

Tracking and alignment performance of LHCb silicon detectors

Silvia Borghi

The LHCb experiment

- LHCb is an experiment dedicated to heavy flavour physics at the LHC.
- Its primary goal to look for indirect evidence of new physics in CP violation and rare decays of beauty and charm hadrons.
- $b\overline{b}$ pairs produced predominantly close to beam direction \Rightarrow Forward spectrometer: 1.9 < η < 4.9
- Requirements:
 - High precision measurement of primary and secondary vertex → proper time
 - Good momentum resolution $\Delta p/p = 0.4\% 0.55\%$
 - Good particle ID

LHCb Overview of LHCb detector

Overview of LHCb detector

M5

M4

M3

Main detector requirements

- Good vertex resolution [proper time]
- Momentum resolution (MC): $\Delta p/p = 0.4\% 0.55\%$

Good particle identification [K/ π separation]

10m

Silicon Vertex and Tracker detectors

Vertex detector

- 21 silicon micro-strip stations with r-♦ geometry
- 2 retractable detector halves:
 - 8.2 mm from beam with stable beam condition.
 - 30mm from beam during injection and MD

■ 300µm foil separates detector vacuum from beam vacuum and constitutes beam-pipe in VELO region

Silicon tracker

- Track Turicensis (TT) detector
 - Upstream of the magnet
 - Four planes of silicon micro-strip (p on n) sensors (0°, +5°, -5°, 0°)
 - Readout pitch 183 µm pitch
 - 500 µm thickness
 - strip length from 9 to 37 cm
 - Area of 8.2 m2 covered by Silicon, 143360strips

■Inner Tracker (IT) detector

Downstream of the magnet

■3 stations with 4 layers $(0^{\circ}, 5^{\circ}, -5^{\circ}, 0^{\circ})$

- Readout pitch 198 µm
- 320/410 µm thickness for 1/2 sensor ladders
- Area of 4.2 m² covered 129024 readout strips

THEP LHCb Tracking

- VELO tracking using r and \$\phi\$ hits
 - Same tracking in trigger and in offline data processing
 - No momentum information for backward tracks → needed for improving PV resolution
- Long tracks
 - Extrapolate VELO tracks and associate hits in T-stations
 - Combine VELO tracks with seeds from T-station
 - Add TT hits for resolution
- Track fitting with bi-directional Kalman filter and detailed material map

Track efficiency

- Efficiency of VELO tracking:
 - Using Tag and Probe method with $J/\psi \rightarrow \mu\mu$ sample

Good agreement between data and MC

- Similar method can be used to evaluate the efficiency of the tracking system
 - Selecting $K \rightarrow \pi\pi$ or $J/\psi \rightarrow \mu\mu$

Alignment

VELO: sensor module alignment

First method

- Module and 2 half alignment by method based on Millepede
- Sensor alignment by an histogram method, used also for monitoring

Second method

• Global χ^2 minimisation based on Kalman track fit residuals.

Sensor alignment better than 4 μm

Hit on sensor

$$res.(R) = -\Delta x \cos \phi_{track} + \Delta y \sin \phi_{track}$$

 $res.(\Phi) = \frac{\Delta x}{\sin \phi_{track}} + \frac{\Delta y}{\cos \phi$

VELO: 2 half alignment

- VELO centred around the beam for each fill when the beam declared stable
- PV method:
 - Reconstruct PV using tracks in left or in the right side
 - Evaluation of misalignment by the distance between the 2 vertices
- Stability of 2 half alignment by PV method:
 - within ± 5 μm for Tx
 - within ± 2 μm for Ty

Fully open

THEP ST: alignment

- Method:
 - Global χ^2 minimisation based on Kalman track fit residuals
 - track t residual
 - applying also mass constraints $(\dot{J}/\dot{\Psi})$ and D⁰ masses)
 - No sensitive to Ty alignment
- Alignment precision evaluated by the bias of the residuals
 - IT Misalignment 11.1 μm
 - TT Misalignment 17.7 µm

Residual bias (mm)

THED ST: alignment

- ST modules have gaps due to insensitive Guard Rings and edges in Y hits distributions.
- Extrapolation VELO tracks to the IT and TT stations
- evaluation of y misalignment
- To disentangle y misalignment and effect due the magnetic field
- magnet off data for alignment
- magnet on data for validation

Hit resolution

VELO: hit resolution

Main dependence:

- strip pitch
- projected angle (the angle between the track and the strip in the plane perpendicular to the sensor).

■ Other factors:

- Charge sharing as function of fractional strip position (n)
 - \rightarrow work on progress for η correction implementation

■ Hit resolution:

- Best hit resolution 4 μm
- Good agreement with MC
- Improvements expected with η correction

ST: hit resolution

- Dependency:
 - Strip pitch
 - Charge sharing
 - Cross talk due to capacitive coupling between the strips
 - Lorentz angle: bias of cluster position due to the presence of B_{field}
- Tuning of Monte Carlo with the measured parameters

Fraction of symmetric 2 strip cluster

ST: hit resolution

- Hit resolution
 - IT: 58 μm, strip pitch 190 μm
 - TT: 62 μm, strip pitch 183 μm
- The difference with respect to Monte Carlo due to:
 - some difference in the gain
 - status of the alignment

Residuals of TT

Physics Performance

Primary Vertex Resolution

- Vertex resolution
 - Measure resolutions by randomly splitting track sample in two
 - Compare split vertices of equal multiplicity
 - Method validated with MC
- PV resolution (x,y,z) with 25 tracks:
 - Data (13.0, 12.5, 68.5) μm
 - MC (10.7, 10.9, 58.1) μ m
- Room for improvement

Primary Vertex Resolution

- Vertex resolution
 - Measure resolutions by randomly splitting track sample in two
 - Compare split vertices of equal multiplicity
 - Method validated with MC
- PV resolution (x,y,z) with 25 tracks:
 - Data (13.0, 12.5, 68.5) μm
 - MC (10.7, 10.9, 58.1) μm
- Room for improvement

- IP resolution:
 - defined as the closest distance of each track to the primary vertex
 - Measure x and y component of impact parameter
 - Assume all tracks originate from primary interaction point
 - Measure resolution as spread of IP distribution
- = IP resolution down to 13 μ m for high p₊

- IP resolution:
 - defined as the closest distance of each track to the primary vertex
 - Measure x and y component of impact parameter
 - Assume all tracks originate from primary interaction point
 - Measure resolution as spread of IP distribution
- IP resolution down to 13 μm for high p₊
- MC resolution down to 11 μm
- Possible cause of discrepancy
 - Alignment effect
 - Material description

Alignment effect:

- Improving alignment closed the gap between data & MC at high p_T .
- Difference between gradients remains roughly constant.

■ Material effect:

- RF foil thickness 250 µm instead of 300 μm
 - → small change in the slope

- Missing other material?
 - → detailed material scan study by vertex interaction

IP_x Resolution Vs 1/p₊

IP_x Resolution Vs 1/p₋

Material study

- Use detector model in simulation to estimate material budget
 - Largest contribution from RF foil (~42%)
- Use vertices of hadronic interactions with material to map VELO
- The $\frac{\# \text{interaction}(Si)}{\# \text{interaction}(RF)}$ between data and MC has good agreement
 - Good description of total material
- Changing the Geant setting, size of multiple scattering is changing

- IP resolution:
 - Impact Parameter (IP) is defined as the closest distance of each track to the primary vertex:
 - Measure x and y component of impact parameter
 - Assume all tracks originate from primary interaction point
 - Measure resolution as spread of IP distribution
- IP resolution up to 13 μm for high p₊
- MC resolution up to 11 μm
- Still under investigation the discrepancy between data and Monte Carlo

Mass measurement

- Very precise momentum and mass resolution
- Mass measurement:
- > world best measurements for B_{μ} , B_{d} , B_{s} and Λ_{b} after one year of data taking

Proper time resolution

- Proper time resolution ~50 fs
- Many physics results, one example:
 - lacktriangleright Competitive measurement of $m{B}_{
 m s}^0 \overline{m{B}}_{
 m s}^0$ mixing frequency Δm_s with 36 pb⁻¹ $\Delta m_s = 17.63 \pm 0.11$ (stat.) ± 0.04 (syst.) ps⁻¹LHCb

Conclusion

- Excellent performance of the vertex and tracker detectors in LHCb experiment:
 - Good understanding of tracking and alignment
 - High track efficiency
 - \blacksquare Hit resolution for VELO down to 4 μm and for ST ~190 μm
 - PV resolution at ~13 μm
 - IP resolution down to 13 μm
 - Good momentum and mass resolution
 - Proper time resolution 50 fs
- Given a powerful tool to obtain a lot of new physics results ...
 - and maybe also observation of New Physics!

Backup

VELO: Cluster finding efficiency

- Evaluation of efficiency in the test module, not used in the tracking
 - 1 module test each 5 modules
 - Same method as Charge Collection Efficiency

- If the extrapolated point in the sensitive area
- Check the cluster in the neighboring strip
- Overall efficiency is 99.5% including the known bad and dead strips

ST: Hit efficiency

- Measure efficiency with tracks p > 10 GeV.
 - Isolation criteria to reject ghosts.
 - Efficiency varies as function of window size: 2.5 mm (TT) and 1 mm (IT).

Num. found hits Num. expected hits

- Noise cluster rate: O(10-5)
- Overall efficiencies:

IT: 99.7 %.

TT: 99.3 %.

VELO: 2 half alignment

- VELO centred around the beam for each fill when the beam declared stable
- Special Data taking condition at beam energy below 7 TeV:
 - at 0.9 TeV → VELO at ± 10mm
 - at 2.8 TeV → VELO at ± 5mm
- Motion system high precision for opening distance < 5 mm
 - Not foreseen other positions than fully closed
 - Observed large misalignment
- Calibration of resolver position using PV method

Fully open

Closed pos.

Scale factor of 0.57%

VELO: sensor module alignment

Material study

- Material budget
- Use detector model in simulation to estimate material budget
- Average particle leaving VELO sees 0.217 X_0 material for 1.6 η < 4.9
- Largest contribution from RF foil (~42%)

VELO: charge sharing

Cluster size as function of the projected angle

