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Technology CAD (TCAD)
• TCAD started 

– to build the links between the
– semiconductor physics and 
– electrical behavior 
– to support circuit design

• Modern TCAD consists of
– Process simulation, and
– Device simulation

• Originated from the work of 
– Prof. Robert W. Dutton and his group at 

Stanford Univ.

• Widely used in semiconductor industry
– to reduce the development cost and time
– to understand the physics behind

• that is even impossible to measure

• TCAD: Computer Aided Design for 
Semiconductor Technology
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Brief History
1977: Prof. Dutton, Stanford

Process/Device sim
SUPREM-I (1D)/PISCES

1979: Technology Modeling Associates 
(TMA/Synopsys)
TSUPREM4 (2D)/MEDICI 

1989: Silvaco International
ATHENA (2D)/ATLAS

1989: Integrated Systems Engineering AG 
(ISE)/Synopsys)
DIOS (2D)/DESSIS

1992: TMA
TAURUS (3D TSUPREM4/DEDICI)

1993: Prof. Law, Florida
Process sim: FLOOPS (3D)

2002: ISE
FLOOPS (3D)

2005: Synopsys
Sentaurus (3D TAURUS)

In Japan,
1996: 3D HyENEXSS (Selete/TCAD Int.)

Selete: Consortium of 10 
semiconductor co.

2011: 3D HyENEXSS (Selete) 
Project ends
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Prof. Robert W. Dutton
(from Stanford TCAD Home page)

TMA⇒AVANT!/1998⇒Synopsys/2001
ISE⇒Synopsys/2004



Process Simulator  Device Simulator

• Process steps
– Oxidation
– Deposition
– Etching
– Ion implantation
– Annealing 

• Mostly for process experts
– Unless you know the process 

parameters, you have no way to 
simulate.  

• Solving equations
– Poisson eq. (ψ, n, p)
– Current continuity eq. Jn, Jp (ψ, n, 

p)
– Heat conduction eq. (“Drift 

Diffusion model) (TL)
– …

• Four equations and four variables
– potential ψ, electron-density n, 

hole-density p, and lattice-
temperature TL
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ion-implantation process (M.C.-model)



Caveat
• Which physics models and their parameters to use. Device simulator e.g.,

– Transport models
– Mobility models
– Generation-recombination models (SRH, Auger, II, trap, surface…)

• SRH: Shockley-Read-Hall model
• II: Impact Ionization model

• Finite Element method
– A core of the calculation
– 3D vs. 2D

• 3D: Usually “very” time consuming
• 2D: Most of the cases, good enough

– Meshing: resolution vs. time
– Convergence of calculations

• Try and error for finding best procedures (method, physics model)

• The real caveat would be
– “You get only what you put.”
– Although semiconductor industry is trying to simulate perfectly, we may still 

miss models, e.g., for dicing edge, radiation damaged surface... 
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Application for Strip and Pixel Sensor 
Optimization

• Number of presentations in this conference
– Looking forward to what will be presented

• I will report our results of comparison of TCAD 
simulations and measurements
– Main goal

• To develop highly radiation-tolerant silicon 
“planar” sensors, i.e., to cope with very high 
voltage operation

1) P-stops between n-implants
2) Punch-Thru Protection (PTP) structure
3) Edge structure

– Simulator
• HyDeLEOS (Device simulator) in HyENEXSS
• 2D simulations

Y. Unno et al., Vertex2011, Rust, Austria 6



P-stops between N-implants
• Problems - Hot spots

– IR image overlaid on visual image
– Microdischarge = Onset of leakage 

current

• What to do the structures to reduce 
the electric fields?
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P-stop Structures Optimization

• Multiple lines of p-
stops between n-
implants
– 1, 2, 3 p-stops

– Location of p-stops

– Distance, gap, …

• Device simulations 
for electric fields

Y. Unno et al., Vertex2011, Rust, Austria 8

Presented at 7th “Hiroshima” symposium and published in
Y. Unno et al., Nucl. Instr. Meth. A636 (2011) S118–S124



Pitch Dependence
• We have processed test structures and compared with the simulations. 

New results to this conference. 
• Test structures: 

– Common = Common p-stop structure == 1 p-stop line in TCAD
– Individual = Individual p-stop structure == 2 p-stop lines in TCAD
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Potential is deeper than TCAD simulations



“P stop” Width Dependence

• Common vs. TCAD
– Consistent trend

• Individual vs. TCAD
– Potential is shallower in wider separation of p-

stops
– Dependence on Edge-to-Edge width is opposite
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P-stop Position Asymmetry

• Potential is rather insensitive to the location of the p-stop
• In optimizing the structures,

– potential is one story
– the critical one is the electric field 

• that is virtually impossible to measure, 
– thus TCAD helps…
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Optimization of the p-stops

• Placement of p-stops
– Away from the n-implant
– Symmetrically

• N-implants
– Narrower pitch but not too narrow

• All these are “Columbus’s egg”
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Stereo strip section



New PTP Structure

• Punch-Thru-Protection (PTP)
– keep the potential of the n-strip implant against deposition of large amount of charge to the strip
– to protect the AC coupling insulator to break (dV < ~150 V)

• P-stop requires more space than p-spray
– What to do to keep the onset voltage (and saturated resistance) low?

• A solution proposed (Y. Unno et al., Nucl. Instr. Meth. A636 (2011) S118–S124)
– “Gated” PTP structure: the gate is an simple extension of metal (or polysilicon) over the p-stop and beyond
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Goes toward backplane potential.
A case of -50 V, with Backplane -200 V

Ground potential

Without  extention (gap 20 µm)
With

Surface charge-up 1x1012

PTP gap

p-spray (gap 10 µm)

Si-SiO2 interface charge 1x1011



New PTP Test Structures
• P-stop

– B: Atoll type

– C:  Compartment 
type

– D: Simplest type

• Gate extension(*)
– 1: Over p-stop

– 2: No coverage

– 3: Over p-stop-2

– 4: Full coverage

– (*) D type 

• 1: no p-stop

• 2-5: = 1-4 of 
others
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New PTP TS Irradiated

• Non-irradiated samples
– Onset voltages ~1/2 Simulations
– Gate effect is consistent

• Irradiated samples
– “Full coverage” behaves well
– Simulation with “surface charge” effect does not explain 

the onset and saturation behavior after irradiation
– Electric field at the p-stop edge seems lower after 

irradiation, contrary to an expectation
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Non-irrad samples

No coverage

Over p-stop Full coverage
Non-irrad

5x1012

1x1013

1x1014

1x1015

Full coverage

No coverage

70 MeV protons at CYRIC, Japan



Edge Structure for High Voltage 
Operation

• Planar pixel and strip sensors require
– very high voltage operation, e.g., 1000 V
– less dead area in the edge region, e.g., ~450 µm (ATLAS IBL spec.)

• We have shown
– onset voltage of breakdown is ~linear to (Voltage)1/2 , i.e., (lateral) depletion
– implying that the breakdown is at the dicing edge
– for 1000 V, “field width” of ~400 µm
– irrelevant to the number of guard rings
– Y. Unno et al. Nucl. Instr. Meth. A(2011),doi:10.1016/j.nima.2010.12.191

• Can we simulate the breakdown? (Q1)
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Another Hot Spot in the Edge
• Microdischarges

– We have seen occasionally 
onset of leakage current, 
after handling the sensors

– IR imaging reveals hot spots 
along the edge of the 
“Guard” ring

• Why?
– The sensors hold up to 1000 

V when delivered
– Note the host spots are in 

the “guard” and not “Bias 
ring”

– Post-process damage?
– How to reinforce the edge 

structures against post-
process damage? (Q2)
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Bias ring Guard ring Edge ring

Toward dicing edge



Edge Structures Simulations
• Geometry

– 2 guards case is shown

• Material
– p-bulk(FDV~200 V)
– Top-Left: bias ring (n+)
– Top-right: edge implant 

(p+)
– f0, f1, f2, …: gap 

between the implants

Case w1 w2 f0 f1 f2

1 350 50 50 0 0

2 350 50 30 0 0

3 250 150 50 0 0

4 350 50 50 60 0

5 350 50 50 20 20
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1 guard cases

• Electric field distribution
– at the bias voltage of 1000 V

• Case3 shows
– low electric field along the dicing edge

• due to the wide implantation at the edge
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Case1 Case3



1 guard cases

• Close guard has lower peak at the edge of bias ring
– Accordingly, the breakdown is higher
– However, the peak of the guard gets higher

• Narrower the edge gap the higher the peaks
• Potential of the edge implant

– Narrow width: lifted off from the potential of the 
backside

– Wide width: Potential of the edge implant is of the 
backside

• Caveat
– No dicing edge breakdown is simulated!!
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Case1 Case2 Case3



Multi-guard
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• Multiple guards 
– reduce the peak field at the edge of the bias ring
– Accordingly the breakdown in the leakage current is 

getting higher
– Potential of the edge implant is lifted off more as the 

number of guards increases

• Q1: Can we simulate the breakdown at the dicing 
edge?
– No, no dicing edge breakdown is simulated, at least to 

my knowledge

Case1 Case4 Case5



Edge Structures Samples

• Same “Field width (350 µm)” for all samples
• Potential of guard rings

– Consistent with simulations although some 
discrepancies

• e.g. potential of 1st guard is shallower than 
simulation

• Breakdown voltages
– Non-irrad: 1GR < 2GR ≤ 3GR
– Irrad (e.g. 1014 ): 3GR ≤ 2GR ≤ 1GR
– Trend of Non-irrad. and Irrad. is opposite…
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320 µm

320 µm

Non irrad. 

1x1014

Non-irrad samples

Irradiated samples

Irradiated samples
70 MeV protons at CYRIC

+20 °C

-20 °C



Optimized Edge Structure?
• Q2: How to reinforce the edge structures against post-

process damage? 
• Answer?

– Firstly, wider “field width”, then secondly,
– 2-guards seems to be a solution, especially for non-

irradiated
• Details of the 2nd guard have to be decided

– Once irradiated (to high fluences), little difference in 
number of guards

• Why not more than 2?
– We have preferred less guards as long as it is enough 

because
• primarily, less edge area
• others, e.g. no difference after irradiation
• …
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Summary
• TCAD is a great tool

– For non-process user, Device simulation is the one to use.
– Finite element method + Semiconductor Physics
– Simple to use, but 
– Off the paved road (i.e., default values), it is “woods”. 

• Many parameters for many semiconductor physics
• Computational issues

– Meshing, convergence, …
– Limited to the known processes

• No dicing edge effect (?)
• No irradiated surface effect (?)
• “You get what you put” situation

• We have used TCAD for guiding the optimization of the 
issues associated for very high voltage operation, 
– Comparing with test structure measurements as much as 

possible.
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