Detector conception and momentum measurement optimization applied to Muon Scattering Tomography

Maxime Lagrange¹, A. Giammanco, G. Strong, T. Dorigo, P. Vischia, J. Kieseler, F. Nardi, H. Zaraket, M. Lamparth, F. Fanzago, O. Savchenko, N. Sharma, A. Bordignon

 1 Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain (UCL), Belgium

I - Muon Scattering Tomography (MST)

- Cosmic muons are produced from decay products of energetic protons striking molecules of the upper atmosphere (flux at sea level \approx 1 muon/s/cm²)
- Muons moving through material are deflected by the Coulomb interaction with atom's nucleus
- The total **deflection** depends on the **atomic number** Z and the **density** ρ of the material
- For monochromatic muons and given a material of radiation length $X^0(\rho,Z)$, the **deflection angle distribution** is Gaussian, with mean $\mu=0$ and RMS θ_{RMS} such as

$$\theta_{RMS} = \frac{13.6 MeV}{\beta cp} \sqrt{\frac{x}{X_0(Z,\rho)}} \tag{1}$$

- \boldsymbol{x} muon's path in the material, $\boldsymbol{X}_{\!\!0}$ radiation length, \boldsymbol{p} muon's momentum

Figure 1: Illustration of multiple scattering tomography concept. Upper and lower detector planes respectively detect incoming and outgoing muon tracks, which are used to compute the scattering angle $\Delta\theta$

• By measuring the scattering angle, one can infer on material radiation length

II - Muon momentum knowledge and reconstruction

- Scattering angle amplitude depends both on muon momentum p and material radiation length X_0 (eq. 1)
- Low momentum muons can have large scattering angle and mimic the behavior of muons crossing dense materials (Figure 2)
- A **good knowledge** of p is **crucial** for an accurate material identification (*Figure 3*)

Figure 4: Cosmic muon energy spectrum at 0° zenith angle from [1]

Figure 2: Illustration of scattering angle amplitude for 1 GeV and 10 GeV muons in a 4cm thick lead block

Figure 3: Illustration of MST image reconstruction for no momentum knowledge (left) and full momentum knowledge (right)

III - Muon momentum measurement

• Muon momentum can be **estimated** by **measuring** scattering angle $\Delta\theta$ in a known material as it was proposed in [2]. Inverting eq. (1):

$$p=\frac{13.6MeV}{\theta_{RMS}}\sqrt{\frac{x}{X_0}} \qquad (2)$$

$$\theta_{RMS} \text{ the scattering angle RMS } \theta_{RMS}=\frac{1}{N}\sum_{i=1}^N\Delta\theta_i^2$$

- Alternating detection planes and scattering material chosen for its scattering power (e.g lead), one can measure θ_{RMS}
- . Mean momentum estimation resolution $\frac{\bar{\Delta p}}{p_{true}}$ quickly worsen with detector resolution

<u>Figure 5</u>: Illustration of momentum measurement module, to be placed at the bottom of a regular MST detection system.

 p_{true}

True energy [MeV]

detector design with $\Delta s = 4$ cm, $\Delta g = 10$ cm, 3 lead blocks as scattering material and a **perfect spatial resolution**

Figure 6: Momentum prediction for

III- Detection system parameter space

One can relate momentum measurement precision to the detector configuration.

- Momentum is estimated from scattering angle RMS, then its relative uncertainty is $\frac{\Delta p}{p} = \frac{\Delta \theta_{RMS}}{\theta_{RMS}}$
- Uncertainty on scattering angle RMS is a function of detector parameters:

$$\frac{\Delta \theta_{RMS}}{\theta_{RMS}} = f(\delta \theta, S_p, N_{planes})$$

With $\delta\theta$ the angular resolution on track measurement, S_p scattering power of the material, N_{planes} the number of scattering layers (= number of $\Delta\theta$ measurement)

Angular resolution

- Angular resolution $\delta\theta=\delta\theta(\sigma_{\!xy},\Delta g)$ depends on spatial resolution $\sigma_{\!xy}$ and spacing between planes Δg

Scattering power

• Scattering power $S_p=S_p(X_0,\Delta s)$ is a function of radiation length X_0 , and width of the material Δs . The more scattering power, the larger scattering angle muons undergo

Momentum measurement module has an effect on the global MST detection system: adding detection layers **increases** the **cost** of the detector and **reduces** its **acceptance**. These **constraints** have to be taken into account when optimizing the momentum measurement system.

IV - Optimization: a mission for TomOpt

Multiple Scattering Tomography **detection system** aims to be as **performant** as possible in terms of material identification while being within a certain **budget** and **respecting constraints** such as **exposure time**. Optimization of such a system can be done using differentiable programming, and this is exactly what TomOpt proposes.

TomOpt: Differential Muon Tomography

- TomOpt is a first step within the MODE collaboration [3]
- TomOpt proposes a full optimization pipeline applied to muon scattering tomography. It provides differentiable functions of detector predictions and parameters, which allows optimization via gradient descent.

TomOpt: Package overview

- 1. Detector **configuration** (resolution, efficiency, orientation, etc.)
- 2. Muon **generation** sampling literature models
- 3. Muon **propagation** through passive volumes using GEANT4 parametric models
- 4. Reconstruction and material identification
- 5. Loss function computation based on target performances and cost

Optimization of detector system using gradient- Known descent optimizers volumes

V - References

[1] - Energy and angular distribution of cosmic muons / P. Mitra, P. Shukla / Proceedings of the DAE-BRNS Symp. on Nucl. Phys. 60 (2015)

[2] - Muography of different structures using muon scattering and absorption algorithms / S. Vanini, P. Calvini, P. Checchia, A. Rigoni Garola, J. Klinger, G. Zumerle, G. Bonomi, A. Donzella, A. Zenoni / https://doi.org/10.1098/rsta.2018.0051

[3] - Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper / Tommaso Dorigo, Andrea Giammanco, Pietro Vischia (editors) MODE Collaboration / arXiv: 2203.13818v1

