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Introduction



Introduction

From a practical point of view, we are moving towards new technologies, in particular

hardware accelerators:

Moving from general purpose devices ⇒ application specific

For example, in HEP we are transitioning from CPU to GPU.
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Quantum research

Structure of research field in quantum technologies:

Quantum computing is a paradigm that exploits quantum mechanical properties of

matter in order to perform calculations.

⇒ Unitary operators, entanglement, superposition, interference, etc.
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Quantum advantage

First quantum computation that can not be reproduced on a classical supercomputer

from Google, Nature 574, 505-510(2019):

53 qubits (86 qubit-couplers) → Task of sampling the output of a pseudo-random

quantum circuit (extract probability distribution).

Classically the probability distribution is exponentially more difficult.
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Quantum landscape
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Qubits



What is a qubit?

Let us consider a two-dimensional Hilbert space, we define the computational basis:

|0〉 →

(
1

0

)
, |1〉 →

(
0

1

)
.

A quantum bit (qubit) is the basic unit of quantum information and it written as:

|ψ〉 = α |0〉+ β |1〉 →

(
α

β

)
,

where α, β ∈ C and the state is normalized, i.e. |α|2 + |β|2 = 1.

All quantum mechanics rules are preserved: state measurement is probabilistic,

wave-function collapse after measurement, no-cloning theorem, etc.
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The Bloch sphere

Qubit states can be graphically represented in the Bloch sphere, by defining φ and θ

angles and associating to the state coefficients:

α = cos
θ

2
, and β = eiφ sin

θ

2
, with θ ∈ [0, π], φ ∈ [0, 2π].

We can use a 3D vector representation as:xy
z

 =

sin θ cosφ

sin θ sinφ

cos θ


In particular:

• |0〉 = (0, 0, 1), |1〉 = (0, 0,−1)
• (|0〉+ i |1〉)/

√
2 equator of the sphere
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Two qubits states

A system with 2 qubits is represented by the basis:

|0〉 ⊗ |0〉 ≡ |00〉 , |0〉 ⊗ |1〉 ≡ |01〉

|1〉 ⊗ |0〉 ≡ |10〉 , |1〉 ⊗ |1〉 ≡ |11〉

which lives in 22-dimensional Hilbert space:

|00〉 =


1

0

0

0

 , |01〉 =


0

1

0

0

 , |10〉 =


0

0

1

0

 , |11〉 =


0

0

0

1


Therefore a generic 2 qubits state is defined as:

|ψ2〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 with
1∑

i,j=0

|αij |2 = 1
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Multiple qubits states

A system with n qubits lives in 2n-dimensional Hilbert space, defining the basis:

|0〉n = |00 . . . 00〉 , |1〉n = |00 . . . 01〉 , |2〉n = |00 . . . 10〉 , . . . , |2n − 1〉n = |11 . . . 1〉

therefore a generic n qubits state is defined as

|ψn〉 =
2n−1∑
i=0

αi |i〉n with
2n−1∑
i=0

|αi|2 = 1

i.e. a superposition state vector in 2n dimensional Hilbert space.
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Quantum operators

As any other quantum state defined in Hilbert space, qubits are subject to:

• time evolution via Schrödinger equation: H(t) |ψ(t)〉 = i~∂t |ψ(t)〉
• quantum operators/gates, in particular unitary operators (reversible computing):

UU † = U †U = I

• entanglement state, e.g. supposing |ψA〉 |φB〉, e.g. Bell’s states:

∣∣ψ+
〉
=
|0A〉 |0B〉+ |1A〉 |1B〉√

2
,
∣∣ψ−〉 = |0A〉 |0B〉 − |1A〉 |1B〉√

2∣∣φ+〉 = |1A〉 |0B〉+ |0A〉 |1B〉√
2

,
∣∣φ−〉 = |1A〉 |0B〉 − |0A〉 |1B〉√

2
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Quantum technologies



Some popular quantum technologies available today
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Quantum chips
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Superconducting labs
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The current Quantum era



NISQ era

⇒ We are in a Noisy Intermediate-Scale Quantum era ⇐
(i.e. hardware with few noisy qubits)

How can we contribute?

• Develop new algorithms

⇒ using classical simulation of quantum algorithms

• Adapt problems and strategies for current hardware

⇒ hybrid classical-quantum computation
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Quantum Algorithms

There are three families of algorithms:

Gate Circuits

• Search (Grover)

• QFT (Shor)

• Deutsch

• · · ·

Variational (AI inspired)

• Eigensolvers

• Autoencoders

• Classifiers

• · · ·

Annealing

• Direct Annealing

• Adiabatic Evolution

• QAOA

• · · · 14



Challenges

However, there are several challenges:

• simulate efficiently algorithms on classical hardware for QPU?

• control, send and retrieve results from the QPU?

• error mitigation, keep noise and decoherence under control?
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Quantum computing with qubits



Quantum circuits

The quantum circuit model considers a sequence of unitary quantum gates:∣∣ψ′〉 = U2U1 |ψ〉 → |ψ〉 U1 U2 |ψ′〉

For example a Quantum Fourier Transform with 4 qubits is represented by
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Quantum gates

• Single-qubit gates

• Pauli gates

• Hadamard gate

• Phase shift gate

• Rotation gates

• Two-qubit gates

• Conditional gates

• Swap gate

• fSim gate

• Special gates: Toffoli
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Quantum circuit simulation

Classical simulation of quantum circuits uses dense complex state vectors

ψ(σ1, σ2, . . . , σN ) ∈ C in the computational basis where σi ∈ {0, 1} and N is the total

number of qubits in the circuit.

The final state of circuit evaluation is given by:

ψ′(σ) =
∑
σ′

G(σ,σ′)ψ(σ1, . . . σ
′
i1 , . . . , σ

′
iNtargets

, . . . , σN ),

where the sum runs over qubits targeted by the gate.

• G(σ,σ′) is a gate matrix which acts on the state vector.

• ψ(σ) from a simulation point of view is bounded by memory.
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Pauli gates

X gate

The X gate acts like the classical NOT

gate, it is represented by the σx matrix,

σx =

(
0 1

1 0

)

therefore

|0〉 X |1〉

|1〉 X |0〉

Z gate

The Z gate flips the sign of |1〉, it is

represented by the σz matrix,

σz =

(
1 0

0 −1

)

therefore

|0〉 Z |0〉

|1〉 Z − |1〉
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Hadamard gate

The Hadamard gate (H gate) is defined as

H =
1√
2

(
1 1

1 −1

)

Therefore it creates a superposition of states

|0〉 H
|0〉+ |1〉√

2
≡ |+〉

|1〉 H
|0〉 − |1〉√

2
≡ |−〉
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The rotation gates

Rotations gates (Bloch sphere) are defined as

RX(θ) = e−i
θ
2
σx =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, RY (θ) = e−i

θ
2
σy =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)

RZ(θ) = e−i
θ
2
σz =

(
1 0

0 eiθ

)
Note that RX(π) ≡ X,RY (π) ≡ Y,RZ(π) ≡ Z.

Every unitary transformation as decomposed in rotations around the y and z axis:

U ≡ RZ(θ1)RY (θ2)RZ(θ3),

for a fixed set of angles θ1, θ2 and θ3.
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Two-qubit gates

The controlled-NOT (CNOT) gate is a conditional gate defined as

CNOT =

(
1 0

0 σX

)

We define a control qubit which if at |1〉 applies X to a target qubit.

Supposing the first qubit is the control and the second qubit the target:

|00〉 → |00〉 |01〉 → |01〉

|10〉 → |11〉 |11〉 → |10〉

CNOT allows entangled states, e.g.:
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Measurements

So far we have simulated quantum circuits using wave-function propagation.

In real experiments we perform measurements with a preselected number of shots.

Shots contribute to the reconstruction of the underlying wave-function distribution.

Measurement (M) gate:

Lets consider the following circuit:

|0〉 H

The analytic final state is:
|0〉+ |1〉√

2

When measuring the final state we obtain 0 or 1 each with 50% probability.

23



Hands on tutorial

We will use Qibo for a practical demonstration:

Documentation: https://qibo.readthedocs.io

GitHub: https://github.com/qiboteam/qibo
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Hands on tutorial

Visit the tutorial:

https://colab.research.google.com/drive/1M4HV1RroiHtxh4uZdrSGASv51Tjpe6dT?usp=sharing
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Variational Quantum Circuits



Variational Quantum Circuits

Getting inspiration from AI:

• Supervised Learning ⇒ Regression and classification

• Unsupervised Learning ⇒ Generative models, autoencoders

• Reinforcement Learning ⇒ Quantum RL / Q-learning

Define new parametric model architectures for quantum hardware:

⇒ Variational Quantum Circuits / Quantum Machine Learning
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Variational Quantum Circuits

Getting inspiration from AI:

• Supervised Learning ⇒ Regression and classification

• Unsupervised Learning ⇒ Generative models, autoencoders

• Reinforcement Learning ⇒ Quantum RL / Q-learning

Define new parametric model architectures for quantum hardware:

⇒ Variational Quantum Circuits / Quantum Machine Learning
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Why Quantum Machine Learning?

Why QML?

1 Proof-of-concept, study new architectures.

2 Obtain a hardware representation (analogy with GPU and FPGA).

3 Lower power consumption.

NISQ era Warning...

• Quantum devices implement few qubits, noise is a bottleneck.

• We can simulate quantum computation on classical hardware.
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Rational



Rational for Variational Quantum Circuits

Rational:

Deliver variational quantum states → explore a large Hilbert space.

U(~α) = Un . . . U2U1

U1

U3

U4
U2

Near optimal solution

Idea:

Quantum Computer is a machine that generates variational states.

⇒ Variational Quantum Computer!
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Solovay-Kitaev Theorem

Let {Ui} be a dense set of unitaries.

Define a circuit approximation to V :

|Uk . . . U2U1 − V | < δ

Scaling to best approximation

k ∼ O
(
logc

1

δ

)
where c < 4.

Optimal solution

⇒ The approximation is efficient and requires a finite number of gates.
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Why Quantum Machine Learning?

How do we parametrize models using a quantum computer?

Using variational quantum circuits and data re-uploading algorithms:

|0〉

U(θ, x)

•

|0〉 • ⇓

|0〉 •

⇑ • ClassicalOptimizer ⇐ L(θ) •
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Data re-uploading strategy

Pérez-Salinas et al. [arXiv:1907.02085]

Encode data directly “inside” circuit parameters:
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Variational quantum algorithm
6

Classical optimizationQuantum-classical loop

Basis

changeParametrized quantum circuit
State

preparation

Output

distance

Input
Objective function

Figure 2 Diagrammatic representation of a Variational Quantum Algorithm (VQA). A VQA workflow can be divided into four
main components: i) the objective function O that encodes the problem to be solved; ii) the parameterized quantum circuit
(PQC), in which its parameters ✓ are tuned to minimize the objective; iii) the measurement scheme, which performs the basis
changes and measurements needed to compute expectation values �H� that are used to evaluate the objective; and iv) the
classical optimizer that minimizes the objective and proposes a new set of variational parameters. The PQC can be defined
heuristically, following hardware-inspired ansätze, or designed from the knowledge about the problem Hamiltonian H. It can
also include a state preparation unitary P (�) which situates the algorithm to start in a particular region of parameter space.
Inputs of a VQA are the circuit ansatz U(✓,�) and the initial parameter values ✓0,�0. Outputs include optimized parameter
values ✓opt,�opt and the minimum of the objective.

Within a VQA, one has access to measurements on
qubits whose outcome probabilities are determined by
the prepared quantum state. To begin, consider only
measurements on individual qubits in the standard com-
putational basis and denote the probability to measure
qubit q in state �0� by pq

0, where the qubit label q will
be omitted whenever possible. The central element of a
variational quantum algorithm is a parametrized cost or
objective function O subject to a classical optimization
algorithm

min
✓

O (✓,{p0 (✓)}) . (1)

The objective function O and the measurement outcomes
p0, of one or many quantum circuit evaluations depend
on the set of parameters ✓.

In practice it is often inconvenient to work with the
probabilities of the measurement outcomes directly when
evaluating the objective function. Higher level formula-
tions employ expectation values

�H�U(✓) ≡ �0� U† (✓)HU (✓) �0� (2)

of qubit Hamiltonians H, describing measurements on

the quantum state generated by the unitary U (✓), in-
stead of using the probabilities for the individual qubit
measurements directly. See Eq. (5) for the decomposition
of arbitrary observables into basic measurements of Pauli
strings that can be transformed into basic measurements
in the standard computational basis (see Sec. II.C). Re-
stricting ourselves to expectation values instead of pure
measurement probabilities, the objective function is

min
✓

O �✓,��H�U(✓)�� . (3)

The formulation in terms of expectation values of qubit
Hamiltonians often allows for more compact definitions
of the objective function. For the original VQE (Pe-
ruzzo et al., 2014) and QAOA (Farhi et al., 2014) it can,
for example, be described as a single expectation value
min✓�H�U(✓), where the differences solely appear in the
specific form and construction of the qubit Hamiltonian.

The choice of the objective function is crucial in a VQA
to achieve the desired convergence. Vanishing gradient
issues during the optimization, known as barren plateaus,
are dependent on the cost function used (Cerezo et al.,
2020c) (see Sec. IV.B for details).
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Hands on tutorial

Visit the tutorial:
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