mathcal{F}_{\mathbf{V}^2}(h)$	$\longleftarrow \frac{\Lambda^2}{(4\pi)^2} \operatorname{Tr} \left(\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right) \mathcal{F}_{\mathbf{V}^2}(h)$					
$\psi^2 {f V}$	5	2	$\psi^2 \mathbf{V} \mathcal{F}_{\psi^2 \mathbf{V}}(h)$	$(4\pi)^2$					
$\psi^2 X \mathbf{U}$	5	2	$\frac{4\pi}{\Lambda} \psi^2 X \mathbf{U} \mathcal{F}_{\psi^2 X \mathbf{U}}(h)$						
ψ^4	6	2	$rac{(4\pi)^2}{\Lambda^2}\psi^4\mathcal{F}_{\psi^4}(h)$						
$X\mathbf{V}^2$	6	3	$\frac{1}{4\pi} X \mathbf{V}^2 \mathcal{F}_{X \mathbf{V}^2}(h)$	$\checkmark \frac{1}{4\pi} \operatorname{Tr} \left(W_{\mu\nu} \left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu} \right] \right) \mathcal{F}_{X\mathbf{V}^{2}}(h)$					
X^3	6	3	$rac{(4\pi)}{\Lambda^2} X^3 \mathcal{F}_{X^3}(h)$	471					
$X\mathbf{V}\partial$	6	3	$\frac{1}{4\pi} X \mathbf{V} \partial \mathcal{F}_{X \mathbf{V} \partial}(h)$						
$\psi^2 \mathbf{V} \mathbf{U} \partial$	7	3	$\frac{1}{\Lambda}\psi^2 \mathbf{V} \mathbf{U} \partial \mathcal{F}_{\psi^2 \mathbf{V} \mathbf{U} \partial}(h)$						
$\psi^2 \mathbf{V}^2 \mathbf{U}$	7	3	$\frac{1}{\Lambda}\psi^2 \mathbf{V}^2 \mathbf{U} \mathcal{F}_{\psi^2 \mathbf{V}^2 \mathbf{U}}(h)$						
$\psi^2 \mathbf{U} \partial^2$	7	3	$\frac{1}{\Lambda} \psi^2 \mathbf{U} \partial^2 \mathcal{F}_{\psi^2 \mathbf{U} \partial^2}(h)$						
$\mathbf{V}^2\partial^2$	8	4	$\frac{1}{(4\pi)^2} \mathbf{V}^2 \partial^2 \mathcal{F}_{\mathbf{V}^2 \partial^2}(h)$	$\sim \frac{1}{1} \operatorname{Tr} \left(\mathbf{V}^{\mu} \mathbf{V}^{\mu} \right)^2 \mathcal{F}_{\mathbf{v}^{\mu}}(h)$					
\mathbf{V}^4	8	4	$\frac{1}{(4\pi)^2} \mathbf{V}^4 \mathcal{F}_{\mathbf{V}^4}(h)$	$\frac{1}{(4\pi)^2} \operatorname{Tr} \left(\mathbf{V}^{\mu} \mathbf{V}^{\mu} \right)^2 \mathcal{F}_{\mathbf{V}^4}(h)$					

HEFT (bosonic) basis

 $\mathcal{P}_B(h) = -\frac{1}{\Lambda} B_{\mu\nu} B^{\mu\nu} \mathcal{F}_B$ $\mathcal{P}_G(h) = -\frac{1}{\Lambda} G^a_{\mu\nu} G^{a\mu\nu} \mathcal{F}_G$ $\mathcal{P}_1(h) = B_{\mu\nu} \operatorname{Tr}(\mathbf{T} W^{\mu\nu}) \mathcal{F}_1$ $\mathcal{P}_3(h) = \frac{i}{4\pi} \operatorname{Tr}(W_{\mu\nu}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_3$ $\mathcal{P}_5(h) = \frac{i}{4\pi} \operatorname{Tr}(W_{\mu\nu} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_5$ $\mathcal{P}_8(h) = \frac{1}{(4\pi)^2} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}_{\nu}) \partial^{\mu} \mathcal{F}_8 \partial^{\nu} \mathcal{F}_8'$ $\mathcal{P}_{12}(h) = (\mathrm{Tr}(\mathbf{T}W_{\mu\nu}))^2 \mathcal{F}_{12}$ $\mathcal{P}_{14}(h) = \frac{\varepsilon^{\mu\nu\rho\lambda}}{4\pi} \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{V}_{\nu}W_{\rho\lambda}) \mathcal{F}_{14}$ $\mathcal{P}_{18}(h) = \frac{1}{(4\pi)^2} \operatorname{Tr}(\mathbf{T}[\mathbf{V}_{\mu}, \mathbf{V}_{\nu}]) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{18}$ $\mathcal{P}_{21}(h) = \frac{1}{(4\pi)^2} (\mathrm{Tr}(\mathbf{T}\mathbf{V}_{\mu}))^2 \partial_{\nu} \mathcal{F}_{21} \partial^{\nu} \mathcal{F}'_{21}$ $\mathcal{P}_{23}(h) = \frac{1}{(4\pi)^2} \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu}) (\operatorname{Tr}(\mathbf{T}\mathbf{V}_{\nu}))^2 \mathcal{F}_{23}$ $\mathcal{P}_{26}(h) = \frac{1}{(4\pi)^2} (\operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\nu}))^2 \mathcal{F}_{26}$

$$\mathcal{P}_{W}(h) = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} \mathcal{F}_{W}$$

$$\mathcal{P}_{DH}(h) = (\partial_{\mu} \mathcal{F}_{DH}(h) \partial^{\mu} \mathcal{F}'_{DH}(h))^{2}$$

$$\mathcal{P}_{2}(h) = \frac{i}{4\pi} B_{\mu\nu} \operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{2}$$

$$\mathcal{P}_{4}(h) = \frac{i}{4\pi} B_{\mu\nu} \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{4}$$

$$\mathcal{P}_{6}(h) = \frac{1}{(4\pi)^{2}} (\operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu}))^{2} \mathcal{F}_{6}$$

$$\mathcal{P}_{11}(h) = \frac{1}{(4\pi)^{2}} (\operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu}))^{2} \mathcal{F}_{11}$$

$$\mathcal{P}_{13}(h) = \frac{i}{4\pi} \operatorname{Tr}(\mathbf{T}W_{\mu\nu}) \operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{13}$$

$$\mathcal{P}_{17}(h) = \frac{i}{4\pi} \operatorname{Tr}(\mathbf{T}W_{\mu\nu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{17}$$

$$\mathcal{P}_{20}(h) = \frac{1}{(4\pi)^{2}} \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}^{\mu}) \partial_{\nu} \mathcal{F}_{20} \partial^{\nu} \mathcal{F}'_{20}$$

$$\mathcal{P}_{22}(h) = \frac{1}{(4\pi)^{2}} \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\nu}) \partial^{\mu} \mathcal{F}_{22} \partial^{\nu} \mathcal{F}'_{22}$$

$$\mathcal{P}_{24}(h) = \frac{1}{(4\pi)^{2}} \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\nu}) \mathcal{F}_{24}$$

Connection with the Linear Basis

We can repeat the previous exercise and see the connection among the bases:

$$\begin{aligned} \mathcal{O}_{BB}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{B}(h) & \mathcal{O}_{WW}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{W}(h) \\ \mathcal{O}_{GG}/f^{2} &= -\frac{2\xi}{g_{s}^{2}}\mathcal{P}_{G}(h) & \mathcal{O}_{BW}/f^{2} &= \frac{\xi}{8}\mathcal{P}_{1}(h) \\ \mathcal{O}_{B}/f^{2} &= \frac{\xi}{16}\mathcal{P}_{2}(h) + \frac{\xi}{8}\mathcal{P}_{4}(h) & \mathcal{O}_{W}/f^{2} &= \frac{\xi}{8}\mathcal{P}_{3}(h) - \frac{\xi}{4}\mathcal{P}_{5}(h) \\ \mathcal{O}_{\Phi,1}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{H}(h) - \frac{\xi}{4}\mathcal{F}(h)\mathcal{P}_{T}(h) & \mathcal{O}_{\Phi,2}/f^{2} &= \xi\mathcal{P}_{H}(h) \\ \mathcal{O}_{\Phi,4}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{H}(h) + \frac{\xi}{2}\mathcal{F}(h)\mathcal{P}_{C}(h) \\ \mathcal{O}_{\Box\Phi}/f^{2} &= \frac{\xi}{2}\mathcal{P}_{\Box H}(h) + \frac{\xi}{8}\mathcal{P}_{6}(h) + \frac{\xi}{4}\mathcal{P}_{7}(h) - \xi\mathcal{P}_{8}(h) - \frac{\xi}{4}\mathcal{P}_{9}(h) - \frac{\xi}{2}\mathcal{P}_{10}(h) \end{aligned}$$

with in general $\mathcal{F}(h) = 1 + 2\frac{h}{v} + \frac{h^2}{v^2}$

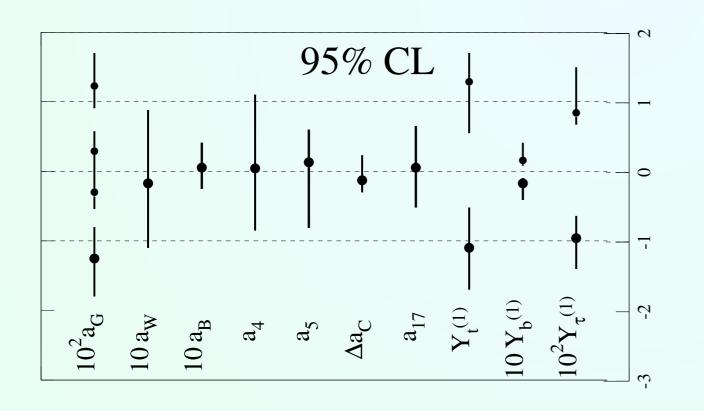
We added two pure-*h* operators:

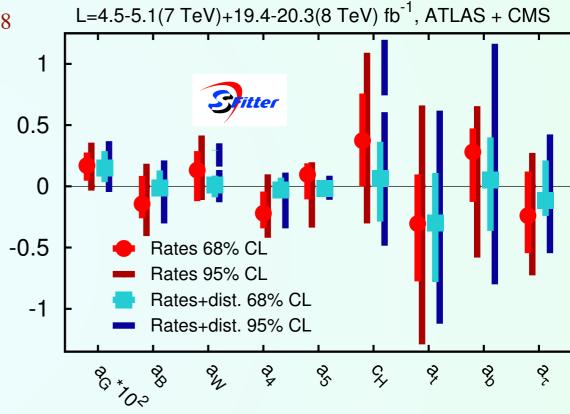
$$\mathcal{P}_{H}(h) = \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} h) \mathcal{F}_{H}(h) \qquad \qquad \mathcal{P}_{\Box H} = \frac{1}{v^{2}} (\partial_{\mu} \partial^{\mu} h)^{2} \mathcal{F}_{\Box H}(h)$$

HVV FIT

- The HVV analysis for HEFT has 10 parameters vs 9 in SMEFT:
- The fit WITHOUT a_{17} is the same as for SMEFT:

* Adding a_{17} : correlation with a_4 and a_B Brivio, Gonzalez-Fraile, Gonzalez-Garcia & LM, to appear





The differences are due to different definitions and normalisations

New Signals

Brivio, Corbett, Eboli, Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM& Rigolin, JHEP 1403 (2014)

The simulation for LHC (7 TeV, 14 TeV) has been done taking cuts and precautions:

- ♦ Focused on WZ production, considering leptonic decays of W and Z (background) $pp → \ell'^{\pm} \ell^{+} \ell^{-} E^{miss} \qquad \ell'' = e \text{ or } \mu$
- Main background: SM production of WZ pairs; W and Z production with jets; ZZ production with one Z in leptons with one charged in missing E, the other in tt pair.
- \wedge Detection efficiencies rescaled to the one by ATLAS for TG ΔK_Z , g_1^Z , λ_Z
- We closely follow the TGV analysis performed by ATLAS (cuts on transverse momentum and pseudorapidity).
- The cross section in the presence of an anomalous g_5^Z is then given by

$$\sigma = \sigma_{\text{bck}} + \sigma_{SM} + \sigma_{\text{int}} g_5^Z + \sigma_{\text{ano}} (g_5^Z)^2$$

In the SM, Vff contain a CP odd component. The amplitude for any subprocess $q\bar{q} \rightarrow WZ$ contains SM contributions that are both C and P odd and that interfere with the contribution from the anomalous.

	68% CL 1	range	95% CL range		
Data sets used	Counting $p_T^Z > 90 \text{ GeV}$	p_T^Z binned analysis	Counting $p_T^Z > 90 \text{ GeV}$	p_T^Z binned analysis	
$7+8 \text{ TeV} (4.64+19.6 \text{ fb}^{-1})$	(-0.066, 0.058)	(-0.057, 0.050)	$(-0.091, \ 0.083)$	$(-0.080, \ 0.072)$	
$7+8+14 \text{ TeV} (4.64+19.6+300 \text{ fb}^{-1})$	(-0.030, 0.022)	(-0.024, 0.019)	$(-0.040, \ 0.032)$	(-0.033, 0.028)	

\clubsuit Counting $p_T^Z > 90 \text{ GeV}$

Simple even counting analysis, assuming that the observed events are SM and looking for values of g_5^Z inside the 68% and 95% CL allowed regions. The restriction to $p_T^Z > 90$ GeV increases the sensitivity.

- p_T^Z binned analysis
 - Simple χ^2 based on the contents of the different p_T^Z distributions with no cuts. Same conditions of the previous method.

So far we have compared the phenomenology of the Higgs being a

So far we have compared the phenomenology of the Higgs being a

What if the Higgs is a non elementary - doublet?

Alonso, Brivio, Gavela, LM& Rigolin, JHEP 1412 (2014) Hierro, LM& Rigolin, 1510.07899

Generic Composite Higgs Models

<u>Generic Composite</u> <u>Higgs Models</u>

 $^{\hspace{0.1em} }$ h is embedded in a doublet of $SU(2)_L$ (reducible rep of \mathcal{G})

$$\mathscr{F}_i(h) = 1 + 2\alpha_i \frac{h}{v} + \beta_i \frac{h^2}{v^2} + \dots$$
 not generic but specific

If the number of operators at the high-energy is smaller than the generic basis at low-energy, there must be <u>correlations among</u> <u>operators</u>

<u>At the high-scale</u>: *h* still a GB together to all the others generated by \mathcal{G}/\mathcal{H} , the most generic effective Lagrangian (with same Custodial breaking on SM)

$$\mathcal{L}_{ ext{high}} = \mathcal{L}_{ ext{high}}^{p^2} + \mathcal{L}_{ ext{high}}^{p^4}$$

$$\mathcal{L}_{high}^{p^{2}} = \widetilde{\mathcal{A}}_{C}$$
$$\mathcal{L}_{high}^{p^{4}} = \widetilde{\mathcal{A}}_{B} + \widetilde{\mathcal{A}}_{W} + \widetilde{c}_{B\Sigma}\widetilde{\mathcal{A}}_{B\Sigma} + \widetilde{c}_{W\Sigma}\widetilde{\mathcal{A}}_{W\Sigma} + \sum_{i=1}^{8} \widetilde{c}_{i}\widetilde{\mathcal{A}}_{i}$$

<u>At the high-scale</u>: *h* still a GB together to all the others generated by \mathcal{G}/\mathcal{H} , the most generic effective Lagrangian (with same Custodial breaking on SM)

$$\widetilde{\mathcal{A}}_{2} = i g' \operatorname{Tr} \left(\widetilde{\mathbf{B}}_{\mu\nu} \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu} \right] \right)$$

Let's concentrate on
$$\widetilde{\mathcal{A}}_2 = i g' \operatorname{Tr} \left(\widetilde{\mathbf{B}}_{\mu\nu} \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu} \right] \right)$$

distinguishing the h from the others GBs: $\varphi \equiv h + \langle \varphi \rangle$

$$\begin{split} \widetilde{\mathcal{A}}_2 &\to \sin^2 \left[\frac{\varphi}{2f} \right] \mathcal{P}_2 + \sqrt{\xi} \sin \left[\frac{\varphi}{f} \right] \mathcal{P}_4 \\ \mathcal{P}_2 &= ig' B_{\mu\nu} \operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \\ \mathcal{F}_i(h) & \mathcal{P}_4 &= ig' B_{\mu\nu} \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu}(h/v) \end{split}$$

Let's concentrate on
$$\widetilde{\mathcal{A}}_2 = i g' \operatorname{Tr} \left(\widetilde{\mathbf{B}}_{\mu\nu} \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu} \right] \right)$$

distinguishing the *h* from the others GBs: $\varphi \equiv h + \langle \varphi \rangle$

going to the limit of small ξ

$$\widetilde{\mathcal{A}}_2 \to \mathcal{O}_B + \mathcal{O}(\xi^2)$$
$$\mathcal{O}_B = \left(D_\mu \Phi\right)^\dagger \hat{B}^{\mu\nu} \left(D_\nu \Phi\right)$$

Let's concentrate on
$$\widetilde{\mathcal{A}}_2 = i g' \operatorname{Tr} \left(\widetilde{\mathbf{B}}_{\mu\nu} \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu} \right] \right)$$

distinguishing the *h* from the others GBs: $\varphi \equiv h + \langle \varphi \rangle$

going to the limit of small ξ

$$\mathcal{A}_2 \to \mathcal{O}_B + \mathcal{O}(\xi^2)$$

$$\mathcal{O}_B = \left(D_\mu \Phi\right)^\dagger \hat{B}^{\mu\nu} \left(D_\nu \Phi\right)$$

We recover the linear expansion, with corrections in higher powers of ξ .

$$\begin{aligned} \widetilde{\mathcal{A}}_{C} &= -\frac{f^{2}}{4} \operatorname{Tr} \left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu} \right) \\ \widetilde{\mathcal{A}}_{B} &= -\frac{1}{4} \operatorname{Tr} \left(\widetilde{\mathbf{B}}_{\mu\nu} \widetilde{\mathbf{B}}^{\mu\nu} \right) \\ \widetilde{\mathcal{A}}_{W} &= -\frac{1}{4} \operatorname{Tr} \left(\widetilde{\mathbf{W}}_{\mu\nu} \widetilde{\mathbf{W}}^{\mu\nu} \right) \\ \widetilde{\mathcal{A}}_{B\Sigma} &= g'^{2} \operatorname{Tr} \left(\Sigma \widetilde{\mathbf{B}}_{\mu\nu} \Sigma^{-1} \widetilde{\mathbf{B}}^{\mu\nu} \right) \\ \widetilde{\mathcal{A}}_{W\Sigma} &= g^{2} \operatorname{Tr} \left(\Sigma \widetilde{\mathbf{W}}_{\mu\nu} \Sigma^{-1} \widetilde{\mathbf{W}}^{\mu\nu} \right) \\ \widetilde{\mathcal{A}}_{1} &= g g' \operatorname{Tr} \left(\Sigma \widetilde{\mathbf{B}}_{\mu\nu} \Sigma^{-1} \widetilde{\mathbf{W}}^{\mu\nu} \right) \\ \widetilde{\mathcal{A}}_{2} &= i g' \operatorname{Tr} \left(\widetilde{\mathbf{B}}_{\mu\nu} \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu} \right] \right) \\ \widetilde{\mathcal{A}}_{3} &= i g \operatorname{Tr} \left(\widetilde{\mathbf{W}}_{\mu\nu} \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu} \right] \right) \\ \widetilde{\mathcal{A}}_{4} &= \operatorname{Tr} \left((\mathcal{D}_{\mu} \widetilde{\mathbf{V}}^{\mu})^{2} \right) \\ \widetilde{\mathcal{A}}_{4} &= \operatorname{Tr} \left(i \mathcal{M}_{\mu\nu} \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\mu} \right] \right) \\ \widetilde{\mathcal{A}}_{4} &= \operatorname{Tr} \left(i \mathcal{M}_{4} \widetilde{\mathbf{M}} \right) \\ i relevant: redundant or isontribute to d>6 linear ops. \end{aligned}$$

 $\left(D_{\mu}\Phi\right)^{\dagger}\left(D^{\mu}\Phi\right)$ $B_{\mu\nu}B^{\mu\nu}$ $W^a_{\mu\nu}W^{a\mu\nu}$ $\Phi^{\dagger}B_{\mu\nu}B^{\mu\nu}\Phi$ $\Phi^{\dagger}W_{\mu\nu}W^{\mu\nu}\Phi$ $\Phi^{\dagger}B_{\mu\nu}W^{\mu\nu}\Phi$ $\left(\mathbf{D}_{\mu}\Phi\right)^{\dagger}B^{\mu\nu}\left(\mathbf{D}_{\nu}\Phi\right)$ $\left(\mathbf{D}_{\mu}\Phi\right)^{\dagger}W^{\mu\nu}\left(\mathbf{D}_{\nu}\Phi\right)$ $\left(\mathbf{D}_{\mu}\mathbf{D}^{\mu}\Phi
ight)^{\dagger}\left(\mathbf{D}_{
u}\mathbf{D}^{
u}\Phi
ight)$ $\mathcal{O}_{\Phi,1}$ $\mathcal{O}_{\Phi,2}$ $\mathcal{O}_{\Phi,3}$ $\mathcal{O}_{\Phi,4}$ irrelevant: custodial breaking or pure Higgs corrections

