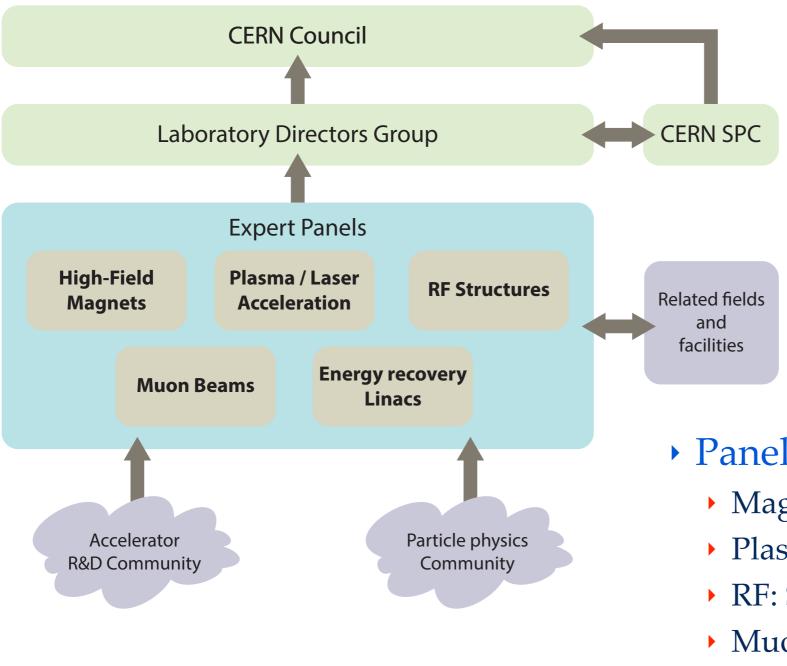

Starting with the Future...

- Everything is driven by our science roadmap
 - Namely, the European Strategy for Particle Physics
 - https://cds.cern.ch/record/2721370
- Goals explicitly (though not exclusively) mentioned
 - Completion, commissioning, exploitation of HL-LHC
 - Delivery of LNBF / DUNE
 - Electron-positron Higgs factory
 - Energy frontier proton-proton collider
- Also increasingly prominent in discussions: muon collider
- Our past achievements rest on substantial technology R&D
 - At least 15-20 years in the case of the LHC / HL-LHC
 - Substantial R&D and industrialisation of e+e- cavity production
- Future facilities depend yet more strongly on new technology
 - Challenges presented by FCChh and MC in particular

Timeline

• Key dates


- 9th July: Symposium for the PP community
 - Thanks to RECFA delegates for dissemination
- July EPS-HEP: reports by panels, summary report
 - Key findings roadmap planning is next stage
- September SPC / Council: consideration discussion of interim report; distribution via RECFA representatives
- September October: 'closed process' to define draft roadmap, scoped plans
- November: Review and feedback by SPC subcommittee
- December Council: approval of roadmap
 - Corresponding time line for ECFA detector R&D roadmap
- First draft of the Interim Report now with LDG for comments

Roadmapping Approach

- Stage 1 (overseen by LDG, mandate from CERN Council)
 - Formal process, continuing the momentum of the strategy groups
 - Mirrors the style of the ESPPU
 - Expert discussion panels
 - Wide consultation with the community (some inputs already in place from ESPPU)
 - Determination of a plan with options for investment
 - Culminates in approval of roadmap by CERN Council and finishes
 - European process, but with strong international inputs
- Stage 2 (driven by the community, LDG in support)
 - Proposals for activities by accelerator R&D networks / community
 - Explicit discussion of possible funding levels and routes
 - Engagement with funding agencies around specific projects
 - Implementation of the R&D roadmap
 - Necessarily a programme with a fully international context
- The roadmap is the 'consensus document' that will open the subsequent discussion on funding and implementation

SPC Update: Accelerator R&D Roadmap

Panels

- Magnets: P. Vedrine (IRFU)
- Plasma: R. Assmann (DESY)
- RF: S. Bousson (IJCLab)
- Muons: D. Schulte (CERN)
- ERL: M. Klein (Liverpool)
- May co-opt additional people for input on 'crosscutting issues'

Observations so far

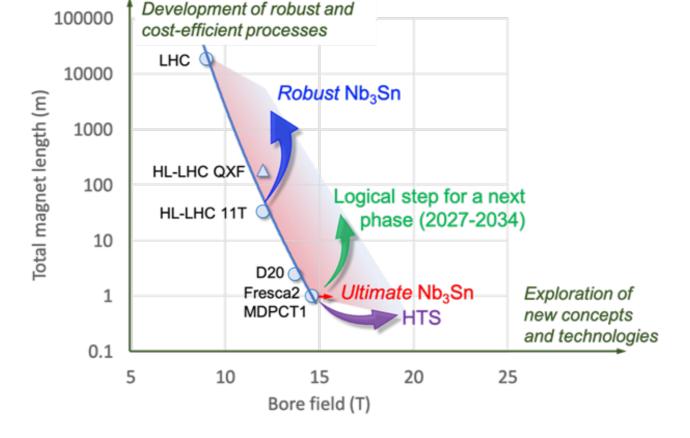
- Engagement
 - Success in engaging the (international) accelerator physics community
 - Over 50 meetings / workshops, several hundred people involved
 - Some panels already producing 'long reports' summarising all inputs
- Diversity
 - Clearly, the five areas are at a range of scope and maturity
 - The final roadmap must balance medium- and long-term R&D carefully
 - Keep in mind the focus on informing decisions at the next EPPSU
- Synthesis
 - In the end, we require one roadmap not five also leaving some 'freedom'
 - The final prioritisation is a matter for Council and its advisors
 - These are long-term strategic questions of science, funding and organisation
 - But: PP community may wish to provide short-term feedback on the 'level of ambition' / 'level of urgency' across the topics
 - What are the real technical barriers in the limit of infinite resources?
- In summary: strong progress, and an excellent start by the panels

Interim Report

Contents

1	High-gradient Plasma and Laser Accelerators 1
1.1	Executive Summary of Findings to Date
1.2	Motivation
1.3	Panel Activities
1.4	State of the Art
1.5	R& D Objectives
1.6	Facilities and Infrastructures
1.7	Key Points of the Roadmap

Purpose of report


- Provide a prior indicate of the scope and direction of travel of the process
- Summarise the findings from the 'consultation' phase
- Provide a first view of the structure of the final roadmap
- Opportunity for feedback from SPC / Council / accelerator community
- Contributions of four of the five panels now in place
 - 'Key findings' and outline R&D objectives only
 - No attempt at synthesis across panels (this will be an important feature of the final report)

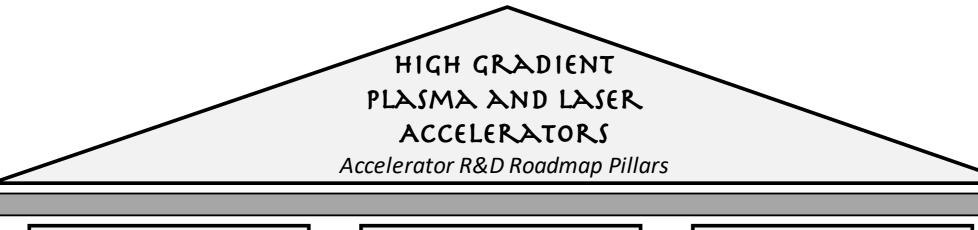
HFM R&D Objectives

GOALS OF A HIGH FIELD MAGNETS R&D PROGRAM

- Demonstrate Nb₃Sn magnet technology for large scale deployment, pushing it to its practical limits, both in terms of maximum performance as well as production scale
 - Demonstrate Nb₃Sn full potential in terms of ultimate performance (target 16 T)
 - Develop Nb₃Sn magnet technology for collider-scale production, through robust design, industrial manufacturing processes and cost reduction (benchmark 12 T)
- Demonstrate suitability of HTS for accelerator magnet applications, providing a proof-of-principle of HTS magnet technology beyond the reach of Nb₃Sn (target in excess of 20 T)

Dave.Newbold@stfc.ac.uk

• Other key parameters:


- Cost of Magnets & R&D
- Timeline of a realistic development

LDG meeting, 19 July 2021

Page 5

Plasma-Laser R&D Objectives

FEASIBILITY, PRE-CDR STUDY

Scope: 1st international, coordinated study for self-consistent analysis of novel technologies and their particle physics reach, intermediate HEP steps, collider feasibility, performance, quantitative cost-size-benefit analysis
Concept: Comparative paper study (all concepts included)
Milestones: Report high energy e⁻ and e⁺ linac module case studies, report physics case(s)
Deliverable: Feasibility and pre-CDR report in 2026 for European, national decision makers

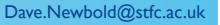
TECHNICAL DEMONSTRATION

Scope: Demonstration of critical feasibility parameters for e⁺e⁻ collider and 1st HEP applications

Concept: Prioritised list of R&D that can be performed at existing, planned R&D infrastructures in national, European, international landscape

Milestones: HQ e⁻ beam by 2026, HQ e⁺ beam by 2032, 15 kHz high eff. beam and power sources by 2037 (sustainability) Deliverable: Technical readiness level (TRL) report in 2026 for European, national decision makers

INTEGRATION & OUTREACH


Synergy and Integration: Benefits for and synergy with other science fields (e.g. structural biology, materials, lasers, health) and projects (e.g. EuPRAXIA, ...)

Access: Establishing framework for well-defined access to distributed accelerator R&D landscape

Innovation: Compact accelerator and laser technology spin-offs and synergies with industry

Training: Involvement and education of next generation engineers and scientists

HGRF R&D Objectives

	Particle sources	Magnet and Vacuum systems	High Field SC magnets	Normal Conducting RF structures	Superconducting RF cavities	RF power sources	Cryogenics	Instrumentation
ILC	•				•	•	•	•
FCC	•	•	•		•		•	•
PIP-II, MYRRHA					•	•	•	•
JLEIC	•		•	•		•		•
eRHIC, LHeC					•		•	•
DIAMOND2, SLS2		•				•		•
LCLS2-HE, SHINE		•			•		•	•
DONES	•	•		•	•	•	•	•
DEMOs	•		•			•	•	
PERLE					•	•		•
BELA, compact neutron sources	•			•				•

Key Technology Areas → Needed Developments

Particle sources \rightarrow High intensity heavy ions, positron sources, polarized beams Magnets and vacuum systems \rightarrow Permanent magnets, small chambers evacuation High field SC magnets \rightarrow High-Tc conductors, cost reduction Normal Conducting RF structure \rightarrow High precision fabrication and tuning, RF breakdown Superconducting RF cavities \rightarrow Surface treatments, robotics, cost reduction RF power sources \rightarrow CW sources, Solid State Amplifiers, high efficiency Cryogenics \rightarrow High efficiency, cryo-coolers, cryo-safety Beam instrumentation \rightarrow Optical and RF diagnostics, fast electronics and feedback

Muons R&D Objectives

Goals

The initial goal is to establish, within the next five years, whether the investment into a full programme is scientifically justified.

- Develop a sufficiently detailed design of key systems to demonstrate that beam parameters can be achieved and allow cost and power consumption scale to be determined
- Develop an R&D programme that can demonstrate performance specifications where they are beyond the state of the art
 - In particular a test facility design
- A limited experimental programme to address technologies unique to the muon collider will help to support the performance predictions and timely implementation of the test facility, including fast-ramping magnets and muon cooling RF

This will allow the next ESPPU to make fully informed decisions and support similar strategy processes in other regions. Based on these decisions a significant ramp-up of resources could be made to accomplish construction of the collider by 2045.

D. Schulte

Muon Collider, LDG July 19, 2021

4

Muons R&D Objectives

Tentative Work Breakdown Structure

Accelerator Design

- Proton complex
- Muon production
- Muon cooling
- High-energy acceleration complex
- Collider ring
- Machine detector interface

Implementation Studies

- Parameters and layout
- Integrated beam studies
- Radiation protection
- Civil engineering siting studies
- Cost scale determination
- Power consumption scale determination

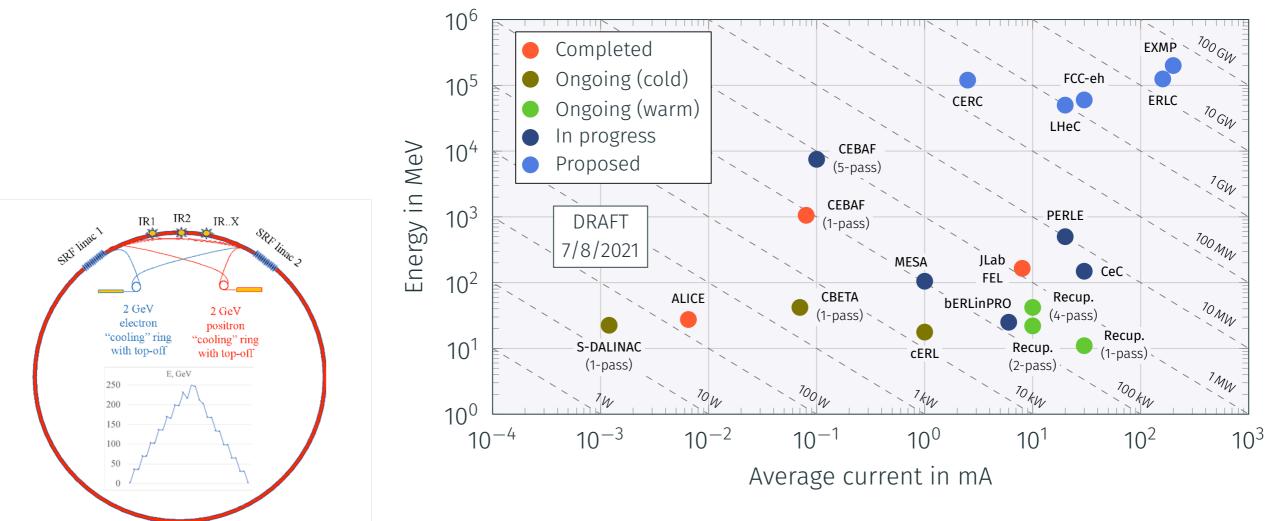
Test Programme Development

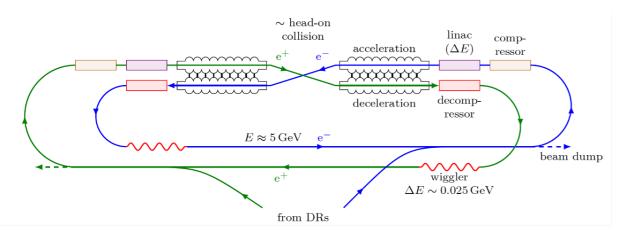
- Integrated engineering design of cooling cell
- Neutrino radiation mitigation system
- Test facility using other workpackages
- Specific studies for test facility implementation: civil engineering, proton complex, ...

Technology Design Studies

- Cooling RF design
- Superconducting RF
- Efficient RF power systems
- Fast ramping magnets and powering
- High-field solenoids
- High-field dipoles / combined function magnets
- Target system
- Beam-matter interaction
- Other technologies

Experimental Programme


- Fast-ramping magnet component tests
- Cooling RF tests
- Low-frequency superconducting cavity tests
- Target material tests
- Neutrino mitigation system tests


D. Schulte

Muon Collider, LDG July 19, 2021

ERL Progress

- Sub-panel on high-energy e+ecolliders now in place
 - Andrew Hutton (SLAC) chair
 - Will evaluate potential, cost, feasibility, challenges of the new concepts
 - Report in September (not for interim report)

Relevance to the Science

- Roadmap should answer the questions posed in ESPPU process
 - Or at least, provide a plan to to answer them in the next five years
- Key questions on R&D
 - What needs to be done towards future facilities? What are the priorities?
 - How long might it take? What is the fastest technically-limited schedule?
 - How much will it cost?
 - What different options and trade-offs exist?
 - What are the linkages between activities?
 - What science can be done on the way?
- What about all the *other* things that must be done?
 - Other important (and nearer term) R&D topics incl. detectors and computing
 - May wish to mention these in summary form in the final report, for the purposes of balance
 - Planning and preparation of specific new facilities
 - Construction and commissioning of HL-LHC
- The final balance of activities is a question for Council
 - And of course the funding agencies, in their response to the roadmaps

Conclusion

- The end product
 - Report for Council (200pp; panel reports plus synthesis)
 - Summary report in 'glossy' format for funding agencies etc (10pp)
 - Long reports from panels, possibly published
- From January 2021, the 'implementation phase' should begin
 - Follow-up process is still to be determined for both roadmaps
- Relevance to FCC programme
 - Careful balance needed between short term planning and longer term R&D
 - New technologies (ERL?) may still have some medium-term relevance
 - The longer term prospects of a 100km machine rest on R&D to be completed in the next decade
- All feedback is welcome
 - Distribution of interim findings via RECFA will shortly follow September SPC
 - Any and all feedback from the Swiss community is welcome

