

Development and Applications of the Timepix3 chip

Vladimir Gromov²

Christoph Brezina³, Martin van Beuzekom², Michael Campbell ¹, Klaus Desch³, Vladimir Gromov², Xiaochao Fang³, Ruud Kluit ², Andre Kruth³, Tuomas Poikela^{1,4}, Xavi Llopart ¹, Francesco Zappon², Vladimir Zivkovic²

¹ CERN, Geneve, Switzerland,

² National Institute for Subatomic Physics (Nikhef), Amsterdam, the Netherlands
 ³ Institute of Physics, Bonn University, Germany
 ⁴ University of Turku, Finland

Vertex2011, Rust, Austria. June 24, 2011

Medipix / Timepix family of pixel detectors

Timepix3 : functionality and features

Design and performance of some basic circuits

Summary

- Photon (X-ray) counting hybrid pixel detector
- Imaging / medical applications
- 1997: Medipix1 (CERN)
- technology: 1µm CMOS
- array: 64 x 64
- pixel: 170 um x 170 um
- 2001-2005: Medipix2 (CERN)
- technology: 0.25µm CMOS, 6-metal
- array: 256 x 256
- pixel: 55 um x 55 um
- energy resolved photon counting
- 2009: Medipix3 (CERN)
- technology: 0.13µm CMOS, 8-metal
- array: 256 x 256
- pixel: 55 um x 55 um
- charge summing mode
- improved energy resolution

V.Gromov

TPC / micro-pattern gas detectors applications measures hit arrival time OR energy deposit on each pixel

2007: Timepix (CERN)

- external clock : 100 MHz
- full frame readout : serial port (10ms/frame)

Limitations

- any event readout requires full frame
- no zero suppression
- dead time (no continuous readout)
- time resolution is only 10ns (bin size)
- slow front-end (time-walk \sim 120ns)

Timepix3 is an approved project of the Medipix3 collaboration with an assigned budget (2-engineering runs in 2012, 130nm CMOS)

□ wide range of non-HEP applications:

- > X-ray imaging
- > Dosimetry

> Compton camera, gamma polarization camera, fast neutron camera, nuclear fission, astrophysics ...

□ time-resolved imaging

- $\Box \quad hit \text{ (photon)} \rightarrow \text{ToA \& ToT}$
- continuous & sparse readout
- minimum dead time

□ suitable for HEP applications

Beautred readout chine for the HEP applications

□ Upgrade of the LHCb VELO detector: VELOPIX

- minimum pixel size
- extremely high illumination: up to 290 Mhits/cm²/s
- \succ continuous data readout
- sparse data (zero suppression)
- ➢ charge measurement

□ Micro-pattern gas avalanche detectors: GOSSIP, TPC etc.

- > minimum pixel size
- ➢ high time resolution: ∼ 1ns
- ➤ wide dynamic range : ~ 100µs
- ➢ charge measurement
- ▶ high sensitivity : threshold $\approx 350e^{-1}$

Vertex2011

Timesizt: main fastures

Feature	Value			
technology	130nm CMOS			
pixel array	$256 \ge 256$			
pixel size	55µm x 55µm			
input charge	both : h^+ and e^-			
sensor leakage current compensation	Yes			
data acquisition	ТоА &ТоТ /	only ToA	/	Event count & Integral ToT
minimum threshold	$> 500 e^{-}$ (1.8keV)			
peaking time	~ 15ns			
time walk (charge collection time)	< 25ns			
Time resolution / range	1.6nsec / 410µsec			
ToT accuracy / range	25ns / 25.6 µsec (~150 Ke ⁻)			
readout	Continuous spar	rse /		Non-continuous sparse
output bandwidth	$2.56 \mathrm{Gbps}$			
count rate	up to $20 \bullet 10^6$ cm ⁻² sec ⁻¹			
data transmission	Conventional (separate	e Clock) /	/	Clock&Data Encoded8b/10b
Power consumption		~ 20μ W/pixel (1.3W	//chip)

Timenist: ten level block diessen

- ➢ 64 Super Pixels in a DC
- > 128 Double Columns (DC)
- ➤ Super Pixel FIFO : 2-events
- ≻ DC bus: 40MHz
- ➢ End-of-DC FIFO: 4-events
- ➢ Periphery bus: 40MHz @ 44b

Vertex2011

> Output Serializer / FIFO

24/06/11

8

Timenist: modes of execution

	Data acquisition mode			
	ТоА & ТоТ	Only ToA	Event Count & Integral ToT	
Data format	Fast Time (640MHz @ 4b) & Slow Time Stamp (40MHz @ 14b) & ToT (40MHz @10b) & Pixel coordinate (16b)	Fast Time (640MHz @ 4b) & Slow Time Stamp (40MHz @ 14b) & Pixel coordinate (16b)	Event Count(10b) & Integral ToT (14b) & Pixel coordinate (16b)	
Double hit resolution (per pixel)	ToT + 700ns	> 450ns	-	
Readout	continuous sparse data readout with zero-suppression Max counting rate < 1kHz/pixel		non-continuous sparse data readout with zero-suppression	
			Max counting rate < 100kHz/pixel	
Full chip readout time	-		1.6msec	

Shared Ring Oscillator architecture (per Super Pixel)

- voltage-controlled
- Iow sensitivity to the power supply
- channel-to-channel mismatch ~1%

Vertex2011

TDC's array with a PLL control

V.Gromov

Features

immunity to variations

good uniformity

➢ Gossipo-4 (Aug 8, 2011)

Vertex2011

24/06/11

12

Charge sensitive pressed lifer

based on Krummenacher scheme
 both input signal polarities (h⁺ and e⁻)

- > high gain (50mV / 1ke⁻)
- > minimum time-walk (peaking time ~ 10ns)
- > low noise ($\sigma \approx 75e^{-}$ @ Cd=25fF)
- power 4.5μW (3μA @ 1.5V)

NI

Vertex2011

V.Gromov

threshold tuning per pixel (4bit) fast response

In1

Discr out

Preamp_out

Threshold tuning (4bit)

Vthr/polarity

Conventional readout link Embedded clock readout link Sb /10b Bb /10b Encoding

- 1 0 0 1 1 0 1 0 0 1 0 Encoded signal
- > data bus and clock bus are separate
- > synchronization loss at high rate

- > 8b/10b encoding: 8b-word by 10b symbol
- continuous activity for clock recovery
- > NO clock/data skew and synchronization issues
- > disparity correction (between 1's and 0's)
- DC balance control
- > data alignment

Vertex2011

Timepizit: inteches part

> Two modes of operation :

- encoded Clock Data output (at 640 MHz)
- separate Clock and Data outputs (at 320MHz, 160MHz)
- > selectable readout speed

> Timepix3 pixel readout chip is being developed in the frame of the Medipix3 collaboration for a wide range of applications

> the chip is defined as a 256 by 256 pixel array (~2cm²) where each pixel measures 55µm by 55µm

➢ for each hit both time-of-arrival will be measured with 1.6ns accuracy as well as charge deposit (time-over-threshold method)

➤ the chosen architecture allows for continuous readout of the sparsely distributed data with the hit rate up to 20 •10⁶ cm⁻² sec⁻¹

 event count mode will also be available for imaging applications and for calibration

➤ the chip is planned for submission in the beginning of 2012

Spare slides

Mediain-based detectors: the senser

Vertex2011

V.Gromov

Photon (X-ray) counting hybrid pixel detector
 Imaging / medical applications

1997: Medipix1 (CERN)

- emerged from LHC1/Omega3 (technology: $1\mu m~CMOS)$
- array: 64 x 64 / pixel: 170 um x 170 um / active area: 1.2cm²
- min detectable signal : 1 400 e^{-} (5.1 keV in Si)
- counter-per-pixel: 15-bit

- shift register-based readout: 16b output bus @ 10 MHz (384 μ s)

2001-2005: Medipix2 (CERN)

- technology: 0.25µm CMOS, 6-metal
- array: 256 x 256 / pixel: 55 um x 55 um / active area: 2cm^2
- energy window resolved photon counting: $2\ {\rm discriminators}$
- counter-per-pixel: 13-bit (14-bit) (max counting rate : 100kHz)
- frame-based readout via: an LVDS TX: 1b @160MHz (< 9.2ms) 32-bit parallel port (< 300us@100MHz)
- 3-side buttable: chip interface at one side only

2009: Medipix3 (CERN)

- technology: 0.13µm CMOS, 8-metal
- array: 256 x 256 / pixel: 55 um x 55 um / active area: $2 \mathrm{cm}^2$
- highly configurable
- improved energy resolution: charge summing mode
- per pixel: 2 discriminators and 2 counters

Vertex2011

- continuous count-read mode : second counter is a storage buffer

V.Gromov

- designed for TSV (through-silicon via)

Vertex2011

V.Gromov

□ wide dynamic range : ± 100 ke⁻

Preamp_in signals

24/06/11

- Qin < 15ke⁻: input charge stored on Cfb
- > 15ke⁻ <Qin < 100ke⁻: input charge stored on Cd
- > 100ke⁻ < Qin : input charge is drained be the parasitic diodes
- ➢ discharge current is signal-dependent → (INL ≈ 10%)
- \succ channel-to-channel ToT mismatch $\approx 25\%$

NI

Vertex2011

Accuracy of the ToT measurement

\Box electronic noise causes time jitter: $\sigma^{\text{jitter}} = \sigma(\text{Uout noise}) / [dU/dt]$

Qin	ТоТ	ToT accuracy 6 • σ(jitter) / ToT
-2 ke ⁻	0ns	∞
-4 ke ⁻	86ns	14%
-6 ke ⁻	147ns	8.2%
-8 ke ⁻	207ns	5.8%
-10 ke ⁻	267ns	4.5%
-20 ke ⁻	546ns	2.2%
-30 ke ⁻	801ns	1.5%
-50 ke ⁻	1260ns	0.9%
-100 ke ⁻	2050ns	0.6%

- > lowering of electronic noise
- > decreasing of the feedback capacitor

Vertex2011

Serial Clock Divider

Each receiver PMA module has a D divider that divides down the clock from the PLL for lower line rate support. This divider is set by the PLL_RXDIVSEL_OUT attribute and can be changed dynamically via the DRP port for protocols with multiple line rates. The control for the serial divider is described in Table 4-14.

Table 4-14: RX PLL Output Divider Setting

	Line Rate Range (GHz)	D Divider Value	Attribute Setting
	2.457 to 3.125	1	PLL_RXDIVSEL_OUT = 1
`	1.2288 to 1.62	2	PLL_RXDIVSEL_OUT = 2
		4	PLL_RXDIVSEL_OUT = 4

Vertex2011

supports links running at 640MHz

V.Gromov

Gas-avalanche detector combining a gas layer as signal generator with a CMOS readout pixel array

- particle track image (projection)
- 3D track reconstruction
- no sensor leakage current compensation
- low parasitic capacitance (less than 10fF)
- micro-discharges in avalanche gap

