The AMS02 Silicon Tracker: the detector and a first look to the on orbit data

G. Ambrosi

on behalf of the Tracker group (Perugia INFN and University, Geneva University)

AMS on the International Space Station

- Cosmic Antimatter search with 10⁻⁹ sensitivity
- Indirect Dark Matter search (e⁺, p
 , γ)
- Relative abundance of nuclei and isotopes in primary cosmic rays
- γ ray astrophysics

The purpose of the AMS experiment is to perform accurate, high statistics, long measurements of charged cosmic rays (0.5 GV - 1 TV) and γ rays (E>1GeV)

AMS01 at KSC (Florida) in 1998

AMS-01 pilot experiment: STS91, June 2nd - 12th 1998

- 10 days of data taking in orbit:
 - 400 Km altitude
 - latitudes +51.7°
 - all longitudes
- 10⁸ events recorded
- Physics results (Phys. Rep. 366 (2002) 331)
 - precise measurements of primary fluxes
 - detection of secondary fluxes (quasi trapped)
 - antimatter limit at 10⁻⁶

Tracker performance presented at Vertex 1998, Santorini

- performance a la `particle physics':
 - high resolution measurements of momentum, velocity, charge and energy
- characteristics to properly work in the space environment:
 - Vibration (6.8 G rms) and acceleration (17 G)
 - Temperature variation (day/night $\Delta T = 100^{\circ}C$)
 - Vacuum (10⁻¹⁰ Torr)
 - Orbital debris and micrometeorites
 - Radiation (Single Event Effect)
- limitation in weight (15000 lb), power (~2KW), bandwidth and maintenance
- Compliant with Electromagnetic Interference and Electromagnetic Compatibility specs

AMS: A TeV precision, multipurpose particle physics spectrometer in space. TRD

- fall 2009: integration at CERN
- February 2010: test beam at CERN
- spring 2010: EMI and TV test at ESTEC (ESA)
- late spring 2010: magnet replacement at CERN
- August 2010: test beam at CERN
- fall/winter 2010-2011 integration at KSC (Florida)
- May 16th 2011: launch!
- May 19th 2011: first activation in space: everything is working!!

First Tracker calibration in space

Data from the 1st few minutes – 20 GeV Electron, 19 May 2011

Data from the 1st few minutes – 42 GeV/c Carbon, 19 May 2011

Silicon Tracker

- 9 layers of double sided silicon detectors arranged in 192 ladders
- 6 honeycomb carbon fiber plane
- detector material ~ 0.04 Xo
- total of 200 kchannels for 192 watt dissipated inside the magnet volume
- $10 \ \mu m$ (30 μm) spatial resolution in bending (non bending) plane
- momentum resol ~10% at 10 GeV
- high dynamic range front end for charge measurement
- wide temperature range (-20/+40 survival, -10/+25 oper.)

Silicon Tracker

- 9 layers of double sided silicon detectors arranged in 192 ladders
- 6 honeycomb carbon fiber plane
- detector material ~ 0.04 Xo
- total of 200 kchannels for 192 watt dissipated inside the magnet volume
- 10 μm (30 μm) spatial resolution in bending (non bending) plane
- momentum resol ~10% at 10 GeV
- high dynamic range front end for charge measurement
- wide temperature range (-20/+40 survival, -10/+25 oper.)

- 1024 high dynamic range, AC coupled readout channels:
 640 on junction (S) side
 384 on ohmic (K) side
- Impl/readout pitch:
 27.5/110 μm (S side)
 104/208 μm (K side)

192 flight units, 210 assembled in 3 lines: Perugia (I), Geneva-ETHZ (CH), G&A (Carsoli, I)

Peruni

AMS silicon ladders

- 1024 high dynamic range, AC coupled readout channels:
 640 on junction (S) side
 384 on ohmic (K) side
- Impl/readout pitch: 27.5/110 μm (S side) 104/208 μm (K side)
- 7 15 wafers (28 60 cm)

192 flight units, 210 assembled in 3 lines: Perugia (I), Geneva-ETHZ (CH), G&A (Carsoli, I)

Ladder components (p side)

6 VA_hdr64a (IDEas, NO)
384 channels, 0.7 mW power each
CR-RC shaper and S&H
4 μs shaping time
100 MIP dynamic range

Perugi

INEN

Radiation 'hard' electronics

The problem are the SEE (Single Event Effect)

current limit protection is present for all active components

Data Reduction Board (TDR2)

analog signal in

compressed digital out

Collect analog data and digitize it (100 µs irred. dead time)

Perform online data compression

- Remove Pedestals
- Calculate and Remove Common Noise
- Search Clusters

Up to 5 KHz trigger rate in compressed mode

Tracker integration (2)

the first muon with the new Tracker

G. Ambrosi, June 20t

28

the particles we see

G. Ambrosi, June 20th 2011

cooling: 2 phases CO2 pumped loop

in flight experience: cooling and currents

Showing last hour 3 hours 6_hours day 3 days week

Until now or 19:03 18/06/2011

Perugia

INFN

Istituto Nazionale di Fisica Nucleare

experience to come: alignment

Perugia

on ground results inner planes

Conclusions

- AMS02 is in orbit since May 16th 2011
- No damage due to the launch stress or to the space environment, all the system are working in both the primary and redundant part
- All the detectors are properly functioning with DAQ in nominal conditions since May 19th 2011 (1.3 billions events)
- Tracker behavior is as expected in term of signal and noise levels
- 10+ years on board the ISS: great discovery potential, lot of work ongoing (alignment!)

Science will come soon!