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Confidence intervals by inverting a test
In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

Specify values of the data that are ‘disfavoured’ by θ
(critical region) such that P(data in critical region|θ) ≤ α
for a prespecified α, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α
(confidence level CL is 1- α).
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Relation between confidence interval and p-value
Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval
If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

P(conf. interval “covers” θ|θ) ≥ 1 – α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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Frequentist upper limit on Poisson parameter
Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from
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n ~ Poisson(s+b):  frequentist upper limit on s
For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.
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Limits near a boundary of the parameter space
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44
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Approximate confidence intervals/regions 
from the likelihood function

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem
Wilks’ theorem says (in large-sample limit and provided 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θn).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ= α and solve for tθ:

Recall also 

← set equal to α
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Confidence region from Wilks’ theorem (cont.)
i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L(θ)
For n=1 parameter, CL = 0.683, Qα = 1.

Our exponential 
example, now with
only n = 5 events.

Can report ML estimate
with approx. confidence
interval from ln Lmax – 1/2
as “asymmetric error bar”:
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Multiparameter case

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 
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Multiparameter case (cont.)

Equivalently, Qα increases with n for a given CL = 1 – α.
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Systematic uncertainties and nuisance parameters
In general, our model of the data is not perfect:

x

P
(x

|μ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Profile Likelihood
Suppose we have a likelihood L(μ,θ) = P(x|μ,θ) with  N
parameters of interest μ = (μ1,..., μN) and M nuisance parameters 
θ = (θ1,..., θM).  The “profiled” (or “constrained”) values of θ are:

and the profile likelihood is:

The profile likelihood depends only on the parameters of 
interest; the nuisance parameters are replaced by their profiled 
values.

The profile likelihood can be used to obtain confidence 
intervals/regions for the parameters of interest in the same way 
as one would for all of the parameters from the full likelihood.
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Profile Likelihood Ratio – Wilks theorem
Goal is to test/reject regions of μ space (param. of interest).

Rejecting a point μ should mean pμ ≤ α for all possible values of the 
nuisance parameters θ.

Test μ using the “profile likelihood ratio”:

Let tμ = -2lnλ(μ).  Wilks’ theorem says in large-sample limit:

where the number of degrees of freedom is the number of 
parameters of interest (components of μ).  So p-value for μ is
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Profile Likelihood Ratio – Wilks theorem (2)

The recipe to get confidence regions/intervals for the parameters 
of interest at CL = 1 – α is thus the same as before, simply use the 
profile likelihood:

If we have a large enough data sample to justify use of the
asymptotic chi-square pdf, then if μ is rejected, it is rejected for 
any values of the nuisance parameters.

where the number of degrees of freedom N for the chi-square 
quantile is equal to the number of parameters of interest.

If the large-sample limit is not justified, then use e.g. Monte 
Carlo to get distribution of tμ.
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Prototype search analysis 
Search for signal in a region of phase space; result is histogram
of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

signal

where

background

strength parameter
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Prototype analysis (II)
Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

nuisance parameters (θs, θb,btot)
Likelihood function is
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The profile likelihood ratio
Base significance test on the profile likelihood ratio:

maximizes L for
specified μ

maximize L

Define critical region of test of μ by the region of data space
that gives the lowest values of λ(μ). 

Important advantage of profile LR is that its distribution 
becomes independent of nuisance parameters in large sample 
limit.
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Test statistic for discovery
Suppose relevant alternative to background-only (μ = 0) is μ ≥ 0.

So take critical region for test of μ = 0 corresponding to high q0
and > 0 (data characteristic for μ ≥ 0).

That is, to test background-only hypothesis define statistic

i.e. here only large (positive) observed signal strength is 
evidence  against the background-only hypothesis.

Note that even though here physically μ ≥ 0, we allow 
to be negative.  In large sample limit its distribution becomes
Gaussian, and this will allow us to write down simple 
expressions for distributions of our test statistics.

µ̂

µ̂
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Distribution of q0 in large-sample limit
Assuming approximations valid in the large sample (asymptotic)
limit, we can write down the full distribution of q0 as

The special case μ′ = 0 is a “half chi-square” distribution: 

In large sample limit, f(q0|0) independent of nuisance parameters;
f(q0|μ′)  depends on nuisance parameters through σ.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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p-value for discovery
Large q0 means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed q0,obs is

use e.g. asymptotic formula

From p-value get 
equivalent significance,
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Cumulative distribution of q0, significance
From the pdf, the cumulative distribution of q0 is found to be 

The special case μ′ = 0 is 

The p-value of the μ = 0 hypothesis is

Therefore the discovery significance Z is simply

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formula 

μ = param. of interest
b = nuisance parameter
Here take s known, τ = 1.

Asymptotic formula is 
good approximation to 5σ
level (q0 = 25) already for
b ~ 20.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the p0 plot
The “local” p0 means the p-value of the background-only
hypothesis obtained from the test of μ = 0 at each individual 
mH, without any correct for the Look-Elsewhere Effect.

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (μ = 1) at each mH.

ATLAS, Phys. Lett. B 716 (2012) 1-29

The blue band gives the
width of the distribution
(±1σ) of significances
under assumption of the
SM Higgs.



I.e. when setting an upper limit, an upwards fluctuation of the data 
is not taken to mean incompatibility with the hypothesized μ :  

From observed qμ find p-value:

Large sample approximation:   

To find upper limit at CL = 1-α, set pμ = α and solve for μ.
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Test statistic for upper limits
For purposes of setting an upper limit on μ use

where

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formulae 
Consider again n ~ Poisson(μs + b), m ~ Poisson(τb)
Use qμ to find p-value of hypothesized μ values.

E.g. f(q1|1) for p-value of μ =1.

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e.,
q1 = 2.69 or  Z1 = √q1 =  1.64.

Median[q1 |0] gives “exclusion 
sensitivity”.

Here asymptotic formulae good
for s = 6, b = 9.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the green and yellow limit plots
For every value of mH, find the upper limit on μ.

Also for each mH, determine the distribution of upper limits μup one 
would obtain under the hypothesis of μ = 0.  

The dashed curve is the median μup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution.

ATLAS, Phys. Lett. B 716 (2012) 1-29
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Next time...

Lecture 1: Introduction, probability, parameter estimation

Lecture 2:  Hypothesis tests, limits

Lecture 3:  Systematic uncertainties, experimental sensitivity

Lecture 4:  Bayesian methods, Student’s t regression
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I.  Discovery sensitivity for counting experiment with b known:

(a)

(b)  Profile likelihood 
ratio test & Asimov:

II.  Discovery sensitivity with uncertainty in b, σb:

(a)

(b)  Profile likelihood ratio test & Asimov:

Expected discovery significance for counting
experiment with background uncertainty
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Counting experiment with known background
Count a number of events n ~ Poisson(s+b), where

s = expected number of events from signal,

b = expected number of background events.

Usually convert to equivalent significance:

To test for discovery of signal compute p-value of s = 0 hypothesis,

where Φ is the standard Gaussian cumulative distribution, e.g.,
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7.

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/√b for expected discovery significance
For large s + b, n → x ~ Gaussian(μ,σ) , μ = s + b, σ = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for significance
Poisson likelihood for parameter s is

So the likelihood ratio statistic for testing s = 0 is

To test for discovery use profile likelihood ratio:

For now 
no nuisance 
params.
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem), 

To find median[Z|s], let n → s + b (i.e., the Asimov data set):

This reduces to s/√b for s << b.
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n ~ Poisson(s+b),  median significance,
assuming s, of the hypothesis s = 0

“Exact” values from MC,
jumps due to discrete data.

Asimov √q0,A good approx.
for broad range of s, b.

s/√b only good for s ≪ b.

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
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Extending s/√b to case where b uncertain
The intuitive explanation of s/√b is that it compares the signal,
s, to the standard deviation of n assuming no signal, √b.

Now suppose the value of b is uncertain, characterized by a 
standard deviation σb.

A reasonable guess is to replace √b by the quadratic sum of
√b and σb, i.e.,

This has been used to optimize some analyses e.g. where 
σb cannot be neglected.
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Profile likelihood with b uncertain

This is the well studied “on/off” problem:  Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

n ~ Poisson(s+b)         (primary or “search” measurement)

m ~ Poisson(τb) (control measurement, τ known)

The likelihood function is

Use this to construct profile likelihood ratio (b is nuisance
parameter):



G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 3 41

Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

and in particular to test for discovery (s = 0), 
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Asymptotic significance
Use profile likelihood ratio for q0, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Essentially same as in:



Or use the variance of b = m/τ,  
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Asimov approximation for median significance
To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n → s + b
m → τb

,   to eliminate τ:ˆ
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Limiting cases

Expanding the Asimov formula in powers of s/b and
σb

2/b (= 1/τ) gives

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated 
with the Asimov data set.
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Testing the formulae:  s = 5
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Using sensitivity to optimize a cut
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Summary on discovery sensitivity

For large b, all formulae OK.

For small b, s/√b and s/√(b+σb
2) overestimate the significance.

Could be important in optimization of searches with
low background.

Formula maybe also OK if model is not simple on/off experiment, 
e.g., several background control measurements (check this).

Simple formula for expected discovery significance based on
profile likelihood ratio test and Asimov approximation:
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Extra slides
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p-values in cases with nuisance parameters
Suppose we have a statistic qθ that we use to test a hypothesized
value of a parameter θ, such that the p-value of θ is

But what values of ν to use for f(qθ |θ, ν)?
Fundamentally we want to reject θ only if pθ < α for all ν.

→ “exact” confidence interval

But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered (resulting interval for θ “overcovers”).
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Profile construction (“hybrid resampling”)

Approximate procedure is to reject θ if pθ ≤ α where
the p-value is computed assuming the value of the nuisance
parameter that best fits the data for the specified θ :

“double hat” notation means profiled
value, i.e., parameter that maximizes
likelihood for the given θ.

The resulting confidence interval will have the correct coverage
for the points (θ, ˆ̂ν(θ)) .

Elsewhere it may under- or overcover, but this is usually as good
as we can do (check with MC if crucial or small sample problem).


