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MOTIVATION: REQUIREMENTS FOR A HEP COLLIDER

High-energy physics colliders require both high energy and high luminosity.
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The accelerator must provide:
High acceleration gradient
High beam quality and wall-plug-to-beam efficiency

High beam power (i.e., simultaneous large energy gain and high repetition rate)
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CHALLENGE: STAGING OF PLASMA ACCELERATORS IS NON-TRIVIAL

Staging is likely necessary to reach high beam power
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Proof-of-principle demonstration at LBNL using plasma lenses.
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(1) Emittance growth due to strong chromaticity Proof-of-principle demonstration of staging.
Source: Steinke et al. [Nature 530, 190 (2016)]

(2) Tight synchronization and misalignment tolerances
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(1) Energy-dependent mismatching due to chromaticity between stages. (2) Energy spread and offset highly sensitive to timing jitter.
Source: Lindstrom [PRAB 24, 014801 (2021)] Source: Tzoufras et al. [PRL 101, 145002 (2008)]
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NEW CONCEPT #1: ACHROMATIC TRANSPORT WITH TRANS. TAPERED PLASMA LENSES
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accelerator

Dipole magnet Plasma lens

(transversely tapered)

Transversely tapered plasma lenses (APL/PPL)

Disperse the bunch into the PL with a dipole, match
the focusing of each energy with a transverse taper.

Local chromaticity correction™ (used in final focus
systems) *Raimondi & Seryi, Phys. Rev. Lett. 86, 3779 (2001)

Simple in/out-coupling of laser and beam drivers.

Large, dispersed beams in the plasma lenses
= minimal wakefield-distortion in APLs.
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NEW CONCEPT #1: ACHROMATIC TRANSPORT WITH TRANS. TAPERED PLASMA LENSES

(manuscript in preparation)
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NEW CONCEPT #2: SELF-CORRECTION FOR STABILITY AND ENERGY-SPREAD DAMPING
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Introduce a small compression between stages

(1) Synchrotron oscillations of the centroid = phase stability.

(2) Feedback between beam loading and shape of current profile
= automatic wakefield flattening (optimal beam loading).

Self-correcting long. phase space: Damps energy spread and energy offset

Robust mechanism: specific wakefield regime or exact Rss not critical.
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NEW CONCEPT #2: SELF-CORRECTION FOR STABILITY AND ENERGY-SPREAD DAMPING
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(Strong beam loading = natural high efficiency.) More R&D required to investigate

Implication: Staging not only relevant to high energies ...the coupling to the transverse phase space.

Also beneficial for small-scale plasma accelerators. ...the effect of CSR, betatron radiation, etc.
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QUESTIONS, PART 1: ROAD MAP TO A HEP COLLIDER

1) Where do you see HEP applications of advanced accelerators in 30 years?
y=y collider (the ideal starting point) — allows a “low-risk” path independent of e+ success/failure.
et+e- collider (a potential upgrade) — important to continue e+ plasma acceleration R&D (in parallel).
2) What intermediate physics applications/steps do you see until a HEP linear collider?
Non-linear QED experiments — requires high energy, but moderate power.
Hard x-ray FEL — requires all the same properties as a HEP collider, but at a smaller scale.
3) What is the synergy with related fields?
Staging can provide higher energy, higher stability and higher beam quality.
Can be applied to improve also small-scale plasma accelerators.
Example: Direct injection into a storage ring (requires high energy stability, low energy spread)
4) What is the role of your work here?
Two new concepts that may enable staging:
Achromatic emittance-preserving transport (with transversely tapered plasma lenses).

Self-correcting longitudinal phase space (small compression between stages).

@FForwardDESY
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QUESTIONS, PART 1: ROAD MAP TO A HEP COLLIDER

Key R&D
Multistage R&D
Status quo Phase 1- Phase o Mid-term goal Ultimate goal
Achromatic transport Self-correction mechanism . .

Single-stage Charge preservation Phase stability Demonstrator facility HEP machine

experiments Emittance preservation Energy-spread damping (hard X-ray FEL) (v-y collider)
Low energy spread (2 stages) (~10 stages) High quality Ultrahigh quality
Low emittance High energy Ultrahigh energy
High efficiency High power Ultrahigh power

(in parallel)

High rep. rate R&D

High-quality, high-efficiency single-stage acceleration at ~10 kHz
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QUESTIONS, PART 2: MILESTONES

1) What are the important milestones for the next 10 years to get there from today?
Demonstrate self-correction in a multistage (10-stage) plasma accelerator
Demonstrate high-repetition-rate (single-stage) plasma acceleration

2) What additional support is needed to achieve these?

&
) -

3) What should be proposed as deliverables until 20267
The “ultimate” single-stage plasma accelerator
Demonstrate transversely tapered plasma lenses.
Theoretical investigations of staging concepts.

|dentify scalable high-repetition-rate concepts
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QUESTIONS, PART 3: FUNDING AND FACILITIES

1) What key R&D needs can be achieved in existing R&D facilities?
Single-stage plasma acceleration
Demonstrating transversely tapered plasma lenses
High-repetition-rate plasma acceleration
2) What is the role of the already planned future facilities in Europe and world-wide?
Staging not currently part of any planned facilities.
3) What can be done with the existing and planned funding base?
2 stages may be possible, but ~10 stages IS not possible.
4) Is a completely new facility needed?

Yes, and the facility should be scalable to become a high-rep-rate, multistage facility (a demonstrator facility).
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