

Plasma Wakefield Acceleration at FACET-II & GARD beam test facilities in the US

21-MAY-2021

Mark J. Hogan
Senior Staff Scientist

Advanced Acceleration Roadmaps Were Defined in 2016

SLAC

- Following Snowmass 2013 and ensuing HEPAP sub panel community representatives from universities and laboratories organized a series of workshops
- Roadmaps and priorities summarized in the report
- Will be revisited as part of Snowmass 2021 (see Pietro's presentation 1st Townhall)

+ RF and Accelerator Beam Physics Structure Wakefield

Roadmaps emphasize need for facilities to test concepts e.g. AWA: SWFA, BELLA 2nd beamline: LWFA, and FACET-II: PWFA

Five U.S. beam test facilities with complementary and diverse capabilities: ATF@BNL, AWA@ANL, BELLA@LBNL, FACET-II@SLAC, FAST@FNAL

Capabilities:	ATF	AWA	BELLA	FACET-II	FAST
Operation model:	·				
National User Facility	✓			✓	
Accelerator Stewardship	✓				
Collaboration models		✓	✓		✓
Beams and accelerators:	·				
~100 MeV electrons	✓	✓			✓
10 GeV electron beams				✓	
10 GeV positron beams				planned	
High charge electron bunches		✓			
Proton beams					planned
NC S-band and X-band	✓			✓	
NC L-Band		✓			
SC L-Band linac					✓
Storage ring					✓
Lasers:					
TW class 0.8 µm laser (Ti:Sapphire)	✓		✓	✓	
PW class 0.8 μm laser (Ti:Sapphire)			✓		
TW class 10 µm laser (CO ₂)	✓				
Plasmas:	·				
Plasma capillaries	√ (2 cm)	√ (2 cm)	√ (10 cm)		
Gas Jets	✓		✓	✓	
Heat pipe oven				✓	
Hollow channel		✓		✓	

M.J. Hogan - PWFA @ FACET-II & GARD Beam Test Facilities, May 21, 2021

2021-2025 Plans

Research goals:	ATF	AWA	BELLA	FACET-II	FAST	
Advanced Acceleration Concepts:						
Collider stage		DWFA	LWFA	P&D WFA		
Acceleration of positrons				✓		
Studies of staging		✓	✓			
High brightness beams	✓	✓	✓	✓		
Practical Application of AAC			✓	✓		
Feedback and stable operations with high rep. rate			✓			
Beams Physics:	·	·				
Intensity frontier (Integrable Nonlinear Optics)					✓	
Cooling R&D		✓			✓	
Physics of extreme compression		✓		✓		
SF QED, Single Electron and Cristal-like beams			✓	✓	✓	
Technology:	•					
Stewardship facility (support for industry R&D)	✓					
CO2 laser	✓					
ML/AI to characterize intense bunches, improve efficiency		✓		✓		
High efficiency and rep. rate laser			✓			
Planned key upgrades	•					
CO2 laser power upgrade (20TW / 0.5ps)	✓					
Energy upgrade to 135 MeV		√				
Second beam Line and High repetition rate laser (K-BELLA)			✓			
Positrons and Advanced bunch compressor				✓		
Proton beam capability + ILC CM testing?					✓	

M.J. Hogan – PWFA @ FACET-II & GARD Beam Test Facilities, May 21, 2021

FACET-II: A National User Facility Based on High-energy Beams and Their Interaction with Plasmas and Lasers

Advance the energy frontier for future colliders

Develop brighter X-rays for photon science

FACET-II: A National User Facility Based on High-energy Beams and Their Interaction with Plasmas and Lasers

SLAC

		SLAC						
2nd Townhall Meeting High Gradient Accelerator Plasma/Laser								
🔳 Frida	y 21 May 2021, 09:00 → 18:00 Europe/Zurich							
09:55	Optical probe of energy dissipation from e-beam driven plasma wakes Speaker: Zgadzaj Rafal	Repetition Rate #2: 6; #3: 7						
10:10	Strong electron beam focusing with passive, underdense plasma lenses Speaker: Christopher Doss (University of Colorado Boulder)	Focussing #2: 4,5,7,8						
14:30	Ligh-source applications of advanced accelerators Speaker: Claudio Emma	#2: 9; #3: 5,6	;					
14:45	Exploring the fully no-perturbative regime of QED at a Future Linear Collider Speaker: Sebastien Meuren	Alternative Concepts #2: 4,5,7; #3: 5,9						
15:00	Towards an integrated design study for a Plasma Linear Collider / Positron II	Collider Design & Positron #2: all; #3: 2,9						
3rd T	ownhall Meeting (May 31st)							
	Plasma photocathode HEP R&D Speaker: Fahim Habib	Low Emittance Sources #2: 2; #3: 5,6						

Planning for e+ to be available > 2023

Beam Driven Plasma Wakefield Acceleration: Experiments @ FACET-II

Plasma Electrons

Electron Beam

Expelled

Demonstrated @ FACET

Gradient:

>100GeV/m (Nature Communications 2016)

Energy Gain & Energy Spread:

9GeV with 2% (PPCF 2015)

Efficiency:

• 30% instantaneous (*Nature 2014*)

Normalized Emittance:

100 mm-mrad

Proposed @ FACET-II

Gradient:

>10GeV/m

Energy Gain & Energy Spread:

10GeV with < 1%

Efficiency:

30% overall

Normalized Emittance:

• < 10 mm-mrad

Narrow energy spread acceleration with high-efficiency has been demonstrated FACET-II experiments will focus on simultaneously preserving beam emittance

Need to answer the question: Is it possible to strongly load the longitudinal wake without strong transverse wakes and BBU?

Various mechanisms of emittance growth and mitigation have been studied theoretically and numerically:

- D. Whittum et al. PRL 67, 991 (1991) **LBNL/SLAC**
- J. Rosenzweig et al., 95, 195002 (2005) **UCLA**
- C. Huang et al., PRL 99, 255001 (2007) UCLA
- V. Lebedev et al., PRAB 20, 121301 (2017) **FNAL**
- T. Mehrling et. al., PRL 118, 174801 (2017) **DESY/IST**
- W. An et al. PRL 118, 244801 (2017) **UCLA**
- C. Benedetti et al., PRAB 20, 111301 (2017) LBNL
- T. Mehrling et. al., PRL 121, 264802 (2018) **LBNL**
- A. Burov et al., arXiv:1808.03860 FNAL

Plamsa ramps

Energy Spread

Ion Motion

Benchmarking models and testing mitigations requires a new generation of beam diagnostics and plasma targets

Computation is an Essential Component of PWFA Science

SLAC

- Suite of codes (especially QuickPIC, OSIRIS)
 have been benchmarked against experiments at
 SLAC for the last 20 years
- Provide capabilities to model next generation experiments at FACET-II
- Strong connection between theory, computation and experiment – every major result benefited from strong collaborations

Exascale Computing to Support Detailed Collider Design

- LBNL-SLAC-LLNL collaboration
- Ultimate goal to model 100 stages for TeV collider design by 2025

Computation is an Essential Component of PWFA Science

SLAC

- Suite of codes (especially QuickPIC, OSIRIS)
 have been benchmarked against experiments at
 SLAC for the last 20 years
- Provide capabilities to model next generation experiments at FACET-II
- Strong connection between theory, computation

3rd Townhall Meeting (May 31st)

Open-source simulation ecosystem for laptop to Exascale modeling of high-gradient accelerators Speaker: JL Vav

Simulation Development #3: 4,9

Detailed Collider Design

- LBNL-SLAC-LLNL collaboration
- Ultimate goal to model 100 stages for TeV collider design by 2025

Questions for the Community – Part 1

SLAC

1) Where do you see HEP applications of advanced accelerators in 30 years?

- If ILC or Higgs Factory, offer a path towards an energy upgrade. If no ILC, propose green-field collider concepts
- If CEPC, FCC, pursue concepts for injectors

2) What intermediate physics applications/steps do you see until a HEP linear collider?

• Light sources with new capabilities, e.g. shorter attosecond pulses, higher peak power, harder photons...

3) What is the synergy with related fields?

- Beam physics, tolerances etc common to many colliders (traditional & advanced)
- Plasma sources, diagnostics, simulations, positrons LWFA/PWFA, Beam shaping for optimal loading – SWFA/PWFA

4) What is the role of your work here?

• Develop new concepts, provide facilities/capabilities to the community to test new ideas and perform critical path R&D towards a collider and other applications

Questions for the Community – Part 2

- 1) What are the important milestones for the next 10 years to get there from today?
 - Beam quality (with gradient, efficiency etc), understand tolerances and mitigations needed for stability, design for staging that scales well to > TeV, integrated design study, credible concept for e+ acceleration on par with e- developed and tested
- 2) What additional support is needed to achieve these?
 - \$\$\$: Upgrades and/or new facilities
 - Mandate, funding \$\$, and the community will to pursue integrated design(s)
- 3) What should be proposed as deliverables until 2026? Please list in order of priority.
 - See (1) and comment below
- 4) Is the R&D work for each of those deliverables already funded and, if not, what additional resources / support would be needed?
 - Concepts need to be tested and demonstrated. It takes 5 years to realize a new facility so need to develop concepts for what comes next while we execute on goals for next five years

Questions for the Community – Part 3

SLAC

- 1) What key R&D needs can be achieved in existing R&D facilities?
 - Most of what is described in 'Part 2' except staging, positrons
- 2) What is the role of the already planned future facilities in Europe and world-wide?
 - Depends on what is realized for EuPRAXIA. FLASHForward, AWAKE, FACET-II are going with planned upgrades but not aware of large new facilities – yet.
- 3) What can be done with the existing and planned funding base?
 - A lot but like HEP we are victims of our own success. Answering some questions, especially demonstrations closer to operational collider or light source parameters requires more complex and expensive facilities
- 4) Is a completely new facility needed?
 - Yes, but optimized design (scope, cost, schedule) is still needed
- 5) Are additional structures needed beyond existing networks and projects, e.g. a design study for a collider or an advanced accelerator stage?
 - Yes see comments earlier and talk by Spencer Gessner (today 15:00)

Questions?

21-MAY-2021

