Calorimetry

H. Simon • GSI Darmstadt

JENAS-2022 2nd Joint ECFA-NuPECC-APPEC Symposion

20220503-06 Madrid

HELMHOLTZ

Calorimetry

- Wealth of different systems (APPEC, NuPECC, EFGA)
- Discuss enabling techniques, from a nuclear (structure) physicist point of view.
- Cross fertilization (also into commercial sector) but the similarities are within our communities
- Idea: typical demands are defined, e.g. in roadmap documents
- Go through specific examples where synergies where explored
- Calorimetry, is accompanied by different methods in order to clarify interaction points and, subsequetly, allow for tracking of interactions in the absorptive material.
- Example to be used: Target Calorimeter for ,high' energy nuclear physics, where interaction point is key

Key technologies - Calorimetry (from the EFCA Detector Roadmap – 2021)

			Magnet Repaired and the second	LH CONTRACT	ILC (Gentral Calo) ILC (IUTTA) Calo)	FCC and Contral Carl	FCC.ht (Santal alo) FCC.ht (Santal alo) FCC.ht (Santal alo) FCC.ht (Santal alo) FCC.ht (Santal alo)	Much Collider (210)
		DRDT	< 2030	2030-2035	2035- 2040	2040-2045	>2045	
	Low power	6.2,6.3			••		•	
Si based calorimeters	High-precision mechanical structures	6.2,6.3			ŎŎ	ŎŎŎŎ	• •	i i i
	High granularity 0.5x0.5 cm ² or smaller	6.1, 6.2, 6.3					• •	
	Large homogeneous array	6.2,6.3						
	Improved elm. resolution	6.2,6.3				ē ē		
	Front-end processing	6.2,6.3						
	High granularity (1-5 cm ²)	6.1, 6.2, 6.3						
Noble liquid	Low power	6.1, 6.2, 6.3				• •		
calorimeters	Low noise	6.1, 6.2, 6.3						
	Advanced mechanics	6.1, 6.2, 6.3						
	Em. resolution O(5%/,/E)	6.1, 6.2, 6.3				• •		
Colorimeters	High granularity (1-10 cm ²)	6.2,6.3						
based on gas detectors	Low hit multiplicity	6.2,6.3				• • •		
	High rate capability	6.2,6.3				• • •		
	Scalability	6.2,6.3					ÓÓÓ Ó	
Scintillating tiles or strips	High granularity	6.1, 6.2, 6.3	•			Ó	I II III III	
	Rad-hard photodetectors	6.3					• • •	
	Dual readout tiles	6.2,6.3					i i i	
					-		-	

Key technologies - Calorimetry (from the EFCA Detector Roadmap – 2021)

Crystal-based high resolution ECAL High-precision absorbers 6.2,6.3 With C/S readout for DB 6.2,6.3	
resolution ECAL Timing for z position 6.2,6.3 With C/S readout for DB 6.2,6.3	
With C/S readout for DB 6.2.6.3	
Front-end processing 6.1, 6.2, 6.3	
Lateral high granularity 6.2	T
readout Timing for z position 6.2	
Front-end processing 6.2	
100-1000 ps 6.2	
Timing 10-100 ps 6.1,6.2,6.3 • • • • • • • • • • • •	
<10 ps 6.1,6.2,6.3	ŏ ŏ
Radiation Up to 10 ¹⁶ n _g /cm ² 6.1,6.2 • • • • • • • •	
hardness > 10 ¹⁶ n _o /cm ² 6.3	
Excellent EM < 3%//E 6.1,6.2	

Must happen or main physics goals cannot be met

Important to meet several physics goals

Desirable to enhance physics reach

👂 R&D needs being met

apperture and rate capability

Super-FRS workhorse for

Nuclear- and Astro-Physics with Reactions (NUSTAR), e.g. <u>R³B</u>

Powerful separator for exotic nuclei

Testing@CERN : All sc Magnets

CERN Bulletin =

Physics Example: Quasi Free Scattering (p,2p) at relativistic beam energy in inverse kinematics

		CsI(TI)	Efficiency
θ (deg)	E _p (MeV)	range (cm)	(%)
7	686	71,8	15%
20	592	59,7	
40	356	26,4	50%

evaporate n,p,d,t

de-excite via γ radiation

Tracking: A, A-1

- Correlated protons
- 180 deg in φ
- ~ 90 deg in θ
 - → tracking into calorimeter

Physics imposes the scientific requirements
Huge dynamic range
100keV γ-rays – 700 AMeV charged particles
high efficiency, good resolution
high granularity → Doppler correction
particle identification

Requirements (from scientific aim)

GEM TPC for high rate tracking (Super-FRS) - Anything in common with the panda EMC ?

F. Garcia, *et al.*, Nucl. Instr. and Meth. A 884 (2018) 18–24. A. Prochazka, *et al.*, GSI Scientific Report (2014) 500doi:10.15120/ GR-2015-1-FG-SFRS-04

Rate capability some MHz

high rate also required for calorimetry with gas detectors

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Beam Particle ID → Bρ-∆E-TOF method: Requirements

 $B\rho = A/Z \cdot \beta \cdot \gamma$ A/Z, PΖ $\Delta E \sim Z^2/\beta^2$

Pos res. $\sigma \le 1 \text{ mm}$ Timing res. $\sigma: 50 \text{ ps}$ ΔE resolution $\sigma: 1-2\%$ p...U: large dynamic range

➔ Timestamped readout

GSI

PANDA – EMC: Barrel Readout Electronics

Charge IV

APFEL ASIC 1.5 overview:

Analog Readout:

- Each readout channel coneist of
 - charge sensitive preamplifier
 - third order shaper stage
 - b differential output driver
- Two outputs per channel with different amplification to cover the dynamic range
- Two equivalent channels per chip

Digital Part:

- Serial Interface on chip for the autocalibration to detect the right DC voltages for a given temperature to cover the whole dynamic range
- Optional charge injection
- Read and write of the DAC settings
- Chip ID for single chip bus communication

P. Wieczorek and H. Flemming, IEEE Nucl. Sci. Sym. & Med. Imag. Conf. (2010) 1319

APFEL ASIC (0,35µm AMS): 2 outputs with different GAIN
Digital interface for configuration
Rate/ch. ~350kHz → Similar Demands for GEM-TPC
Power <= 50 mW/ch (22k Ch.)</p>

GEM TPC for high rate tracking - Competition of solutions

P. Wieczorek, H. Deppe, H. Flemming, Low noise amplifier with adaptive gain setting (AWAGS), accepted from JINST as TWEPP2021 proceeding.

VMM3 block diagram

ASIC with adaptive gain;

AWAGS ASIC

- very large dynamic range (71pC)
- AWAGS build. blck. for panda trans, rec.

VMM3a: "Swiss army knife" ASIC (HEP) ATLAS small wheel (µMEGAS) Perfect fit for GEM readout ?

Availability of building blocks allows for optomized solutions.

Enabling technologies - from Space to medical applications

Cocotier LH2 target with FOOT Si-trackers as subsystem of the CALIFA calorimeter

AMS-02 Detectors in Vacuum low power (!) Box geometry CH2 target

https://ams02.space/ detector/silicon-tracker

Physics Reports 894 (2021) 1-116

Enabling technologies - ALICE Alpide

M. Mager | ITS3 | TREDI 2020 | 18.02.2020 |

- Geometry adaptation to the limit (,surrounding the target')
- Pixel detectors
 - suppression of delta rays
 - noise environment / noise reduction & selective trigger/selection schemes
 - option for inner tracker in front of Calorimeter

- shows UDL load and model axes

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fig. 1 - illustration of FEA Model of alveolar (with inserts)

APD readout:

Enabling technologies

- Hamamatsu / CMS APD S8664-55
- Hamamatsu / panda APD S8664-1010 PbWO₄
- \rightarrow Characterized to be suitable for Califa CsI readout → APD-S8664-SPC1010 (2CH)

CMS Ecal - CMS NOTE 2000/048

Carbon fiber Alveoli (panda)

CALIFA

D. Cortina-Gil et al. Nuclear Data Sheet 120(2014) 99-101

- External structure 3.5 x 4 m
- Detector volume ~ 1.3 m³
- Detector weight ~ 2.5 t
- 2528 detection units

	Barrel	En	dcap
		iPhos	CEPA
Scintillator	CsI(Tl)	CsI(Tl)	LaBr/LaCl
Geom.	11	16	6
Crys. Len (cm)	15-22	22	4/7
Polar cov.	7-20 °	20-43°	43-140º
Read-out	LAAPD	LAAPD	PM/SiPM
Dete.chan.	1952	480	96
Elec. chan.	1952	960	96 x2
Weight (Kg)	~ 1500	~ 550	~ 50
Volume (cm ³)	285.000	90.000	11.000

Enabling technologies - Phoswitch/IPHOS (Dual Readout)

CEPA: $4x 4 \text{cm LaBr}_3(\text{Ce}) + 6 \text{cm LaCl}_3(\text{Ce})$

Enabling technologies - Precision timing (few...100 ps)

SPACAL Pb - Time Resolution - DESY

- The 3 configurations perform similarly
- Only part of the cell read out in direct contact due to 1.8x1.8 cm² PMT active area
 - Loss of performance
 → optimisation needed

Time resolution 26 ps at 5 GeV

- Time distribution systems
 - e.g. Based on WR network (... KM3NeT)
 - https://white-rabbit.web.cern.ch/
 - CAMPUS wide (e,g, ToF: Separator Exp.)
- FPGA TDCs down to 7ps resolution
- Precise position measurement
- Amplitude information via time over threshold
- E.g. ToF Wall based on plastic scintillator σ_t =14ps, σ_E /E=1%

- Light coupling
- Materials
- Geometry

· . .

The 10-ps Wave Union TDC: Improving FPGA TDC Resolution beyond Its Cell Delay Jinyuan Wu and Zonghan Shi

IEEE Nucl. Sci. Symp. Conf. Rec. (2008)

Enabling technologies - Fully digital electronics

Ultimately 5D readout: x,y,z,t,E

Space, time, and energy information contribute to the overall picture.

Novel algorithms needed.

Pileup is not noise, just physics we're not interested in

- Getting the most information about the interesting process requires identifying all three components.
- Opportunities for more processing on-detector, beyond noise rejection.

Calibration also a processing algorithm

- Rates and data formats crucial.
- Streaming skips reprocessing, saves offline computing.

Online pile up correction in FPGA (deconvolution, 2010) Use: t - information

Key: Online processing of incoming channel data

Summary (form a nuclear physicists perspective)

- Enabling technologies presented
- Hardware focus
- Common needs can be easily identified
- Nuclear physics applications require often large dynamic range
 requirements resemble calorimetric
- Processing in frontends is possible
 - software methods can be later (partially) implemented
 - Machine learning results to a certain extend also
- The availability of sample systems for testing are key for common applications → open access, documentation and awareness
- Example: WR time distribution system (open hard & software)
 - e.g. used at german stock market
 - ... and KM3Net
 - ... replaced "home made" BuTiS in our lab.

Summary

- Similarly: Detector samples (with or w/o readout sysytem) for testing

 for external collaboration key
- A lot of processing in frontends is technologically possible
 - software methods can be later (partially) implemented
 - Machine learning results to a certain extend also
 - Quality monitor/Many channels

Thank you for your attention !

Special thanks: Martin Aleksa, David Barney, Roberto Ferrari, Thomas Peitzmann, Frank Simon, Ulrike Thoma

