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Outline

Lecture 1: Introduction, probability, parameter estimation

finish parameter estimation, variance from graphical method

Lecture 2:  Hypothesis tests, limits

Lecture 3:  Systematic uncertainties, experimental sensitivity

Lecture 4:  Bayesian methods, Student’s t regression
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Variance of estimators: graphical method
Expand ln L (θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

→  to get , change θ away from until ln L decreases by 1/2.

From lecture 1:  Finish parameter estimation
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Suppose a measurement produces data x; consider a hypothesis H0
we want to test and alternative H1

H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w

Lecture 2
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Definition of a test (2)
But in general there are an infinite number of possible critical 
regions that give the same size α.

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Classification viewed as a statistical test
Suppose events come in two possible types:  

s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

H0 : event is of type b

using a critical region W of the form:  W = {x : x ≤ xc}, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10-4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

πs = 0.001
πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Classification example (4)

Suppose an individual event is observed at x = 0.1.  What is 
the probability that this event is background?

(Here nothing to do with the test using x ≤ xc , just an illustration
of Bayes’ theorem.)
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’, in 
particular if the data space is multidimensional?

Neyman-Pearson lemma states:
For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.
G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Neyman-Pearson doesn’t usually help
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

generate x ~ f (x|s)     →     x1,..., xN
generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Use these to construct a statistic that is as close as possible to the 
optimal likelihood ratio (→ Machine Learning).
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f(x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H
is rejected (equivalent to hypothesis test as discussed previously).
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p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).



Example of p-value:  exponential decay time
A nuclear sample contains two radioactive isotopes with mean lifetimes τ = 0.2 s 
and τ = 1.0 s.

For either isotope we expect the decay time to follow

A nucleus is observed to decay after a time tobs = 0.6 s.

The p-value of the hypothesis H that the 
nucleus is of the type with τ = 0.2 s is
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Here we take t ≥ tobs as being less compatible 
with τ = 0.2 s , because greater t is more 
characteristic of τ = 1.0 s.

If the relevant alternative had been τ = 0.1 s, 
then one would define the p-value as
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p-value from test statistic

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj

surface described by test statistic

If e.g. we define the region of less or eq. compatibility to be t(x) ≥ tobs then 
the p-value of H is
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Distribution of  the p-value
The p-value is a function of the data, and is thus itself a random
variable with a given distribution.  Suppose the p-value of H is 
found from a test statistic t(x) as

The pdf of pH under assumption of H is

In general for continuous data,  under 
assumption of H, pH ~ Uniform[0,1]
and is concentrated toward zero for 
some (broad) class of alternatives. pH

g(pH|H)

0 1

g(pH|H′)
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Using a p-value to define test of H0
So the probability to find the p-value of H0, p0, less than α is

We started by defining critical region in the original data space (x), 
then reformulated this in terms of a scalar test statistic t(x).

We can take this one step further and define the critical region 
of a test of H0 with size α as the set of data space where p0 ≤ α .

Formally the p-value relates only to H0, but the resulting test will
have a given power with respect to a given alternative H1.
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

Events could be from signal process or from background –
we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

test s = 0 (rejecting H0 ≈ “discovery of signal process”)

test all non-zero s (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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Significance from p-value
Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:
p = 1 - TMath::Freq(Z)
Z = TMath::NormQuantile(1-p)

in python (scipy.stats):
p = 1 - norm.cdf(Z) = norm.sf(Z)
Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10-4:  

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”)
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Confidence intervals by inverting a test
In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

Specify values of the data that are ‘disfavoured’ by θ
(critical region) such that P(data in critical region|θ) ≤ α
for a prespecified α, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α
(confidence level CL is 1- α).
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Relation between confidence interval and p-value
Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval
If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

P(conf. interval “covers” θ|θ) ≥ 1 – α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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Frequentist upper limit on Poisson parameter
Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from
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n ~ Poisson(s+b):  frequentist upper limit on s
For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.
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Limits near a boundary of the parameter space
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44
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Next time...

Lecture 1: Introduction, probability, parameter estimation

Lecture 2:  Hypothesis tests, limits

Lecture 3:  Systematic uncertainties, experimental sensitivity

Lecture 4:  Bayesian methods, Student’s t regression
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Extra slides



Compatibility with H
What does it mean for a region of data space to be less 
compatible with the predictions of H?

It must mean that that region of data space is more 
compatible with some relevant alternative Hʹ.

So although the definition of the p-value does not refer 
explicitly to an alternative, this enters implicitly through its 
role in determining the partitioning of the data space into 
more and less-or-equally compatible regions.

As in the case of hypothesis tests, there may be more than 
one relevant alternative.
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Obvious where to put W?
In the 1930s there were great debates as to the role of the 
alternative hypothesis.

Fisher held that one could test a hypothesis H0 without reference 
to an alternative.  

Suppose, e.g., H0 predicts that x (suppose positive) usually comes 
out low.  High values of x are less characteristic of H0, so if a high 
value is observed, we should reject H0, i.e., we put W at high x:  

If we see x
here, reject H0.
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Or not so obvious where to put W?
But what if the only relevant alternative to H0 is H1 as below:

Here high x is more characteristic of H0 and not like what we 
expect from H1.  So better to put W at low x.

Neyman and Pearson argued that “less characteristic of H0” is 
well defined only when taken to mean “more characteristic of 
some relevant alternative H1”.
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The Bayesian approach to limits
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf p(θ|x) to give interval with any desired
probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized; can be OK provided L(s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead 
a flat prior for a nonlinear function of s, then this would imply a 
non-flat prior for s.

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; or viewed as a recipe for producing an 
interval whose frequentist properties can be studied (e.g., coverage 
probability, which will depend on true s). 
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Bayesian upper limit with flat prior for s
Put Poisson likelihood and flat prior into Bayes’ theorem:

Normalize to unit area:

Upper limit sup determined by requiring 

upper incomplete
gamma function
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Bayesian interval with flat prior for s
Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where 
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Bayesian interval with flat prior for s
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit.

Never goes negative.  Doesn’t depend on b if n = 0.
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Low sensitivity to μ
It can be that the effect of a given hypothesized μ is very small
relative to the background-only (μ = 0) prediction.

This means that the distributions f(qμ|μ) and f(qμ|0) will be
almost the same:
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Having sufficient sensitivity
In contrast, having sensitivity to μ means that the distributions
f(qμ|μ) and f(qμ|0)  are more separated: 

That is, the power (probability to reject μ if μ = 0) is substantially 
higher than α.  Use this power as a measure of the sensitivity.
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Spurious exclusion
Consider again the case of low sensitivity.  By construction the 
probability to reject μ if μ is true is α (e.g., 5%).

And the probability to reject μ if μ = 0 (the power) is only slightly 
greater than α.

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV).

“Spurious exclusion”
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Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

and led to the “CLs” procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by
the particular choice of critical region.
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The CLs procedure

f (Q|b)    

f (Q|s+b)    

ps+bpb

In the usual formulation of CLs, one tests both the μ = 0 (b) and
μ > 0 (μs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb:



G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 2 47

The CLs procedure (2)
As before, “low sensitivity” means the distributions of Q under 
b and s+b are very close:

f (Q|b)    

f (Q|s+b)    

ps+bpb
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The CLs solution (A. Read et al.) is to base the test not on
the usual p-value (CLs+b), but rather to divide this by CLb
(~ one minus the p-value of the b-only hypothesis), i.e.,

Define:

Reject s+b 
hypothesis if: Increases “effective” p-value  when the two

distributions become close (prevents 
exclusion if sensitivity is low).

f (Q|b)    f (Q|s+b)    

CLs+b
= ps+b

1-CLb
= pb

The CLs procedure (3)
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Choice of test for limits (2)
In some cases μ = 0 is no longer a relevant alternative and we 
want to try to exclude μ on the grounds that some other measure of 
incompatibility between it and the data exceeds some threshold.

If the measure of incompatibility is taken to be the likelihood ratio
with respect to a two-sided alternative, then the critical region can 
contain both high and  low data values.  

→ unified intervals, G. Feldman, R. Cousins, 
Phys. Rev. D 57, 3873–3889 (1998)

The Big Debate is whether to use one-sided or unified intervals
in cases where small (or zero) values of the parameter are relevant
alternatives.  Professional statisticians have voiced support
on both sides of the debate. 
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Unified (Feldman-Cousins) intervals
We can use directly
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as a test statistic for a hypothesized μ.

where

Large discrepancy between data and hypothesis can correspond
either to the estimate for μ being observed high or low relative
to μ.

This is essentially the statistic used for Feldman-Cousins intervals
(here also treats nuisance parameters).  

G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Lower edge of interval can be at μ = 0, depending on data.
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Upper/lower edges of F-C interval for μ versus b
for n ~ Poisson(μ+b)

Lower edge may be at zero, depending on data.

For n = 0, upper edge has (weak) dependence on b.

Feldman & Cousins, PRD 57 (1998) 3873

G. Cowan / RHUL Physics


