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Confidence intervals by inverting a test

In addition to a ‘point estimate’ of a parameter we should report
an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter 6 can be found by
defining a test of the hypothesized value 8 (do this for all 6):

Specify values of the data that are ‘disfavoured’ by 6
(critical region) such that P(data in critical region|0) < a
for a prespecified a, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value 6.
Now invert the test to define a confidence interval as:

set of 6 values that are not rejected in a test of size a
(confidence level CLis 1—a).
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of 6, resulting in a p-value, p,.

If pp < a, then we reject 6.

The confidence interval at CL = 1 — a consists of those values of
6 that are not rejected.

E.g. an upper limit on @ is the greatest value for which p, > a.
In practice find by setting p, = a and solve for 6.

For a multidimensional parameter space 8 = (0,,... 8,,) use same
idea — result is a confidence “region” with boundary determined

by py = a.
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Coverage probability of confidence interval

If the true value of @ is rejected, then it’s not in the confidence
interval. The probability for this is by construction (equality for

continuous data):
P(reject 8|60) < o = type-| error rate

Therefore, the probability for the interval to contain or “cover” @ is
P(conf. interval “covers” 8|0) > 1 - a

This assumes that the set of 8 values considered includes the true
value, i.e., it assumes the composite hypothesis P(x|H.,0).

G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 2



Frequentist upper limit on Poisson parameter

Consider again the case of observing n ~ Poisson(s + b).
Suppose b =4.5, n,,, = 5. Find upper limit on s at 95% CL.
Relevant alternative is s = 0 (critical region at low n)
p-value of hypothesized s is P(n <n; s, b)

Upper limit s, at CL =1 — a found from

Ngbs b n
Q= P(n < Tobs; Sup; b) = E (Sup -|'- ) 6—(Sup+b)
n!
n=>0

1
sup = 5P (1 — 05 2(naps +1)) — b

L.
=28 51(0.95;2(5+ 1)) — 4.5 = 6.0
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n ~ Poisson(s+b): frequentist upper limiton s

For low fluctuation of n, formula can give negative result for s,,;
i.e. confidence interval is empty; all values of s > 0 have p, < a.

-
N

95%)

=t
o

6 events observed

sy (CL
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Limits near a boundary of the parameter space

Suppose e.g. b = 2.5 and we observe n = 0.

If we choose CL= 0.9, we find from the formula for s,
sup = —0.197 (CL = 0.90)

Physicist:
We already knew s > 0 before we started; can’t use negative
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s =0
Physicist: | should have used CL = 0.95 — then s, = 0.496
Even better: for CL=0.917923 we get s, = 107!

Reality check: with b = 2.5, typical Poisson fluctuation in n is
at least V2.5 = 1.6. How can the limit be so low?

Look at the mean limit for the r
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits -
with b =2.5, 5= 0. - __H
Mean upper limit = 4.44 |

| ||-|II'I|.4|_111|

1 1 |
0 5 10 15
Sup
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Approximate confidence intervals/regions
from the likelihood function

Suppose we test parameter value(s) 8 = (0, ..., 6,) using the ratio

A(B):M O Xy =
L(0)
Lower A(#) means worse agreement between data and
hypothesized 6. Equivalently, usually define

tg = —21n )\(9)

so higher ¢, means worse agreement between @ and the data.

oo
p-value of @ therefore Po = / f(tg|@) dte
tO,obs \
need pdf
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Confidence region from Wilks’” theorem

Wilks’ theorem says (in large-sample limit and provided
certain conditions hold...)

chi-square dist. with # d.o.f. =
# of componentsin@=(6,, ..., 0,).

ll, n

f(tel) ~ x;
Assuming this holds, the p-value is
pe =1—F,2(ts) <« setequaltoa
To find boundary of confidence region set p,= o and solve for ¢,:
—1
tg — FX% (1 — a)

L(6)
L(6)
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Confidence region from Wilks’ theorem (cont.)

i.e., boundary of confidence region in @ space is where
InL(6) =InL(6) — $F,' (1 - )
For example, for 1 —a = 68.3% and n = 1 parameter,

F1(0.683) =1
X1

and so the 68.3% confidence level interval is determined by

1
2
Same as recipe for finding the estimator’s standard deviation, i.e.,

InL(6) = InL() —

[é — 0, 0+ 05) is a68.3% CL confidence interval.
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Example of interval from In L(6)

For n=1 parameter, CL=0.683, 0, = 1.

= T T T T
= R S
T-AT T T+ AT :
2 - o | Our exponential
: : example, now with
only n =5 events.
Can report ML estimate
s L 1 with approx. confidence
interval fromIn L, — 1/2
as “asymmetric error bar”:
5 # = 0.851052
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For increasing number of parameters, CL= 1 — a decreases for

Multiparameter case

confidence region determined by a given

Qa :FX_%I(I—Q)

l—«
Qa n=1 n=2 n=3 n= n=>
1.0 | 0.683 0.393 0.199 0.090 0.037
20 | 0.843 0.632 0.428 0.264 0.151
4.0 | 0.954 0865 0.739 0.594 0.451
9.0 | 0.997 0.9890 0971 0939 0.891
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Multiparameter case (cont.)

Equivalently, O, increases with n fora givenCL=1 — a.

, 0.

i n=1 =2 n=3 n=4 n=9
0.683 | 1.00 2.30 3.93 4.72 2.89
0.90 2.71 4.61 6.25 1.78 9.24

0.95 3.84 2.99 71.82 9.49 11.1

0.99 6.63 9.21 11.3 13.3 15.1
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Systematic uncertainties and nuisance parameters

In general, our model of the data is not perfect:

model: P(x|u) = px
_--" truth: P(J}l/j,) = ux + a$2 + ,8563 4 ...

P (x|w)

Can improve model by including
/i — P(x|u, 0
additional adjustable parameters. (zlu) (z|p, 0)

Nuisance parameter < systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Profile Likelihood

Suppose we have a likelihood L(u,0) = P(x|u,0) with N
parameters of interest u = (u,,..., () and M nuisance parameters
0=(0,,..., 0,). The “profiled” (or “constrained”) values of @ are:

0(p) = argmax L(y, )
V)

and the profile likelihood is:  L,(u) = L(ps, é)

The profile likelihood depends only on the parameters of
interest; the nuisance parameters are replaced by their profiled
values.

The profile likelihood can be used to obtain confidence
intervals/regions for the parameters of interest in the same way
as one would for all of the parameters from the full likelihood.
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Profile Likelihood Ratio — Wilks theorem

Goal is to test/reject regions of u space (param. of interest).

Rejecting a point # should mean p, < a for all possible values of the

nuisance parameters 6.

D»

L(p,
L(f,

)
)

Let 7, = —2InA(u). Wilks’ theorem says in large-sample limit:

Test u using the “profile likelihood ratio”: A(p) =

>

t,, ~ chi-square(NV)

where the number of degrees of freedom is the number of
parameters of interest (components of u). So p-value for u is

Py = / F(talt 8) dty = 1= Fya (tuon)
i

w,obs
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Profile Likelihood Ratio — Wilks theorem (2)

If we have a large enough data sample to justify use of the
asymptotic chi-square pdf, then if u is rejected, it is rejected for
any values of the nuisance parameters.

The recipe to get confidence regions/intervals for the parameters
of interest at CL = 1 — a is thus the same as before, simply use the
profile likelihood:

1
—F3(1-a)

In L == {1 SSS—
n Lp(p) 1 2%2,

where the number of degrees of freedom N for the chi-square
guantile is equal to the number of parameters of interest.

If the large-sample limit is not justified, then use e.g. Monte
Carlo to get distribution of #,.
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Prototype search analysis

Search for signal in a region of phase space; result is histogram
of some variable x giving numbers:

Assume the n; are Poisson distributed with expectation values

En;] = pus; + b;

\

strength parameter
where

Si = Stot fo(x;05)dr, by = beot fo(x:0y) dx .

bin 2 binz

AN AN

signal background
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Prototype analysis (1)

Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

m = (myq,...,mu)

Assume the m; are Poisson distributed with expectation values

Em;| = u;(0)

\

nuisance parameters (8, 6,.,b,,)

Likelihood function is

N _ M
L( ! 9) L H (lu"sj L bj)nJ e—(u-8j+bj) H /U"Zlk E’_uk
SO n;! ' my!
j=1 J k=1 "k
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The profile likelihood ratio

Base significance test on the profile likelihood ratio:

/ maximizes L for
specified u

By
=
D>

x maximize L

Define critical region of test of u by the region of data space
that gives the lowest values of A(w).

Important advantage of profile LR is that its distribution
becomes independent of nuisance parameters in large sample
limit.
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Test statistic for discovery

Suppose relevant alternative to background-only (« = 0) is « > 0.

So take critical region for test of 1 = 0 corresponding to high g,
and [i > 0 (data characteristic for u > 0).

That is, to test background-only hypothesis define statistic

—21In A(0) I =20

q0 =
0 <0

i.e. here only large (positive) observed signal strength is
evidence against the background-only hypothesis.

Note that even though here physically x> 0, we allow (i

to be negative. In large sample limit its distribution becomes
Gaussian, and this will allow us to write down simple
expressions for distributions of our test statistics.

G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 3
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
Distribution of g, in large-sample limit

Assuming approximations valid in the large sample (asymptotic)
limit, we can write down the full distribution of g, as

o) = (18 () sa+ Sy [ (v 2)]

The special case ¢’ = 0 is a “half chi-square” distribution:

1 111
0) = 9 e~ %0/2
f(40/0) = 50(q0) + 5 Tl

In large sample limit, f(g,|0) independent of nuisance parameters;
flgolu") depends on nuisance parameters through o.
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p-value for discovery

Large g, means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed g ys is

o0
m=/ F(q010) dgo
q

0,0bs

use e.g. asymptotic formula

f(q,|0)
j % s From p-value get

equivalent significance,
p-value

/ Z=o"(1-p)

~

%
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Cumulative distribution of g,, significance

From the pdf, the cumulative distribution of g, is found to be

F(qolu') = ® (\/(1_ - %)
The special case ' =0 is
F(qo|0) = ‘1)(\/(1_0)
The p-value of the 1 = 0 hypothesis is
po =1—F(qo|0)
Therefore the discovery significance Zis simply

Z=9""1-po) =V

G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 3

26



Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Monte Carlo test of asymptotic formula

n ~ Poisson(us + b)

8 10?[ LI I LI I LI I | I B ) I LS L O | I LI I Llmlzd I LI l?

m ~ Poisson(7b) o 1k —Mql0) 4
. ot F=biSE ]

@ = param. of interest : §
1072 =

b = nuisance parameter b ;
Here take s known, 7= 1. 10-E .
107 E

: : ~6f ]
Asymptotic formula is 10°F

. . -7

good approximation to 50 107°F B E
_8_I | Bl [ | l 1011 I L1 11 I | I .| IIIIII{]]l! '-I--I { Il | I L1l I_
level (g, = 25) already for 10" 5 10 15 20 25 30 35 40
b ~ 20. 9%
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How to read the p, plot

The “local” p, means the p-value of the background-only
hypothesis obtained from the test of x = 0 at each individual
my, Without any correct for the Look-Elsewhere Effect.

The “Expected” (dashed) curve gives the median p, under
assumption of the SM Higgs (u = 1) at each my,.

ATLAS, Phys Lett B 716 (2012) 1-29

o gErrrrprrrrprrrrrprrTrrTpTrTTT Illlllllllllllr

o ATLAS 2011 - 2012 o The blue band gives the
O 1 ) . . . .
S 8= Tl [ = 4585 (5 - width of the distribution
{s=8TeV: |Ldt=5.85.9 fb" E+1c T
I "o e e i i A S e (1)0 (i 16) Of Slgn|flca nces
{0 - dinionsiriuaiuisiate - Wl c .
102 S 7T 2 under assumption of the
10° R g 36 ]
10 A : SM Higgs.
10° ¢
0% 0\ ‘ s 00
107 %
10°®
109 - m e N - - - - - - - - - - - - 60
107°
107 .
110 115 120 125 130 135 140 145 150
m, [GeV]
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
Test statistic for upper limits

For purposes of setting an upper limit on u use

—21n \ 0 < 1 ;
0 — (W) Bsp e (1) L(,LAL,?)
0 [ > f L(ji,0)

l.e. when setting an upper limit, an upwards fluctuation of the data
is not taken to mean incompatibility with the hypothesized u :

From observed g, find p-value:  p, = / f(qulp) dgy

qy.,0bs

Large sample approximation: | p, = 1— @(\/ﬁ)

To find upper limit at CL = 1-a, set p, = a and solve for .
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Monte Carlo test of asymptotic formulae

Consider again n ~ Poisson(us + b), m ~ Poisson(zb)
Use g, to find p-value of hypothesized x values.

E.g. f(qy|1) for p-value of  =1. 1t

Typically interested in 95% CL, i.e.,
p-value threshold = 0.05, i.e.,
g, =2.69 or Z; =g, = 1.64.

Median[g, |0] gives “exclusion
sensitivity”.

107

107%

Here asymptotic formulae good
fors=6,b6=09. 1075~
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How to read the green and yellow limit plots
For every value of my, find the upper limit on L.

Also for each my;, determine the distribution of upper limits 4, one
would obtain under the hypothesis of u = 0.

The dashed curve is the median g, and the green (yellow) bands
give the &= 10 (20) regions of this distribution.
ATLAS Phys Lett B 716 (2012) 1 29

= ]
S F ATLAS 2011-2012 B+ €
’E’ [ \s=7TeV: Ldt=4.6-48fb" [ J+2 i
5 [ Vs=8Tev:Jldt=58591f" — Observed d
N Bkg. Expected
O
R
o> p
& a
m —
107 ~ CL, Limits —
110 150 200 300 400 500
m, [GeV]

G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 3 31



Next time...

Lecture 1: Introduction, probability, parameter estimation
Lecture 2: Hypothesis tests, limits
Lecture 3: Systematic uncertainties, experimental sensitivity

— Lecture 4: Bayesian methods, Student’s t regression
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Expected discovery significance for counting
experiment with background uncertainty
|. Discovery sensitivity for counting experiment with b known:

(a) ﬁ

(b) Profile likelihood \/2 ((S 2B (1 N 3) B S)
b

ratio test & Asimov:

Il. Discovery sensitivity with uncertainty in b, o,
S

(a) m

(b) Profile likelihood ratio test & Asimov:

1/2
[2 ((s+b) In (st B)(0+ o) — b—221n [1 % )]

> 2 + 2
b* + (s + b)o, of b(b+ of)
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Counting experiment with known background

Count a number of events n ~ Poisson(s+b), where
s = expected number of events from signal,

b = expected number of background events.

To test for discovery of signal compute p-value of s = 0 hypothesis,

p=Pn>ngalt) = 3 T =1 Fa(2b2n)

N=MNghs

Usually convert to equivalent significance: Z = &~ 1(1 — p)
where @ is the standard Gaussian cumulative distribution, e.g.,
Z>5 (a5 sigma effect) meansp <2.9 X107,

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/\lb for expected discovery significance

For large s + b, n — x ~ Gaussian(u,c) ,u=s + b, o = \/(s + D).

For observed value x,, p-value of s = 0 is Prob(x > x| s = 0),:

1 s T b)
pp=1—
Po ( \/5

Significance for rejecting s = 0 is therefore

Tobs — b
Vb

Expected (median) significance assuming signal rate s is

Zo = <I)_1(1 —p()) =

median[Zo|s +b] = —=

ém
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Better approximation for significance

Poisson likelihood for parameter s is

A0 (s +'b)n o—(s+b) For now
n: no nuisance
To test for discovery use profile likelihood ratio: ;;arams.
—21In A(0) s20: ;
do = A(s) = 242, 6(s))
0 P L(Sa 9)

So the likelihood ratio statistic for testings =0 is

L(0)
L(3)

go = —21n = 2 <n. ln% + b — 'n..) for n > b, 0 otherwise
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem),

Z=\/2(nlnz+b—n) for n > b and Z = 0 otherwise.

b

To find median[Z]s], let n — s + b (i.e., the Asimov data set):

ZA=\/2((s+b)ln(l+%) —s)

This reduces to s/\b for s << b.
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n ~ Poisson(s+b), median significance,
assuming s, of the hypothesis s =0

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
8

0

“Exact” values from MC,
jumps due to discrete data.

med[Z 1]

-
-

Asimov \/c]O,A good approx.
for broad range of s, b.

s/\lb only good for s < b.

10" 1 10 10°
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Extending s/\b to case where b uncertain

The intuitive explanation of s/Vb is that it compares the signal,
s, to the standard deviation of n assuming no signal, \b.

Now suppose the value of b is uncertain, characterized by a
standard deviation g,

A reasonable guess is to replace Vb by the quadratic sum of
\b and g, i.e.,

s
\/b+ of

This has been used to optimize some analyses e.g. where
o, cannot be neglected.

med|Z|s| =

G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 3
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Profile likelihood with b uncertain

This is the well studied “on/off” problem: Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

n ~ Poisson(s+b) (primary or “search” measurement)

m ~ Poisson(zb) (control measurement, r known)

The likelihood function is

g bl poas (Y™ o

Use this to construct profile likelihood ratio (b is nuisance
parameter): A
_ L(0,5(0))

L(5,b)

CERN Academic Training / Statistics for PP Lecture 3

A(0)

G. Cowan / RHUL Physics 40



Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

§ = n—m/T,

b = m/T,
f,() _ n+m—(1+7)s++/(n+m—(1+7)s)?+4(1+7)sm
L 21+ 7) -

and in particular to test for discovery (s = 0),

n+m
1471
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Asymptotic significance

Use profile likelihood ratio for g, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

VA

/o

[~ (o [ ] i 2]y

for n > b and Z = 0 otherwise.

Essentially same as in:

Robert D. Cousins, James T. Linnemann and Jordan Tucker, NIM A 595 (2008) 480
501; arXiv:physics/0702156.

Tipei Li and Yuqian Ma, Astrophysical Journal 272 (1983) 317-324.
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Asimov approximation for median significance

To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n—s+b

m — th

Zp = [—2 ((s +b)In [(i j: 51);;1):)] +7bln [1 i Jrsr)bml/z

Or use the variance of b=m/z, V[b] =0 = — , toeliminate z:

—

1/2
B (s +b)(b+ o) b? ots
ZA = [2 ((s-l—b)ln b2—|—(s-|—b)a§ 03 In 1+b(b+a{;’)
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Limiting cases

Expanding the Asimov formula in powers of s/b and
0,°/b (= 1/7) gives

S

Zp = (1+O(s/b) + O(02 /b))

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated
with the Asimov data set.
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Testing the formulae: s=5

G. Cowan / RHUL Physics

N % s=5
O
= c,/b=0.2,05
6t
U s/ b + o2

1 10
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Using sensitivity to optimize a cut

@) 72 £ 2 | (b)
% —_— ZA = ' — S'gnal
-—— background
£ i sl\’b+0§ 15
s=157 s=80
b=16 b=0.20
10k i+
\ s N
0.5
%20 20 80 80 100 % 20 20 60 80 100
Xeut X

Figure 1: (a) The expected significance as a function of the cut value zcy; (b) the distributions of
signal and background with the optimal cut value indicated.
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Summary on discovery sensitivity

Simple formula for expected discovery significance based on
profile likelihood ratio test and Asimov approximation:

1/2
B (s + b)(b+ o) b ols
- [2 ((”b)h‘ Pt hog | oF | T Bo+ap

For large b, all formulae OK.
For small b, s/Nb and S/\/(b+0'b2) overestimate the significance.

Could be important in optimization of searches with
low background.

Formula maybe also OK if model is not simple on/off experiment,
e.g., several background control measurements (check this).
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Extra slides
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p-values in cases with nuisance parameters

Suppose we have a statistic g, that we use to test a hypothesized
value of a parameter 6, such that the p-value of G is

o0

Py = f(qg|0,v)dqe

d6.0bs

But what values of v to use for f(g, |, v)?
Fundamentally we want to reject 6 only if p, < a for all v.

— “exact” confidence interval

But in general for finite data samples this is not true; one may be
unable to reject some 6 values if all values of v must be
considered (resulting interval for 6 “overcovers”).
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Profile construction (“hybrid resampling”)

K. Cranmer, PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics, 2008.
oai:cds.cern.ch:1021125, cdsweb. cern. ch/record/1099969.

Approximate procedure is to reject 0 if p, < o where
the p-value is computed assuming the value of the nuisance
parameter that best fits the data for the specified 6 :

“double hat” notation means profiled
(6) value, i.e., parameter that maximizes
likelihood for the given 6.

L b

The resulting confidence interval will have the correct coverage
for the points (6,v(0)) -

Elsewhere it may under- or overcover, but this is usually as good
as we can do (check with MC if crucial or small sample problem).
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