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Pulse energy (nJ)

Attosecond photon and e- beams from plasma accelera;_gr

Attosecond photon beams in plasma-driven FELs

X-ray pulses with 50-100as and pJ-energy desirable for studying e-

motion in atoms on its natural timescale.

HHG (XFEL) sources reach 40 (200) as length with pJ (uJ)-level energy.
XFELSs min pulse length limited to ~ 200as by emittance (At . €6

A plasma-driven attosecond photon source can combine the benefits of
HHG sources & XFELs based enabling new capabilities.
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Plasma accelerators
offers path to short,
higher power photon
pulses than state-of-
the-art attosecond
HHG/XFEL sources
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* J. Duris et al. Nat. Photonics 14, 30-36 (2020)

* Z.Zhang et al. New J. Phys. 22 083030 (2020)

»
:)m

:



Attosecond photon and e- beams from plasma accelerators

Pulse energy (nJ)
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Attosecond photon beams in plasma-driven FELs Attosecond e-beams for short bunch colliders
X-ray pulses with 50-100as and pJ-energy desirable for studying e- + Ultra-short bunches are being considered for

motion in atoms on its natural timescale.

next gen. e+/e- colliders due to reduced beamstrahlung
HHG (XFEL) sources reach 40 (200) as length with pJ (uJ)-level energy.

+ Beamstrahlung effects can be “switched off” if the bunch

XFELs min pulse length limited to ~ 200as by emittance (At,,;, o 65/6) |ength is made small enough (attosecond-|eve|)
A plasma-driven attosecond photon source can combine the benefits of
HHG sources & XFELs based enabling new capabilities.
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PAX: A plasma-driven attosecond X-ray source
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* HEP facilities e.g. FACET-Il can enable

initial experimental tests and conceptual
demonstration in next 2-5 years.

R&D in this direction in line with P(L)WFA
roadmap towards near-term applications

Advanced Accelerator Development Strategy Report * February 2016 4
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Simulated performance of a PAX source
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‘Peak power 5-10x compared to attosecond XFEL

‘Energy fluctuations 10x smaller than attosecond XFELs due to emission process not
starting from noise

* Less restrictive tolerance on beam emittance compared to SASE XFEL

« >10x less restrictive tolerance on angular trajectory jitter compared to SASE XFEL
- Softened tolerances are due to pre-bunching, high current and short undulator




Planned demonstration experiment at FACET-II
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Witness Beam at Compressor exit
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Summary
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« FEL user community can benefit from new light source capabilities enabled by the
unique properties of plasma-accelerated e-beams.
« The advantage of a plasma-based FEL can extend beyond its compactness
(higher power, single cycle pulses, pulse control/stability...)
« PWEFA light sources offer opportunity to study MA-compression relevant for short
bunch colliders.
« We have presented an example of attosecond X-ray generation based on
coherent emission from an attosecond e-beam compressed after exiting a PWFA.
» First science goals for demonstration experiments:
» Measuring coherent radiation targeting XUV before X-rays.

» Characterizing PAX source properties.

 Long term vision:
» QOutline path forward dedicated to plasma-driven attosecond science
experiments.



Questions Part 1
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2) What intermediate physics applications/steps do you see until a HEP linear collider?
Link to Snowmass Advanced Accelerator Concepts group for Near Term Applications

+ Light sources based on e-beams driven by plasma wakefields (both beam- and laser-driven) and
dielectric structures. This includes XUV, X-ray, and gamma emission from betatron emission, FELSs,
Compton/Thomson scattering, and through other particle-matter interaction mechanisms.

» Medical applications of particle beams produced at advanced accelerators (e.g. few-MeV and high-
energy electron beams, protons, and ions)

* Fundamental discovery science targeting particle physics and astro-phenomena accessible with
moderate energy (substantially below TeV) advanced accelerators.

3) What is the synergy with related fields?
* FEL user community (taking advantage of PWFA-FEL properties)

+ High energy density physics community (utilizing PWFA facilities to study HED phenomena)
* Medical community

4) What is the role of your work here?
» Developing one example of a new capability enabled by PWFA-FEL operation.
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Questions Part 2
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1) What are the important milestones for the next 10 years to get there from today?
*Demonstration of coherent emission and gain from a plasma-driven FEL
*Characterization of pulse properties from plasma-driven FELs, exploration of similarities and differences between
beam-driven and laser-driven parameter space
*Delivery of plasma-driven FEL pulses to user community

2) What additional support is needed to achieve these?
*Dedicated resources allocated for pursuing/demonstrating near term applications in PWFA facilities (beam time,
funding, human)

3) What should be proposed as deliverables until 20267 Please list in order of priority.
*Observation of coherent radiation at a plasma-FEL
*Dedicated user experiment using a plasma FEL source

4) Is the R&D work for each of those deliverables already funded and, if not, what
additional resources / support would be needed?

*Some efforts funded in the US (e.g. LBNL ECA J. Van Tilborg, SLAC PWFA-FEL Task Force & PAX LDRD, UCLA),
more in Europe (e.g. DESY LUX, DESY FlashForward, Strathclyde, Eupraxia, COXINEL)



Questions Part 3
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1) What key R&D needs can be achieved in existing R&D facilities?
« Demonstration of coherent emission and gain from a plasma-driven FEL

2) What is the role of the already planned future facilities in Europe and world-wide?
» Expand access and prioritize resources for PWFA light source & near-term application
development

3) What can be done with the existing and planned funding base?
 Leverage cross-cutting interests (e.g. photon/user side and accelerator side) to develop near-
term applications with users in mind

4) Is a completely new facility needed?
* No (beyond those that are planned)

5) Are additional structures needed beyond existing networks and projects, e.g. a design
study for a collider or an advanced accelerator stage?
* Yes, a forum for dialogue between plasma accelerator and light source user-community to
examine opportunities and drive priorities.
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