



# Simulations of 3D detectors

G. Giacomini<sup>(a)</sup>, G-F. Dalla Betta<sup>(b)</sup>, C. Piemonte<sup>(a)</sup>, M. Povoli<sup>(b)</sup>



(a) Silicon Radiation Sensors @ FBK, Trento







# **Outline**

- 3D sensors: properties, state-of-the-art and technology @ FBK
- TCAD simulations for 3D sensors: peculiarities
- Selected simulations :
  - C-V → depletion map
  - SLIM edge
  - Signals from test beam → charge sharing
  - Multiplication effect (?)



# 3D detectors

First proposed by S. Parker et. al. in NIMA 395 (1997), 328



Best result:

66% of the original signal after Fluence = 8.8x10<sup>15</sup> cm<sup>-2</sup> 1-MeV n<sub>eq.</sub> @ 100 V

C. Da Via et. al.: NIMA 604 (2009) 504

#### **ADVANTAGES:**

- Electrode distance and active substrate thickness decoupled:
  - Low depletion voltage
  - Short Collection distance
  - Smaller trapping probability after irradiation
    - → High radiation hardness

#### -Active edges:

 Dead area reduced up to few microns from the edge

#### **DISADVANTAGES:**

- Non uniform response due to electrodes
- Complicated technology
- Higher capacitance (X3) with respect to planar



# Latest 3D technology @ FBK

~ 200-μm *P*-type substrate, *n*-junction columns insulated by p-spray



### **NOT FULL PASSING COLUMNS**

- fabrication process reasonably simple
- proved good performance up to irradiation fuence of  $10^{15} \, n_{eq}/cm^2$  (even with non optimized gap "d") but
- column depth difficult to control and to reproduce
- insufficient performance after very large irradiation fluences if "d" is too large



### **FULL PASSING COLUMNS**

- •Column depth = wafer thickness
- More complicated process
  - → back patterned



# The TCAD Simulator

Simulations presented are performed with Synopsis Sentaurus (former ISE-TCAD) → 1D, 2D and <u>3D</u> simulator solving physical equations (Poisson, drift, diffusion, ...)





# **TCAD Simulator for 3D**

# Simulation for understanding the properties of different kind of 3D sensors have been the subject of many papers:

- •Parker et al.: "3D A proposed new architecture for solid-state radiation detectors" NIM A395 (1997) 328-343
- •Piemonte et al.: "Development of 3D detectors featuring columnar electrodes of the same doping type" NIMA 541 (2008) 441
- •Zoboli et al.: "Double-Sided, Double-Type-Column 3-D Detectors: Design, Fabrication, and Technology Evaluation" TNS 55 (2008) 2775
- •Pennicard et al.: "Simulations of radiation-damaged 3D detectors for the Super-LHC" NIM A 592 (2008) 16–25

For the different technologies, we studied both static (I-V and C-V) and dynamic behavior (signals from optical and high-energy particles).



### **Peculiarity of 3D detector simulations**

For a 3D detector, we must use 3D simulations, since properties varies with depth.

→ high number of nodes, long CPU time, ...

On the other hand, structures may show regular pattern and the elementary cell can be quite small.

### **Example of 3D layout**

### Simulated structure = elementary cell





# Example 1. C-V simulation

Capacitance vs  $V_{\text{bias}}$  of an array of n - columns vs p - columns (back) of a 3D diode.



C-V curve does not saturate for  $V_{bias} > V_{depl}$ , like in a standard planar Diode (1D approx),

To understand this effect we simulate:

- elementary cell.
- p-spray profile measured with SIMS and inserted in simulation.



# Example 1. C-V simulation

Capacitance vs  $V_{bias}$  of an array of n+columns vs p+columns (back) of a 3D diode.



C-V curve does not saturate for  $V_{bias} > V_{depl}$ , like in a standard planar Diode (1D approx),

To understand this effect we simulate:

- elementary cell.
- p-spray profile measured with SIMS and inserted in simulation.



# **C-V** simulation

Hole concentration vs V<sub>bias</sub>



- At mid-substrate, (hole) depletion already @  $V_{bias}$  = 6 V.
- Important capacitance contribution from *p*-spray which is slowly depleting also at higher voltages.



# **Example 2. SLIM EDGE**

#### **Problem:**

ATLAS IBL requires a max. dead layer of 450  $\mu$ m along Z for FE-I4 read-out.

Standard Active edge difficult to implement because of support wafer

### →SLIM EDGE

- Multiple Ohmic (p-col.) fence termination
- Dead area can be as low as~ 200 μm

### Does it work?





# **SLIM EDGE**

The scribe line is simulated as a low- $\tau$  region: if depletion region touches it  $\rightarrow$  HIGH current!!



Even for  $V_{bias} >> V_{depl}$ , depletion region hardly extends beyond second p-col row.





# **SLIM EDGE**

Experimentally, it works:

Dicing away one row at a time and measuring the I-V, It is shown that one row of ohmic holes is sufficient to "stop" the depletion region





# Example 3. Signal from irradiated devices

Old FBK 3D sensor, not full passing columns proton irradiated @ 1e15 n<sub>eq</sub>/cm<sup>2</sup>







C. Gallrap et al., "Characterisation of irradiated FBK sensors". ATLAS 3D Sensor General Meeting, CERN, October 26, 2010.

We want to reproduce this "not intuitive" trend:

→ 3D is "ideal" only in the columnar overlapping, while only a simulation can predict the collection of electrons generated below the column → fluence dependent



# Signal from irradiated devices

Bulk simulated according to "Perugia" model: Petasecca TNS 53 (2006) 2971; Pennicard NIM A 592 (2008) 16–25

| Туре     | Energy<br>(eV)        | Defect   | σ <sub>e</sub> (cm²)   | σ <sub>h</sub> (cm²)   | η (cm <sup>-1</sup> ) |
|----------|-----------------------|----------|------------------------|------------------------|-----------------------|
| Acceptor | $E_{\rm C} - 0.42$    | VV       | 9.5 10 <sup>-15</sup>  | 9.5 10 <sup>-14</sup>  | 1.61                  |
| Acceptor | E <sub>C</sub> -0.46  | VVV      | 5.0 10 <sup>-15</sup>  | 5.0 10 <sup>-14</sup>  | 0.9                   |
| Donor    | E <sub>V</sub> + 0.36 | $C_iO_i$ | 3.23 10 <sup>-15</sup> | 3.23 10 <sup>-14</sup> | 0.9                   |

To simulate the charge sharing:

→ double the elementary cell



m.i.p. crossing the bulk simulated with uniform charge release (80 pairs/μm) and with different track angles





# Signal from irradiated devices





Integrals of currents ( = total collected Charge) saturate before 20 ns (no ballistic deficit for ATLAS ROC) and at a value exceeding the threshold of 3200 e- (0.5 fC) (ATLAS threshold)

particle



# Signal from irradiated devices

Simulating Cluster size 1 vs Bias voltage and Simulating Cluster size 2 vs Bias voltage (for few impinging points) and weighting the simulated results with geometrical/experimental considerations, we get a simulated curve of the total charge vs V<sub>bias</sub>, which fits well the irradiation experiment results.





# **Example 4.** Multiplication effects work in progress!



In an irradiated p-on-n strip sensor ( $\Phi$ = 1e15 n<sub>eq</sub>/cm<sup>2</sup>), already at ~ 150 V, CCE vs V plots shows an anomalous increase of IV and CCE-V.

It is believed that this effect comes from impact ionization





# Multiplication effects

work in progress!



# irradiated – $\Phi$ =1e15 n<sub>eq</sub> strip sensor *p*-on-*n*



### Simulating multiplication with:

- impact ON
- effective bulk doping/oxide charge→ no multiplication
- impact ON and
- traps from "Perugia" model
  - → MULTIPLICATION close to the measured one





# CONCLUSIONS

Simulations of 3D are fundamental because of the complexity of the device.

Different geometries & different Models must be chosen according to the simulation

We showed that simulations are useful both at the design stage as well as to understand peculiar effects.