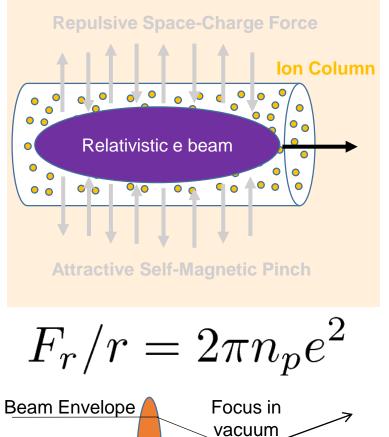
Strong Electron Beam Focusing with Passive, Underdense Plasma Lenses

European Strategy Agenda Townhall

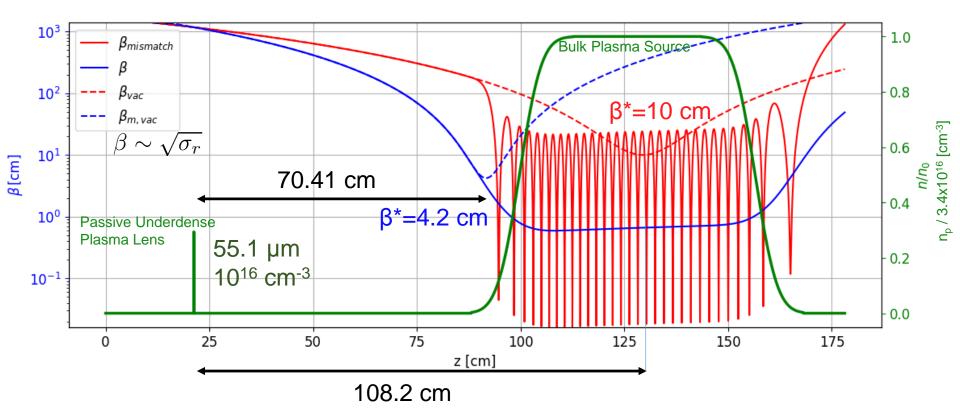
5/21/2021

Christopher Doss¹, Robert Ariniello¹, Keenan Hunt-Stone¹, Valentina Lee¹ John Cary¹, Sebastien Corde², Spencer Gessner³, Bernhard Hidding^{4,5}, Michael Litos¹

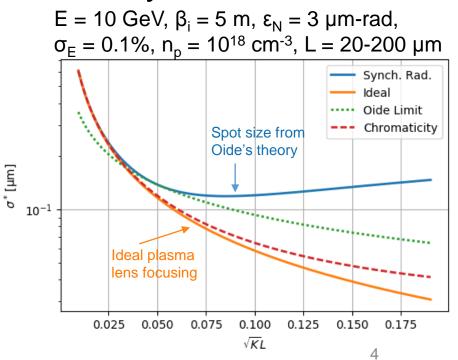

¹University of Colorado Boulder, Center for Integrated Plasma Studies, Boulder, CO 80309 USA
²LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
³SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
⁴Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
⁵Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK

University of Colorado Bouider

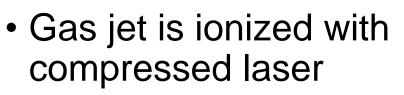
Underdense Passive Plasma Lens


- High density beam blows out plasma electrons, creating an ion column.
- Ion column provides focusing force on beam
- <u>Linear</u> focusing force which depends on uniform background ion density
- While quadrupoles have magnetic gradients of ~3 F_r/r T/m, the equivalent magnetic gradient in a plasma wake can be ~1.5 MT/m

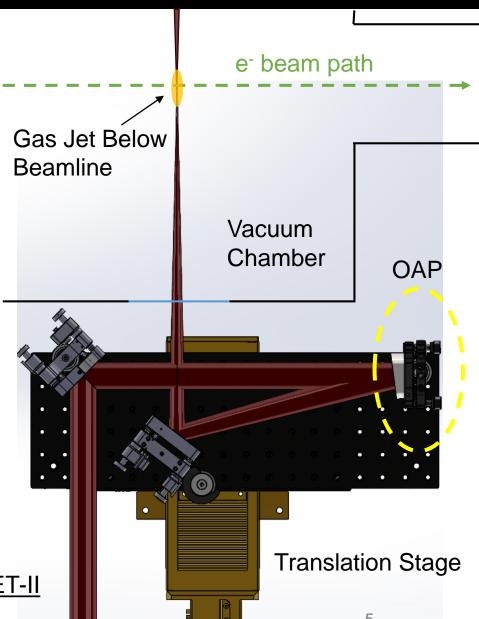
2



- Matching into a PWFA requires extremely small beam size for emittance preservation.
- Plasma lenses are one option to reach this goal.



- Theory described by Oide details a minimum achievable spot size known as the "Oide Limit"
 - Katsunobu Oide, Phys. Rev. Lett. 61, 1713 Published 10 October 1988
- Important for future colliders, but this limit has yet to be reached experimentally.
- We expect to be able to study this experimentally at FACET-II using underdense plasma lenses.



Plasma Lenses at FACET-II

- Adjust plasma lens density through gas jet pressure.
 - 10¹⁶ cm⁻³ 10¹⁸ cm⁻³
- Adjust plasma lens thickness through position of focus.
 - 35 µm 100's µm
- e beam diagnosed with imaging spectrometer.

*See Mark Hogan's talk @ 15:15 on FACET-II

Further Studies

-0.085

-0.08

-0.075

-0.07

-0.065

-0.06

-0.055

-0.05

-0.045

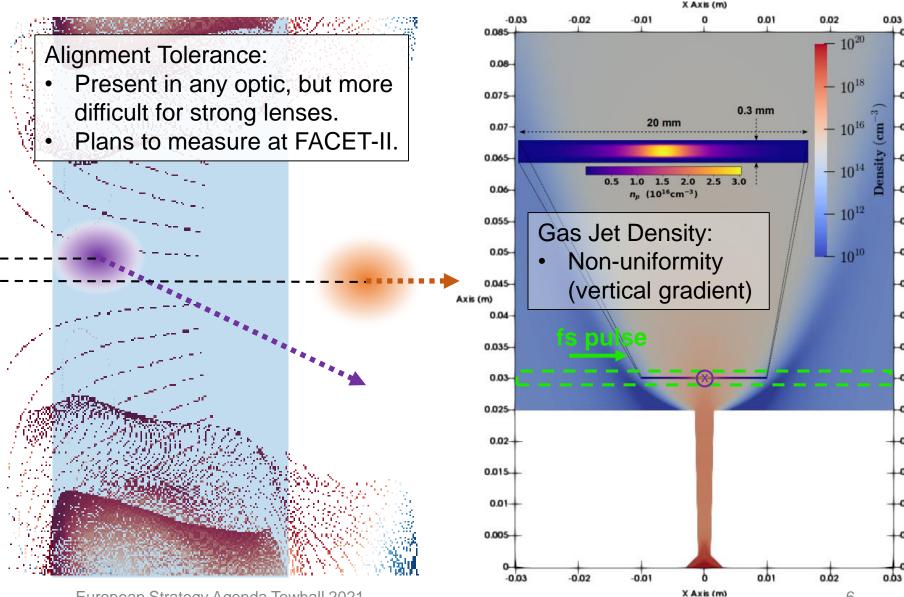
-0.04

-0.035

-0.03

-0.025

0.02

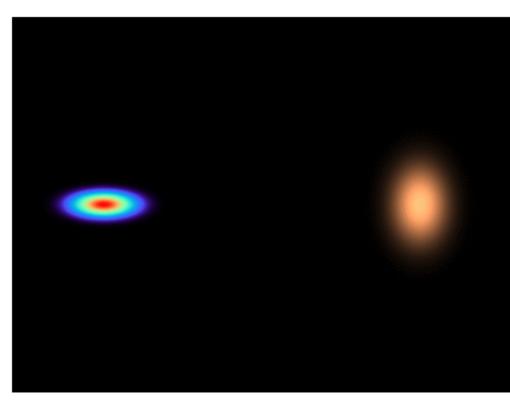

0.015

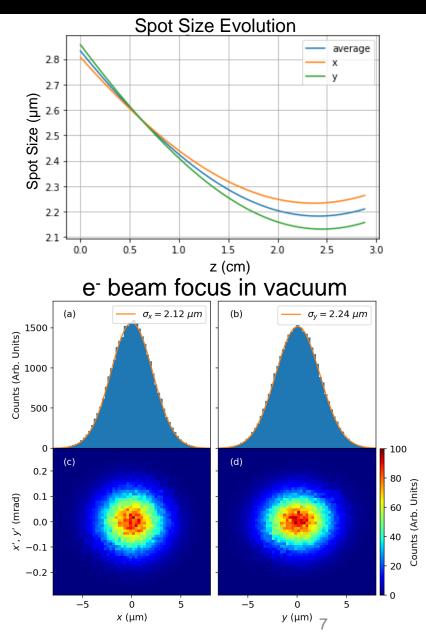
0.01

-0.005

6

YAxis (m)




European Strategy Agenda Towhall 2021

Further Studies

- Can attempt to operate with witness in 2nd bucket.
- VSim plasma lens with thickness 40 µm at 5x10¹⁷cm⁻³

- I think advanced accelerator applications in HEP will converge on (1) TeV electron-positron collider and (2) compact light sources
- Steps to get to HEP linear collider:
 - 1. High quality PWFA w/ emittance preservation, drive bunch depletion, optimized beam loading
 - 2. Development of ideal staging between PWFA stages
 - 3. Steps 1 & 2, but with positrons
- Plasma lenses can assist with matching into PWFA and with staging between PWFA stages. (blue)

- Passive plasma lens milestones in the next 10 years:
 - 1. Demonstration of aberration-free focusing
 - 2. Use of plasma lens to match into PWFA.
 - 3. Studying the Oide limit with passive plasma lens
 - 4. Compact staging between two PWFA stages
 - 5. Advanced nonlinear focusing applications of underdense plasma lenses
 - 6. Demonstration of passive plasma lens regime for positrons

- Deliverables until 2026
 - Theoretical design studies for target applications.
 - Experimental demonstration of focusing superiority with respect to magnetic focusing
 - Demonstration of use in PWFA matching
 - Initial studies of Oide effect
- Plasma lenses with current funding and R&D
 - The above deliverables are planned for FACET-II (SLAC)
 - FLASH Forward (DESY) has capabilities
 - LWFA / PWFA hybrid experiments?

- Plasma lenses with future funding and R&D
 - Ultralow emittance measurements (e_N < 1 mmmrad)
 - Ultrasmall spot size measurements ($\sigma_r < 100 \text{ nm}$)
 - Laser-driven underdense plasma lens
- Are any new facilities or structures needed?
 - Funding for positron capabilities at FACET-II
 - Talk by Spencer Gessner @ 15:00 on this topic
 - Facility for true staging experiments in PWFA
 - Multiple plasma stages, independent drive beams for each stage
 - Talk by Carl A Lindstrøm @ 16:45 for more on staging

Thanks!

SLAC UCLA 🚳 💥 🛞 🛵 🕅 😌 🖤 🗮 🐯 🛠 radiabean 😰 X TECH-X 💓

This work was funded by the U.S. Department of Energy grant number DE-SC0017906.

