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- Cosmic muons are produced from decay products % One can relate momentum measurement precision to the detector configuration.
of energetic protons striking molecules of the upper

atmosphere (flux at sea level ~ 1 muon/s/cm?)
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- Scattering angle amplitude depends both on muon 1 GeV muons mmm ¢=0232 A p A
. - .. 10 GeV muons g Xy \)
momentum p and material radiation length X, (eq. 1)

- Low momentum muons can have large scattering Scattering material X,

angle and mimic the behavior of muons crossing

dense materials (Figure 2) N,

planes

- A good knowledge of p is crucial for an accurate
material identification (Figure 3)
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,(73 1k ? Figure 2: lllustration of scattering angle amplitude iInto account when optimizing the momentum measurement system.
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E IV - Optimization: a mission
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S10°F 1 Multiple Scattering Tomography detection system aims to be as performant as possible in terms of
10° . 3?;.;(21 Z'.i,"'l.‘;&tfg'"c Rastin et al) 1 material identification while being within a certain budget and respecting constraints such as exposure
107 " Gaisser parametrization . time. Optimization of such a system can be done using differentiable programming, and this is exactly what
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Figure 3: lllustration of MST image reconstruction _ _
for no momentum knowledge (left) and full TomOpt: Differential Muon Tomography
momentum knowledge (right)

Figure 4: Cosmic muon energy spectrum at 0°
zenith angle from [1]

- TomOpt is a first step within the MODE collaboration
[3]

- TomOpt proposes a full optimization pipeline
H applied to muon scattering tomography. It provides
differentiable functions of detector predictions and
parameters, which allows optimization via gradient
descent.

uon momentum measurement

+ Muon momentum can be estimated by measuring “'ection planes

scattering angle A0 in a known material as it was

proposed in [2]. Inverting eq. (1): scattering
material

TomOpt: Package overview
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