A hybrid architecture for a prompt momentum discriminating tracker for SHLC

A. Marchioro / CERN-PH VERTEX 2011 June 20-24, 2011

Acknowledgements

- Basic ideas of high pT discrimination based on two parallel layers of strips: R. Horisberger, circa 2009
- Finding high pT particles from stubs detailed by many authors, for a good review of the CMS ideas see presentation by M. Pesaresi, Vertex 2010
- Many details discussed an refined with D. Abbaneo
- Data on analog FE: J. Kaplon
- Detailed mechanical drawings: A. Conde

۰. Marchioro - Vertex 2011

Outline

- Motivation and previous work
- Proposed architecture
 - Module details
 - Mechanics and connectivity
 - Pixel ASIC
- Modeling of data traffic
 - Requirement for trigger and data links
- Conclusions

Ζ

Φ

Assembly for dual pixel layers

Module size = [6 * 8] x [3 * 16 + 12] mm

Marchioro - Vertex 201

Z position with Triple Sensors Stereo Module

- Coincidence window with parallel strips gives pT cut
- Third layer of tilted (100 mrad) strips AND coincidence gives pT cut and Z coordinate
- Thickness: 3 sensors + hybrid sideways
- But it does not work even at relatively modest occupancy levels (one stereo strip covers ~ 25 parallel strips); could not work at low radius.

NEW ARCHITECTURE

Hybrid strip-pixel Module

- Use one layer of short strip: ~24 mm
- And one pixelated layer of ~1.5 mm long pixels
- In the pixelated layer, perform the OR of the pixels in the Z direction and use it as single strip in Z
- Coincidence of the two layers provides pT cut
- Pixel position provides Z coordinate
- Thickness: two sensors + Pixel strip RO + some interposer + hybrid sideways

~5 x 10cm Hybrid Module, Top

Simplified cross-section

- Wire bonding and simple C4
- All silicon stack (no substrate under Sensor)
- Pix Sensor 250um C4 bumps 125 um Pix chip 250 um TPG+Carbon 600um TPG / Substrate 900 um

Strip Sensor 250 um

Pixel ASIC on bumps (250 um)

- Low mass (cooling) interposer
- No substrate-Si CTE mismatch problem

Possible ROD assembly

Material Estimate (at $\eta = 0$)

Central sensitive area				
Layer	Material	Thickness [mm]	X0 [mm]	Contribution
Pixel Sensor	Si	0.25	94	0.3%
C4 bumps	Sn	0.01	8.8	0.1%
MPA	Si	0.20	94	0.2%
TPG	С	0.80	280	0.3%
Strip Sensor	Si	0.25	94	0.3%
			Total	1.1%

Peripheral "electronics" area				
Layer	Material	Thickness [mm]	X0 [mm]	Contribution
SSA	Si	0.20	94	0.2%
C4 bumps	Sn	0.01	8.8	0.1%
FR4 PCB	Composite	0.80	185	0.4%
Cu on FR4	Cu	0.05	14.3	0.4%
TPG	С	0.50	280	0.2%
			Total	1.2%

- In the "electronics" area, the size of the SSA and C4 bumps have been exaggerated to the entire hybrid area but passive components not accounted for

- DC/DC and GBT not accounted for

ASICS

(13)

Macro-Pixel-ASIC global floorplan

A. Marchioro - Ver

[14]

Module functional block diagram

_ 15]

Better module functional block diagram

MPixel ASIC: more details

[17]

Macro-Pixel-Asic detailed floorplan

Single Pixel size: 100 x \sim 1400 μ m²

- Analog Pre+Shaper: 100 x 600 μ m²
- Bias, DACs etc: 100 x 50 μm²
- Configuration Regs: 100 x 50 μ m²
- Storage & Trigger : 100 x 600 μm²
- Routing & Interconnect: $100 \times 100 \mu m^2$
- C4 Bump-bond pad: 90 x 90 μm2 Pitch 200 μm in X, 300 in Y

Overall L1 memory requirement for

Width : (5 [bit/16 pixel] + 1 [bit/strip]) * 128 = 768 bit

Size of RT SRAM			
	1 bit	200 kbit	
130 nm	4.2 μm²	910 x 910μm²	
65 nm	1.5 μm²	550 x 550μm²	

Module Block Diagram

Hybrid Module Power estimate

	# elements	Pwr/element[mW]	Power [mW]
Pixel	2048 * 16	< 0.080	2,620
Strips	256 * 8	0.250	512
Trigger Logic @ 160MHz with α = 1%	10 ⁶ * 16 * 160	0.000015	384
LP-GBT	1	500	500
DC-DC [η = 85%]	1	600	600
Total			~4,600

21

For a ~10 x 4.5 cm² module

DATA TRAFFIC

[22]

Trigger and L1 Data Data-Flow Model

L1 Data volume with ZS (*)

• With 100KHz L1 and 8 bit to code one strip:

- 1.5% hit probability^(\$) (and 2 strips/hit):
 - On 256 channels SS strips: ~(0.015*256) * 8 = 32 [bit/10usec]
 + 3 bit chip number = 35 [bit/10usec]
 - On 128 channels MP pixel:

~(0.015*128) * (7 + 4) [bit/10usec] = 22 [bit/10usec] + 4 bit chip address = 26 [bit/10usec]

- Total = $35_{SS} + 26_{MP}$ [bit/10usec]
- Time tag: 8 bit
- Per module (with 16 MPA, i.e. 4 bit address + 8 SSA, i.e. 3 bit address chips):
 - 8 + 16*26 + 8*35 = 704bit/10usec ~ 70.4 Mb/sec

^(\$) from M. Pesaresi's talk 22.03.11

LO Trigger data volume

- Assume an optical link with a capacity of 10 [B/25ns], i.e. 3.2 Gbit/sec
- Assume that the average traffic generated uses 50% (40 to 70% actually modeled) of the total link capacity with two types of events
 - "Normal" events: at nominal capacity
 - Rare "large" events (with 1 to 10% probability)
 - Large events are 5x larger than normal ones

Event size for avg=50% occupancy

Trigger only Data-Flow Model

Latency in Q at ½ link capacity (trigger only)

Time in Q

cycles

1

(40*10^6 events generated), Frequency of large event is 1%

Link latency vs. percent of large events for different avg utilization (trigger only)

(40*10^6 events generated, Worst case latency shown)

Acceptable max # of stubs

- At 50% link occupancy, i.e. allowing an average traffic of 5 [B/25ns], one has 40 bits/25ns available
- Each event has to be tagged with an 8 bit time stamp, and assuming 4 bits to code a hit in the pixel
- Number of permissible stubs:

 $(8 + 4) * n_{stubs} + 8 = 40 \rightarrow n_{stubs} = 2.7 [stubs/25 ns*module]$

Critical technologies

	Difficulty level (1 easy, 5 hard)	Comment
Analog Circuitry	3	Novelty required to reduce power, but is there any margin left?
Digital Circuitry	1	
ASIC Technology	4	Very large MPA, but testable
Local Interconnect	5	No risky technology involved, but sensors are bigger than commercial MCMs and little in-house (HEP) experience
Powering (DC-DC)	4	Reduce amount of material in passives
Links	5	Speed ok, power and size to be reduced

Summary

- Triggering on high pT particles requires detector to provide "primitives" and not just "points"
- Hybrid (pixel + strip) architecture could optimize several aspects:
 - Provide pT cut with required precision
 - Allow Z-measurement
 - Require less complex connectivity i,.e. retain advantage of the "à la Roland" minimal lateral connectivity
 - Affordable power
 - Can be realized with technologies very similar to today's pixels (not too aggressive)

Spares

Comparison of architectures

	Z-info	Interconnect Complexity	Power	Material penalty
Dual strips	no	easy	low	low
Dual Pixel	yes	difficult	high	high
Hybrid	yes	moderate	moderate	moderate

2010 Module Layout

- Two sets of macro-pixels chips back-to-back on common interposer
- Allows both pT and Z measurement
- Very interconnect "dense"
- No "revolutionary" technology

FE chip with ~ 160x4 pixels of 100x2000 um

~5 x 10cm Hybrid Module, Top

Cluster clean-up

- All these combinations (or larger) to be eliminated before attempting coincidences.
- Algorithm for clean-up:

if any strip/pixel has more than one neighbor turned on in a ± 1 vicinity, then all are turned off