CY-CERN Committee, June 2021

The Participation of Cyprus in the CERN Scientific Programme & Perspectives for the Future

P. Razis, Scientific Delegate of Cyprus at CERN

Contents

- Introduction / History of Cyprus at CERN
- UCY- HEP Group
- Contributions* to the L3 Experiment at LEP
- Contributions* to the CMS Experiment at LHC
- Perspectives for the Future
- Problems and Solutions
- Conclusions

*for 1986-2020 only a synopsis is provided here. More details can be found in other presentations I submitted to the CY-CERN Committee.

History of Cyprus @ CERN

1986, October 1: Joined the L3 Experiment at LEP, CERN High Energy Physics Laboratory founded, UCY **1992, September 7:** 1995, December 12: Joined the CMS Experiment at LHC, CERN 1999, March 23: MoU signed - Participation in CMS (NMS) 2004, May 1: **Cyprus joins European Union** 2004, December 16: **CERN** Council approved Co-operation Agreement 2006, February 14: **Non-Member State Status** 2009, June 5: **Application for a Member State** 2012, October 5: Signature to become Associate Member State 2016, April 1: Associate Member State, pre-stage to membership **2021, March 31:** 5-year period ends

European Organization for Nuclear Research

SCIENCE Collaboration

Lac Leman Genève

Education

SOOVERCE

ÉRN

Geneva

Research

echnolog

MULTITUDE OF BENEFITS

Introduction

State Universities University of Cyprus (1992) ->Collaborate at CERN since 1992 **Open University of Cyprus (2006)** Cyprus University of Technology (2007) **Private Universities** Frederick University (2007) **European University Cyprus (2007)** University of Nicosia (2007) Neapolis University (2011) **University of Central Lancashire (2012)** Philips University (2019) **Research Institutes Agricultural Research Institute (1962)** State General Laboratory (1970) The Cyprus Institute of Neurology & Genetics (1990) The Cyprus Institute (2005) 5

University of Cyprus Campus

UCY-HEP Group

Current Members of the Group:

- P. Razis
- F. Ptochos
- H. Saka
- J. Mousa
- A. Attikis
- E. Dimovasili
- K. Gouranga
- H. Rykaczewski
- C. Nicolaou
- M. Constantinou
- M. Kolosova,
 S. Constantinou
 C. Christoforou
- Graduate Students
- Undergraduate Students

Professor Associate Professor Lecturer

Research Associate Research Associate External Member of Group Research Associate Emeritus

MSc, Electronics Engineer Computer Engineer

PhD Students

MSc Students Final Year Projects

Introduction

UCY- HEP Group:	founded in 1992
Projects related to CERN	Status
L3 Experiment at LEP	Completed (construction, testing, data taking, monitoring systems, MC simulation, analysis)
CMS Experiment at LHC	Construction, beam tests, MC simulation, data taking, quality of data, trigger, analysis
High Performance Comp.	simulation & data processing
Dosimetry, Safety	Active dosimeters, simulation of radiation, dosimetry, safety & radiation damage
KM3NeT (ESFRI)	Neutrino Telescopy (ORCA & ARCA), calibration, Technical Design Report
COST Action FAST (EU)	Fast Advanced Scintillator Timing

Up to now worked in the UCY- HEP Group:

- 3 Faculty Staff
- 10 Postdoctoral Fellows, 19 Research Assistants
- 4 guest members
- 16 PhD students
- 3 Electronic Engineers
- 18 MSc students
- >60 Final Year Projects students
- 12 International Conf. (CMS Week 2008, CSC 2013, COST FAST 2017)
- **Funding**
- 1. European Union
- 2. Cyprus Foundation of Research and Innovation
- 3. Internal Funds of the University
- 4. Governmental and Semi-governmental Organizations
- 5. CERN support

Established a strong group with international visibility

L3 Experiment at LEP (1989-2000)

e⁺ e⁻ → hadrons E_{CM}= 90-209 GeV L= ~10³² cm⁻² s⁻¹ B= 0.5 Tesla

L3 Experiment

LEP tunnel

Contributions of UCY-HEP (1989-2000)

- 1. Alignment of the L3 Muon Spectrometer (Laser Beacon)
- 2. Calibration of the L3 Muon Spectrometer (N₂ Laser)
- 3. Participation in Shifts and Test Beam runs
- 4. Quality control of Muon Spectrometer Monitoring Systems
- 5. Monte Carlo Simulation of rare events & exotic processes
- 6. Analysis of new particle searches (rare and exotic decays) (Convenor) Direct contributions in:

Z⁰ lineshape

е⁺ е⁻ → Z → еµ, µт, ет

search for excited leptons

search for MSSM higgs

particle matching

 $\mathbf{e}^{\scriptscriptstyle +} \, \mathbf{e}^{\scriptscriptstyle -} \not \rightarrow \mathbf{\gamma} \; \mathbf{\gamma} \; (\mathbf{\gamma})$

search for Z'

search for neutralinos

CMS Experiment at LHC

CMS Detector Systems

Contributions of UCY-HEP (1995-2015)

- 1. Member of the Consortium for the 5 Barrel Yoke Wheels and the Vacuum Tank of the CMS Magnet
- 2. Participation in the construction of the CMS ECAL
- 3. Calibration of VFE electronics of the CMS ECAL
- 4. Algorithms for correcting the ECAL signal
- 5. Participation in Shifts and Test Beam runs
- 6. Quality control of the CMS Tracker Data (Convenorship)
- 7. Monte Carlo Simulation → LHC Computing GRID Tier
- Analysis → Early Resonances, Heavy Flavor Physics, Bose Einstein Correlations, searches for SM, MSSM & NMSSM higgs bosons, data quality for ECAL & Tracking, tau systematics and Trigger studies
 Organizing Conferences & CERN Schools in Cyprus

In parallel...KM3NeT (ESFRI)

Contributions of UCY-HEP (2006-2012)

Calibration of detectors by non-ionizing radiation

1st Generation: E_μ>1Gev, A_{eff.}~100-1000 m²

2nd Generation: E_{μ} > 5-100 Gev A_{eff.}~0.1-1km²

Lol and TDR ready for a: Deep-Sea Research Infrastructure in Mediterranean Sea incorporating a Very Large Volume Neutrino Telescope

ORCA: v Oscillation Research ARCA: Astronomy Research

Astroparticle Physics currently coordinated at CERN Full Partner -> now Observer (waiting to sign MoU)

...also, some activation of Cyprus Industry

CNE Technology LtD. (2012-2016)

Sextpole Magnets for the SESAME Project

accurate, quality systems constructed in Nicosia

Contributions of UCY-HEP (2016-2020)

- ► Search for $H^{\pm} \to \tau^{\pm} v(\tau \to h)$ where $m_{H^{\pm}} \leq 160 \ GeV/c^2$
- ► Search for light CP-even NMSSM higgs: $h^0 \rightarrow a^0 a^0 \rightarrow 4\tau, 4b, 2\tau 2b$
- > Measurement of the $ZZ \rightarrow 4\mu$ production cross section
- Single top production and tagging using electrons
 <u>Goal:</u> gain expertise on lepton ids (e, μ, τ), tracking, b-tagging
- Search for SM Higgs H→γγ (simulation & ECAL resolution improvement algorithms)
- Search for additional Higgs under the 2HDM+S model $h(125) \rightarrow aa \rightarrow 2b2\tau$ and $h(125) \rightarrow aa \rightarrow 2\mu 2\tau$
 - $H^{\pm} \rightarrow tb$ with fully hadronic final state
 - $A \to Zh \to l^+ l^- (v\overline{v}) b\overline{b}$

Contributions of UCY-HEP (2016-2020)

Physics analysis:

- Four new PhDs awarded based on 2016 data, \sqrt{s} = 13 TeV :
- (1) Search for charged Higgs boson $pp \rightarrow H\pm(b)t$ M. Ather
- (2) Search for the exotic decay $H \rightarrow \alpha \alpha \rightarrow \mu \mu \tau \tau$ E. Erodotou
- (3) Search for the exotic decay $H \rightarrow \alpha \alpha \rightarrow bb\tau\tau$ D. Tsiakkouri
- (4) Searches for signature of a heavy pseudoscalar A boson in the Two Higgs Doublet Model E. Ioannou
- **Work on the CMS trigger:**
- Work on Level 1 trigger of CMS for HL-LHC to cope with the big increase in # of minimum bias events per beam crossing Two new PhD Theses coming
- **Radiation Dosimetry:**

Radiation Monitoring, Safety and Coordination in Point 5 Dr. E. Dimovasili (#2 Expert)

High-Performance Computing

MAIN FEATURES

3 master/128 slave nodes, 616 cores – another **400** cores Gigabit Ethernet network, inter-processor communications, nodes 2x1Gbps Modularity, expandability, data transfer, storage and analysis **Total Disk Capacity 39 TB**

Perspectives for the Future (2021-)				
 (1.) Upgrade of CMS for the HL-LHC phase > High Granularity Calorimeter upgrade: Develop stations for testing readout electronics & p Work on flexible electronics, integrated circuits, rad Trigger upgrade: 	PENDING power supplies d hard materials			
Work on Level 1 trigger algorithms and simulation	RUNNING			
Data testing:				
Stations for remote monitoring of data quality	UNDER DEVELOPMENT			
 (2.) LHC phenomenology and CMS Analysis > Searches for Dark Matter and additional Higgs bose 	ons			
Expand on running experimental projects	UNDER DEVELOPMENT			
 (3.) Education Program > Virtual visits at CERN 				
 Development of Distance Learning programme Host CERN Schools, Conferences and Workshops 	PENDING			
Accelerator School, Analysis Workshops POG (signature pending ~1000 euro/year)	PENDING			
Masterclass program for high-school students	RUNNING			

Perspectives for the Future (2021-

(4.) Medical Physics Collaboration with CERN						
	HERMES Network (Greece, Cyprus, CERN):					
	Universities, medical centers, companies, fellowships		DEVELOPE	<mark>)</mark>		
	Development of better detectors:					
	Crystals, SiPMs and detectors with better resolution		NEW PHAS	E		
	Cyclotron Center for radiopharmaceuticals & diagno	osis:				
	Promotion of Business Plan, PET scanning		DEVELOPE	D		
	Implementation of construction, funding		<mark>PENDING</mark>			
	Cyclotron Center for Proton Therapy					
	Hadron therapy, radiation oncology, FLASH therapy	UNDE	R DEVELOP	MENT		
	Implementation of construction, funding		<mark>PENDING</mark>			
	KT Forum at CERN on Medical Applications		<mark>RUNNING</mark>			
	Collaboration with Bank of Cyprus Oncology Center		<mark>RUNNING</mark>			
(5	(5.) Collaboration on Data Science					
	Develop program on AI & Deep Learning:	UND	ER DEVELOF	MENT		

Problems and Solutions

Problems

- **1.** Lack of critical mass of researchers in most fields
- **2. Insufficient PhD fellowships**
- 3. Moderate infrastructure-lack of hardware & machine shops
- 4. Difficulties to activate industry and high-tech companies
- 5. Need clearly expressed research strategy
- 6. Need more support for young researchers
- **7.** Brain drain
- 8. Lack of venture capital organizations
- 9. Need more flexibility and less paperwork
- **<u>Proposed Solutions</u>** → Quite URGENT to do
- 1. Create strategic axis in RIF for funding CERN programs
- 2. Introduce PhD fellowships at sufficient level (universities, RIF programs, IKYK, other Organizations)
- **3. Attract engineers, physicists, material and computer scientists to formulate critical mass in CERN projects**
- 4. Provide incentives to industry and SMEs to participate in CERN tenders and support researchers
- **5. Reduce unnecessary paperwork**

Important Elements to follow-up

- Strong programs and opportunities to attract researchers
 Many of our talented students pursue careers abroad, in established universities, or employed as fellows at CERN
- 3. Managed to establish Research Fellow positions and other staff positions for Cyprus people at CERN
- 4. Technical Protocols and MoUs of Cooperation with CERN in Physics, Computing, Engineering, Radiation Physics and Education
- 5. Joint organization of CERN Summer Schools, workshops and international conferences
- 6. Potential for developing applications: detectors, DAQ electronics, run time monitoring & control systems, Grid computing, medical physics

Conclusions

(a) Strong collaboration with CERN for many years (b) Technical Protocols signed between Cyprus and CERN in the fields of Physics, Computer Science, Health & Radiation (c) UCY-HEP Group established strong involvement in international research projects (d) Strong expertise in the analysis of the Standard Model & in the searches for new physics, particles and phenomena (e) Great potential for improvement in several application areas: detectors, electronics, monitoring & control systems, grid computing, simulation, dosimetry & radiation physics (f) Many activities will benefit further by increasing the funding & manpower of the Cyprus research groups (g) Cyprus industry & high-tech companies will increase their productivity/competitiveness in the international environment (h) Colleagues from many scientific fields are invited to join. Promote CERN in Cyprus and Cyprus @ CERN

BACKUP MATERIAL

Radiation damage of Endcap Calorimeter

HL-LHC Program:

Higher CM Energies Higher Luminosities 5x10³⁴ – 2x10³⁵ cm⁻² s⁻¹ 25 ns beam cross rate 140-200 pileup events per beam crossing

Neutron fluence equivalence vs Z and R

EE degradation at 500 fb⁻¹ vs 3000 fb⁻¹

HCAL radiation damage of plastic scintillator

Particle Flow Resolution vs Calorimeter Clusters

At higher energies jets are narrower. Particle Flow algorithms, combined with high granularity provide better resolution than energy cluster reconstruction alone

SEARCH FOR:

- Radiation hard detector and electronics
- Very good energy resolution ECAL+HCAL (high density, small Moliere Radius)
- Good Particle ID & shower separation
- Precision timing capability
- High granularity (transverse & longitudinal)
- Pileup rejection

Silicon sampling Calorimeter at high radiation area and scintillator material read by SiPMs in lower radiation area, combined with W, Pb Cu & stainless-steel as absorber is the optimum solution.

CMS Upgrade for HL-LHC

Trigger/HLT/DAQ

- Track information in Trigger (hardware)
- Trigger latency 12.5 μs output rate 750 kHz
- HLT output 7.5 kHz

Barrel EM calorimeter

- New FE/BE electronics
- Lower operating temperature (8°)

Muon systems

- New DT & CSC FE/BE
 electronics
 - Complete RPC coverage
 - 1.5 < η < 2.4
- Muon tagging $2.4 < \eta < 3$

New Endcap Calorimeters

 Rad. tolerant - increased transverse and longitudinal segmentation intrinsic precise timing capability

Beam radiation and luminosity Common systems &infrastructure

New Tracker

- Rad. tolerant increased granularity lighter
- 40 MHz selective readout (Pt≥2 GeV) in Outer Tracker for Trigger
- Extended coverage to η ≈ 3.8

HGCal geometry & specs

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

- HGCAL covers $1.5 < \eta < 3.0$
- Full system maintained at -30°C
- ~600m² of silicon sensors
- ~500m² of scintillators
- 6M Si channels, 0.5 or 1.1 cm² cell size
 - Data readout from all layers
 - Trigger readout from alternate layers in CE-E and all layers in CE-H
- ~27000 Si modules

EM Calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers, 26 X₀ & ~1.7 λ **Hadron Calorimeter** (CE-H): Si & Scintillator, steel absorbers, 24 layers, 9.0 λ

New Endcap Calorimeter

Many environmental and other monitoring sensors, gas and fluid supplies, thermal shield, power supply modules etc.

Hexagonal Si sensors' geometry

Modules with double side cassettes

Module layer mounted on Cu cooling plate to form 30^o Cassettes. In EE Cassettes are double sided, in FH single sided. Cassettes are inserted into carbon-fibre alveolar structure.

Geometry

ECAL (CE-E) 28 Layers Si + W/Pb/Cu 25 X0 & ~1.3 λ HCAL (CE-H) 24 Layers Si/Scintillator + stainless steel ~8.5 λ

Front-End Electronics HGCal on-detector control and readout

Requirements (not a full list)

- Radiation hard (of course)
- Low noise: <2500e
 - Including sensor leakage current noise
- Shape time: <20 ns
 - Sensor pulse Shape is 1-2 ns
- Dynamic Range 0.2fC -10 pC
 - High gain for < 100 fC
 - ToT for ~100 fC 10 pC
- Low power: ~20 mW/channel
 - total ~ 100kW for 6M channels
- <100 ps time resolution per cell

Front-End chip with large dynamic range (up to 10pc, with 3000 MIP for 300 μ m thick sensors), low noise, low power (10 mW per channel), connected to preamplifier/shaper, 10bits ADC, TDC with time precision 50ps.