

Cooling in HEP Vertex and Tracking Detectors

VERTEX 2011

Hans Postema & Bart Verlaat

 What is a High Energy Vertex or Tracking detector from a cooling system point of view?

An answer

- Based upon the CMS tracker:
 - A heat load of about 35 kW
 - Distributed along more than 4000 meter of tube with a diameter of about 2 to 3 mm
 - Often at temperatures of -20°C or even lower
 - With 50 meter long supply and return lines
- In General:

- Very similar to this CMS example

The goals

- Reliable cooling with minimal temperature gradients
- The minimal amount of material inside the detector active volume
- Temperatures between -40°C and +20°C

Engineering issues

- Radiation
 - Limits choice of coolants and components
- Magnetic field
 - Limits choice of components
- System is often inaccessible during long periods of time, a year or years
 - Fewer (active) components is always better
 - Active components in accessible places
- Various solutions at LHC

ALICE - SPD

- 2-Phase system using C₄F₁₀
- Operating temperature +15°C
- Operating pressure 1.9 bara
 - Low pressure, requires larger return pipes, not
 - a problem when space is available
- Uses chilled water as primary cold source

ATLAS - SCT

- 2-Phase system using C₃F₈
- Operating temperature -25°C
- Operating pressure 1.7 bara
 Low pressure, requires larger return pipes
- Advantage: warm supply and return pipes
 - Disadvantage: this requires carefully controlled heaters
- Uses a C₃F₈ vapor compression cycle as primary cold source, not an industrial standard

CMS Tracker

- Single phase system using C₆F₁₄
 - Single phase requires larger supply/return lines, due to higher mass flow
- Operating temperature -20°C
- Operating pressure 6 9 bara
- Simple design
- Uses industrial standard R507a chiller as primary cold source

LHCb - VELO

- 2-Phase system using CO₂
- Operating temperature -30°C
- Operating pressure 14 bara
- System designed for maximum simplicity and robustness
- Uses industrial standard R507a chiller as primary cold source

Why is evaporative CO₂ cooling good for HEP detectors?

CO₂ allows small tubing

Pouelog mony trading

Why?

Latent Heat of Evaporation

20 June 2011

VERTEX 2011 - Hans Postema - CERN

What happens inside a cooling tube? Heating a flow from liquid to gas

Comparison between evaporative CO_2 and C_3F_8 in a cooling tube

CO₂ and safety

CO₂ has a high pressure (10-100bar) but this does not have to be an increased safety issue.

Pressure Equipment Directive (PED):

- Stored energy determines the safety class.
- Stored Energy = **Pressure x Volume**

CO₂ is environmental friendly, non-toxic and cheap.

- CO_2 in large concentrations is asphyxiating, be careful with venting CO₂ in unventilated small spaces.
- CO₂ does not exist as liquid in atmospheric conditions. It is released as -78°C solid (Like a fire extinguisher). => Cold burn risk.

	ID	Design Pressure	Stored energy
CO ₂	1.4mm	100 bar	15.4 J/m
C_3F_8	3.6mm	15 bar	15.3 J/m

20 June 2011

VERTEX 2011 - Hans Postema - CERN

How to evaporate liquid CO₂ in a detector?

- 2 CO₂ cooling systems have been developed for HEP detectors so far.
 - AMS-TTCS (Tracker Thermal Control System)
 - Q= 150 watt
 - $T=+15^{\circ}C$ to $-20^{\circ}C$
 - Operating in space since 20 May 2011
 - LHCb-VTCS (Velo Thermal Control System)
 - Q=1500 Watt (2 parallel systems of 750 W)
 - $T = +8^{\circ}C \text{ to } -30^{\circ}C$
 - Operating at -30°C since 3 years!
- Both systems are based on the 2PACL principle invented at NIKHEF

AMS on the ISS

Ongoing CO₂ projects

- CO₂ cooling development for upgrade detectors:
 - Atlas IBL
 - CMS-pixel replacement
 - Atlas and CMS upgrade silicon detector
 - Belle-2 detector at KEK
- Maintain CO₂ cooling platforms for testing. At CERN/Nikhef the following systems are operational and are open to external customers:
 - Nikhef 2PACL system
 - CERN Cryolab 2PACL system
 - CERN B187 test setup
- Test systems under development:
 - CERN-DT / Nikhef 1kW system
 - CERN-DT 100W system

Operational: Nikhef CO₂ 2PACL test system

- Capacity 1kW
- Evaporative temperature range: -40°C to +25°C
- Universal test box for experiments
- Pre set-up temperature sensors and pressure sensors.
- Controllable power supply
- Automatic scanning connected experiments

Operational: CERN-Cryolab 2PACL test system

- Capacity 0 W to 2kW
- 27 Liter accumulator for large volume experiments.
- Temperature range +25°C to -40°C
- Small (150 Watt) and large experiment outlet.

Setup in Building 187

1kW - CO₂ Cooling unit mechanical design

20 June 2011

1kW plant at NIKHEF

Latest news: Assembly completed since a few days

100 Watt I-2PACL CO₂ unit

- 100W@-40° C
- Higher capacity at higher temperatures
- New simplified 2PACL concept called Integrated 2PACL (I-2PACL).
 - Integrated functionality of several components to reduce costs.
- Cheaper and easier to build.
 - Less components and controls
- 2D piping layout, easy to insulate in between removable foam layers
 - Easy access to all insulated components
- 2 prototypes under manufacturing
 - LHCb velo
 - Atlas IBL or Pixel
- Small CO₂ volume.
 - PED Class 1 (No notified body required)
- 3m flexible concentric hose connection to experiment.

2D piping layout

Easy access to all insulated components

CO₂ Collaboration

- CERN-CMS
- CERN-Cryolab
- CERN-CV
- CERN-DT
- EPFL Lausanne
- Fermilab
- HEPHY Vienna
- IPNL-Lyon

- KEK Japan
- NIKHEF
- NLR Amsterdam
- Karlsruhe University
- MPI Muenchen
- PSI Villingen
- RWTH Aachen
- SLAC

More CO₂ cooling plants

- RWTH Aachen working cooling plant
- IPNL Lyon working cooling plant
- Fermilab starting operation of plant
- CERN-CV plant at Atlas pit under construction

Fermilab CO₂ plant

Plant at Atlas SR1

Cooling Success

- Not only a matter of selecting the right fluid
- A concept that uses the maximum amount of industrial experience and industrial technology assures maximum reliability
- Design the system keeping the very limited access in mind.
- Only components of outstanding quality should be used, fluids can be expensive, refurbishments too

Conclusions

- CO₂ cooling can be the optimal solution for VERTEX and Tracking detectors
- A successful and reliable cooling system requires:
 - A well chosen concept
 - A simple and excellent design
 - High quality components and manufacturing
- Albert Einstein: "everything should be made as simple as possible, but no simpler"