

Ultra-low emittance round beams with multi-pulse ionization injection schemes

Paolo Tomassini*

INO-CNR Italy

*Starting from Sept. 1° @ ELI-NP, LWFA+ X/γ sources theory group coordinator

In collaboration with L.Labate, L.A. Gizzi INO-CNR and INFN, Italy

Francesco Massimo CEA, France

Preamble: High-quality two-color injection

PRL **112**, 125001 (2014)

PHYSICAL REVIEW LETTERS

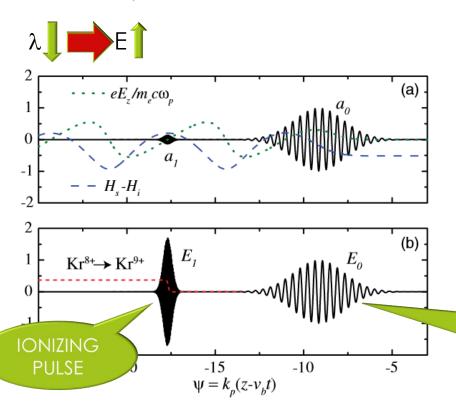
week ending 28 MARCH 2014

Two-Color Laser-Ionization Injection

L.-L. Yu, ^{1,2,3} E. Esarey, ¹ C. B. Schroeder, ¹ J.-L. Vay, ¹ C. Benedetti, ¹ C. G. R. Geddes, ¹ M. Chen, ³ and W. P. Leemans ^{1,2}

**Itawrence Berkeley National Laboratory, Berkeley, California 94720, USA

**Department of Physics, University of California, Berkeley, California 94720, USA


**Skey Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

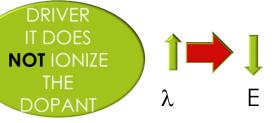
(Received 31 July 2013; published 24 March 2014)

A method is proposed to generate femtosecond, ultralow emittance ($\sim 10^{-8}$ m rad), electron beams in a laser-plasma accelerator using two lasers of different colors. A long-wavelength pump pulse, with a large ponderomotive force and small peak electric field, excites a wake without fully ionizing a high-Z gas. A short-wavelength injection pulse, with a small ponderomotive force and large peak electric field, copropagating and delayed with respect to the pump laser, ionizes a fraction of the remaining bound electrons at a trapping wake phase, generating an electron beam that is accelerated in the wake.

DOI: 10.1103/PhysRevLett.112.125001

PACS numbers: 52.38.Kd, 52.25.Jm

It uses two lasers systems:

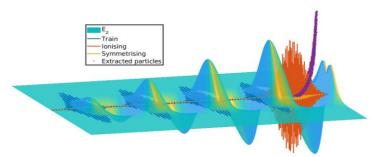

A **long wavelength** (λ >5 μ m) pulse excites the plasma wave and the **short wavelength** one (λ <0.4 μ m) extracts electrons by field ionization from an high-Z dopant.

It allows for very low emittance bunches.

The ionisation pulse is **linearly polarised** so as to strongly reduce the beam emittance

Emittances of the order of a **few tens of nm** could be obtained with this scheme

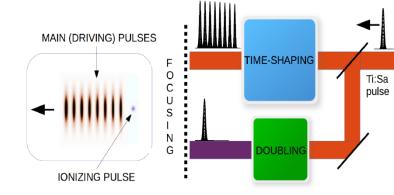
A very asymmetric beam is generated



The high-quality ReMPI scheme

PHYSICS OF PLASMAS 24, 103120 (2017)

The resonant multi-pulse ionization injection


Paolo Tomassini, ^{1,a)} Sergio De Nicola, ^{2,3} Luca Labate, ^{1,4} Pasquale Londrillo, ⁵ Renato Fedele, ^{2,6} Davide Terzani, ^{2,6} and Leonida A. Gizzi^{1,4} ¹Intense Laser Irradiation Laboratory, INO-CNR, 56124 Pisa, Italy ²Dip. Fisica Universita' di Napoli Federico II, 80126 Napoli, Italy ³CNR-SPIN, Napoli, 80126 Napoli, Italy

In ReMPI the wakefield driver is a train of resonant, sub-threshold pulses. It may be implemented lwith just **one** short-pulse (e.g Ti:Sa) laser system.

Since a unique very large-amplitude Ti:Sa pulse would fully ionize the atoms (Ar8+ in our selected example), the pulse is shaped as a resonant sequence of sub-threshold amplitude

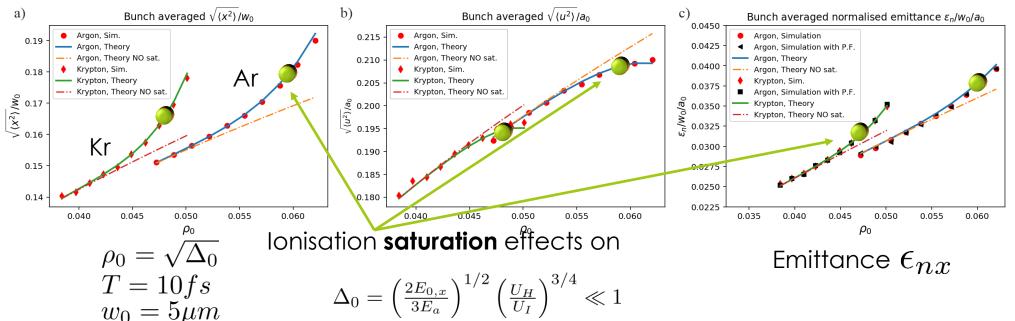
pulses.

Ionization

As in two-color, emittances of the order of **tens of nm** could be obtained with this scheme

A very asymmetric beam is generated, as the ionisation pulse is linearly polarised

Single pulse field (tunnel) ionisation theory (I)

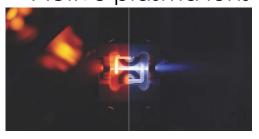


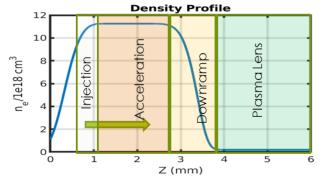
[1] C. Schroeder et al., Thermal emittance from ionization-induced trapping in plas. accel., PRAB 10130 (2014)

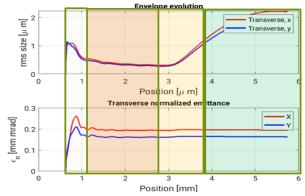
[2] P. Tomassini et al. Accurate theory of tunnel ionization emittance with a single laser pulse,., in prep.

Based on the work n [1] and with the aim of obtaining a very accurate theory for a **single cycle** or the **whole bunch ionisation**, we developed a model including Δ_0^4 correction terms and **exponential contributions due to the onset of saturation effects**.

Errors **below 1%** are obtained with $Kr^{8^+ o 9^+}$ and $Ar^{8^+ o 9^+}$ processes.


The new theory can be applied in **laser-envelope codes**, so as to accurately mimic the ionisation process (with <1% error) without the need of a very large resolution.


ROUND vs FLAT beams



Active plasma lens

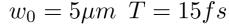
Courtesy of CERN: Image: KSjøbæk/CLEAR

P. Tomassini et al., High quality electron bunches for a multistage GeV accelerator with resonant multipulse ionization injection PRAB 22 11 (2019)

		FLAT	ROUND
	Matching betatron oscill.	Impossible to match: x and y sizes evolve differently	Matchable
2	Beam loading control/energy spread minim.	Impossible to match: x and y sizes evolve differently	Matchable
	UP/DOWN ramps	Impossible to match in both directions	Matchable
	Simulation complexity	Very large. Full 3D codes are necessary (even in an optimisation stage)	Small. Cylindrical or quasi-cylindrical codes can be employed
	PLASMA LENSES	Impossible to match in both directions	Matchable

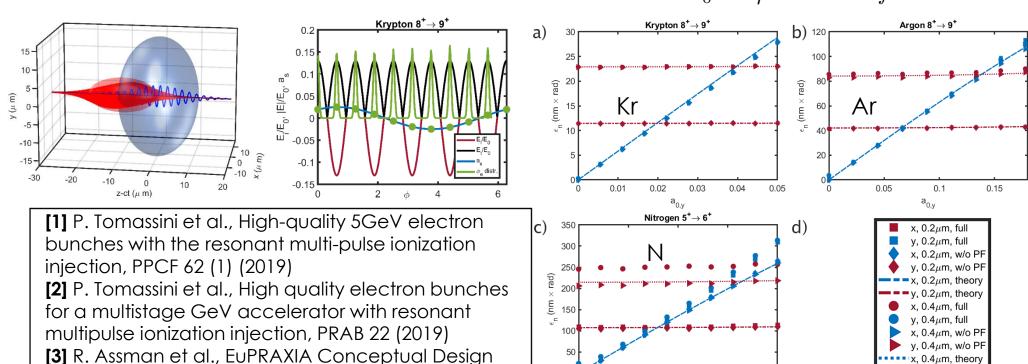
Only HQ round beams are candidates for staging.

Report Eur. Phys. J ST (2020)


Double pulse field (tunnel) ionisation theory and axially symmetric beams

 \mathbf{x} , 0.4 μ m, theory \mathbf{v} , 0.4 μ m, theory

[4] Axially symmetric high-quality electron beams generation with single or multi-pulse ionization injection schemes, P. Tomassini et al., in prep.


Two (even partially) overlapped, perpendicularly polarised pulses with different wavelengths can be fruifullly employed to obtain **round beams**, still **preserving the beam qualiy** offered by the two-color and ReMPI schemes. The idea has been presented in [1-4], and an accurate prediction of the single-cycle or whole bunch properties will published in [4]

0.2

0.3

0.4

FEL-quality 5GeV round beams with ReMPI

P. Tomas<u>sini</u> et al., High_Tquality 5GeV electron bunches with the resonant multi-pulse ionization injection, PPCF 62 (1) (2019)

1PW Ti:Sa pulse needed. Argon as dopant+20cm capillary

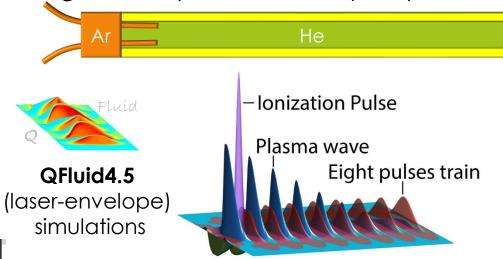
The ionisation pulse is **partially overlapped** with the **last pulse** of the train and a (quasi) round beam of emittances

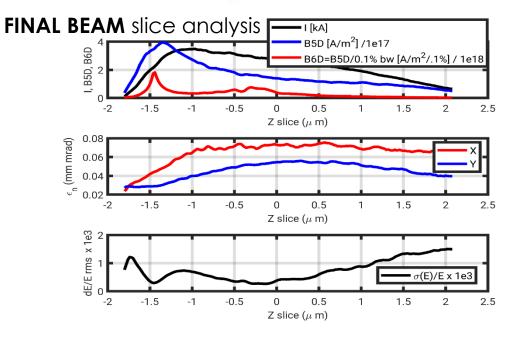
$$\epsilon_{nx} \simeq 75nm \times rad \quad \epsilon_{nx} \simeq 65nm \times rad$$

is produced. Slice analysis reveals that a **FEL compliant 5GeV** beam is produced

Simulation Parameters

«Injecton» gas jet (50%He,50%Ar)


Up/Down ramps	Plateau		Background density
2mm	5mm	2.75 10^16 1/cm^3	2.2 10^17 1/cm^3


«boosten» capillary (100% He)

Up/Down ramps	Plateau	Atomic density	Background plasma density	Channel depth for guiding
2mm	22 cm	1.1 10^17 1/cm^3	2.2 10^17 1/cm^3	90% of the matched value

Ionization pulse, 4^th harmonics of the Ti:Sa pulse

Wavelength	Energy	Duration	Waist
0.2 μm	0.06J	45 fs	4 μm

My tentative answers (1/4)

! Everything is «on my opinion», I omit to repeat it to save space!

- 1) Where do you see HEP applications of advanced accelerators in 30 years? //
- 2) What intermediate physics applications/steps do you see until a HEP linear collider?

 Applications (in addition to the medical one)
- High-field physics and polarized particles are very interesting option.
- **Atto-seconds probing** is also very interesting because it's not available with standard accelerators. For example **Two-color** and **ReMPI** schemes can provide **sub-fs beams**. They can be employed directly as probes or used to generate sub-fs X/gamma beams.

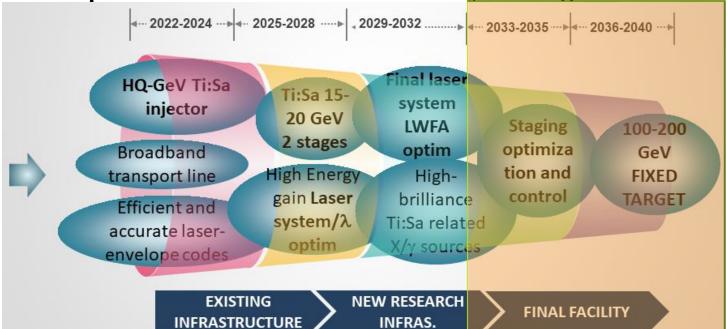
Steps (in addition to the positron counterpart)

• The critical step is **staging**, of course. In particular, **preserving beam emittance** is the most challenging physical and technical issue. We need to **step-up the first stage final energy to a GeV scale** so as to have the chance of being able to control emittance growth during the downramp+optics+upramp sections. Therefore an interesting **first steps** chain in pure LWFA could be

Develop and test an high-energy/high-quality injector

Develop and test by using standard facilities a broadband (1%) transfer line

Build a first highquality two stages LWFA accelerator


My tentative answers (2/4)

- SOTANDEL SOT
- 3) What is the synergy with related fields? Apart from the obvious speed-up of laser system development. I see a deep link with the related High-Brilliance X/gamma sources development.
- 4) What is the role of your work here?

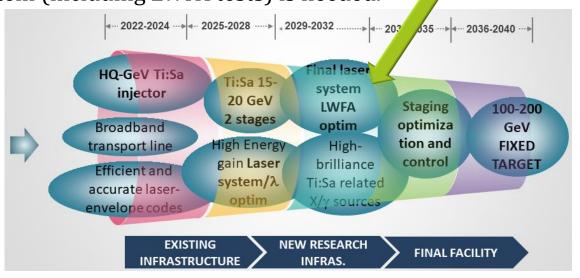
I'm working on **high-quality injectors since 2003** (first numerical demostration of density downramp as a low-emittance injector). My main (current) contribution is on **ReMPI optimisation** and on the development of an **accurate theory of beam emittance** with ionisation injection schemes. I'm also proposing a simple way to obtain **round beams** with very low emittances.

P2

1) What are the important milestones for the next 10 years to get there from today?

My tentative answers (3/4)

- 2) What additional support is needed to achieve these? //
- 3) What should be proposed as deliverables until 2026? Please list in order of priority.
- a. Demonstration that the **main ingredients** of a HEP (electron) accelerator are physically understood and technically controlled. This means that a GeV-scale high-quality (<100nm rad, round, <1% energy spread) LWFA injector should be tested in an **existing 1PW Ti:Sa facility** [ELI-NP? ELI-Beamlines?...]. At the same time, by using the information from Simulations and preliminary tests on the obtained bunch, we need to demonstrate that the beam exit from the injector stage + (plasma lens?) + standard beam optics + plasma upramp sections can be managed **sufficiently well to maintain the beam quality** [SPARC-LAB? DESY?....]
- b. Demonstration that a GeV class FEL quality compliant and stable beam can be generated with a single stage LWFA [ELI-NP? ELI-Beamlines?...].
- c. Demonstration that active control of beam phase jitter can be achieved [DESY?]
- 4) Is the R&D work for each of those deliverables already funded and, if not, what additional resources / support would be needed? //


My tentative answers (4/4)

P3

- 1) What key R&D needs can be achieved in existing R&D facilities?
- Ti:Sa LWFA demonstration module, Beam transport line, Active beam phase control

NOTE: Once the optimal laser technology has been selected, a **light research infrastructure** to test the new system (including LWFA tests) is needed.

- 2) What is the role of the already planned future facilities in Europe and world-wide? //
- 3) What can be done with the existing and planned funding base? //
- 4) Is a completely new facility needed?

Yes

5) Are additional structures needed beyond existing networks and projects, e.g. a design study for a collider or an advanced accelerator stage?//