

Operation & Performance of the ATLAS SemiConductor Tracker

Dr. Petra Haefner Max-Planck-Institut für Physik

The SCT Detector

Endcap A	Barrel Endcap C	Facts & Figures	
		Barrel:	4 layers, 2112 modules
		Endcaps:	2 x 9 disks, 1976 modules
	Pixels (3 layers) SCT (4 layers)	Coverage:	30 cm < r < 52 cm, η < 2.5
Pive	TRT (73 layers)	Active Material:	61 m ² silicon
SCT (9 dis	ks)	Readout:	6.3 million channels
TRT (14 wheels)			

Operating Points

- 150 V reverse bias voltage (U_{standby} = 50 V, U_{max} = 500 V)
- I fC hit threshold (binary readout)
- 3 time bin readout (25ns / bin = LHC clock)
- C_3F_8 cooling: -7°C to +4.5°C

The SCT Modules

Mounting Point 1st Sensor (Front) 2nd Sensor (Front) 6 Readout Barrel **Chips / Side** (0) **Baseboard** 1569 **Stereo Angle (Back)** HERE PARTY AND Connector **Endcaps** e Middle Outer . Short

Sensor Setup

- 768 p-strips on n-type silicon
- Pitch: 80 μm (B), 57-94 μm (EC) \bigcirc
- 285 µm thick 0
- 2 single-sided sensors glued back-to-back
- Stereo angle of 40 mrad
- 83 % Hamamatsu, 17 % CiS
- Sensor Length
 - 13 cm (B), 6-12 cm (EC)
- Resolution
 - ~17 μ m(r ϕ , bending plane), ~580 μ m (z)
- **Baseboard**
 - Mechanical & thermal structure
 - Thermal Pyrolitic Graphite
- Readout
 - **Radiation-hard front-end readout chips** (ABCD3TA)
 - 6 chips/side, 128 channels/chip
 - 48 modules served by 1 ROD \bigcirc
 - 11 (12) RODs send data to 1 ATLAS ROS 0
 - **TIM** provides trigger signal & clock \bigcirc

SCT Readout & Timing

- 3 time bins of 25 ns (LHC clock) around trigger accept signal
- 3 different timing modes:
 - XXX: no hit requirement
 2010: ≥75 ns bunch distance
 - X1X: bin 1 hit required
 2011: 50 ns bunch trains
 - 01X: bin 1 hit required, no hit bin 0
 2012(?): 25 ns bunch trains
- Timing scans done for all modules
 - Account for fiber lengths
 - Account for TOF from IP to module
- SCT very well timed in

Noise Occupancy

Calibration Measurement of chips 3500 1403 e. -2.2°C Charge injection circuit in readout chip 0-16 fC 3000 1447 e, 4.9°C Outer barrel: Measure hits vs. threshold (S-curve) Inner endcaps: 1020 e, -5.2°C Number 2500 Middle endcaps (short): 830 e, -7.5°C Fit by complementary error function 1397 e. -7.8°C Middle endcaps: 2000F Outer endcaps: 1486 e, -7.5°C Width characterizes noise 1500 **SCT** noise <1500 e ATLAS Preliminary 1000 SCT Calibration Hit threshold ~ 6200 e October 2010 500 **Online Measurement** Count hits in random triggers (empty bunches) 500 1000 1500 SCT noise occupancy ~ 10⁻⁵ Noise, noise occupancy test [electrons] 0 **Design requirement < 5 * 10**-4 200 sơ 180 IJ test [electrons] 1800 1800 1600 chips ATLAS Preliminary 7.2e-06,-2.2°C SCT Calibration 10^{4} Outer barrel: 1.3e-05, 4.9°C Both methods in ę 160 ^Ⴊ October 2010 Middle endcaps: 1.1e-05,-7.8°C Number 140 <mark>e</mark> Outer endcaps: 1.6e-05,-7.5°C good agreement 10³ 120 Z 1400 100 ATLAS Preliminary es 1200 suod sau 1000 \blacktriangleright Less than 0.2% 10^{2} SCT Calibration 80 October 2010 60 disabled noisy -2 2°C 4.9°C Outer barrel 10 40 Inner endcaps: -5.2°C Noise, Middle endcaps: -7.8°C strips 800 20 Outer endcaps: -7.5°C 0 $^{1}_{9}$ -8 -7 -5 -3 800 1000 1200 1400 1600 1800 2000 -6 -4 Log₁₀(occupancy) Noise, noise occupancy test [electrons]

20.06.11

Hit Efficiency

Efficiency = # of hits / # of possible hits (on reco. tracks)
 Dead modules & chips accounted for
 Barrel all layers > 99.8 % efficiency
 Endcaps

all disks > 99.6 % efficiency

- Time stability: ± 0.1 %
- Well above design of 99.0 % efficiency

SCT Operation

- Well timed in, good time resolution
- Efficient even at standby voltage (50 V)
- Excellent beam conditions monitor
- Allows safe & efficient warm start O(min)

20.06.11

Vertex 2011 – ATLAS SCT

7

Occupancy

- ROS event size limit: 65 kB (configured)
- Event truncation at ~ 46 % occupancy
- Avg. occ. for 10 vertices is 0.7 %
- Predicted mean occupancy at design luminosity ~ 1 %
- Maximal occupancies observed:

Beam Type	Single Module	Avg. of all Mod.
Proton	20 %	8 %
Heavy Ion	37 %	16 %

SCT is not limiting ATLAS Level 1 rates

20.06.11

- 360 off-detector TX arrays, 12 VCSELs / TX ۲
- Started dying (again) in May '10
- O(10) deaths per week
 - (most) SCT modules have redundancy \rightarrow change configuration after run end
 - Modules w/o redundancy \rightarrow replace TX, O(days)
- Allows stable operation with < 10 mod. out
- Cause of failure: humidity
- Supply racks with dry air >
- **Spare situation**
 - ~200 old type available
 - Production of new TXs with 0 better humidity resistance started, ~2*1000

Vertex 2011 – ATLAS SCT

9

Data Taking Stability

Module Issues (Average 2010-11)

 0.75 % modules out of DAQ
 0.18 % modules with errors
 Only 11 / 196 runs with SCT issues in 2010
 6 runs where data quality was not affected
 9 fup-region affected in tracking
 2010: ROD stopless removal
 48 modules taken out of the run
 O(h) for recovery (need to restart run)
 2011: ROD stopless recovery
 Reff. Reconfigure ROD during run
 O(min) for full recovery of all modules

Disabled Modules	#	%
Cooling	13	0.32
LV	7	0.17
HV	6	0.15
Readout	4	0.10
Total	30	0.73

Eff.	PIX	SCT	TRT
2010	99.1%	99.9%	100%
2011	99.5%	99.4%	100%

Data taking efficiency > 99.4 %

Geometric Stability

- Monitor long term stability of SCT geometry
- Optical alignment system using Frequency Scanning Interferometry
- 842 interferometers form geodetic grid of distance measurements
- Detected movements
 - Before magnet ramp down: position deviations σ ~ 11 nm
 - During solenoid ramp: movements \leq 3 μ m
 - After full magnet cycle: position deviations σ ~ 49 nm

SCT geometry extremely stable

Vertex 2011 – ATLAS SCT

11

Detector Irradiation

- Radiation damages detector & electronics
- Monitoring needed to predict future performance of current & upgrade SCT
- Linear relation between leakage current & fluence (if T, V = const)
- Measure fluence on-detector
 - Barrel: Excellent agreement with simulation
 - Endcaps: Good agreement in outer / middle rings
 - Inner Rings: Radiation larger than in simulation
 - Need to understand the difference
- Trip limits increased in June 2011
- Safety factor of 1.5 seems still sufficient for upgrade R&D

SCT is performant and stably operating

- Very well timed in detector
- Number of disabled noisy strips tiny (< 0.2%)
- Efficiency of 99.6% is higher than design
- Stopless removal & recovery of RODs working
- Data Taking Efficiency > 99.4%
- SCT geometry is extremely stable
 - Detector Alignment: see talk by Markus Elsing
- TX death cause understood \rightarrow humidity
 - Redundancy scheme very helpful
 - Enough spares available to ensure stable operation
 - New TXs with lifetime > 10 y in preparation

• First effects of irradiation observed

- Increase in leakage current, higher trip limit needed
- Measurement of fluences agrees well with simulation within safety factor of 50%

Backup

SCT DAQ Scheme

Vertex 2011 – ATLAS SCT

15

7 Ap. Ag≥±

RX Deaths?

On-detector RXs

- SCT: different type than TXs
- Should not be affected
- Dry nitrogen environment
- No humidity issue
- Saw 6 failures in 2010-11

Broken RX Fibre

Default Readout

20.06.11

Hit Strips, Efficiency, Occupancy

N(vertex)	Avg. Occupancy (Barrel, innermost layer)	
5	0.41 %	
10	0.66 %	
15	0.89 %	

2010	Run Type	Max. Occ.
09. Apr	Cosmics	4%
09. Apr	Beam, non colliding	6%
25. Apr	Squeezed beam, colliding	20%
10. Jun	Single high occ. event	32%
29. Oct	Bunch trains	20%
09. Nov	Heavy Ion	37%

20.06.11

Lorentz Angle

cluster width (strips)

22

1.2

-20

-15

2.4 ATLAS Preliminary

Run 141811 Preliminary

-10

-5

SCT Layer 0 SCT Layer 1

SCT Layer 2 SCT Layer 3

15

20

- Lorentz Angle = Angular drift of charges in silicon sensor due to magnetic field
- Dependencies
 - Magnetic field
 - Temperature
 - Bias voltage
- Measurement
 - Track incidence angle where average cluster width is minimal

