
Floating point error
estimation using clad

Garima Singh • IRIS-HEP Fellow, Winter 2020 Cohort

Vassil Vassilev
Princeton University

David Lange
Princeton University

Project Mentors

About the project

Develop a floating point error estimation framework using clad, a source transformation AD tool for C++
implemented as a clang plugin. The framework aims to provide the users with the choice of multiple

error estimation models and even allow them to add custom estimation models as they wish.

Motivation

double c = -5e13;

for(unsigned int i = 0; i < 100000000; i++){

if(i%2) c = c - 1e-6;

else c = c + 1e6;

}

*Rounding Mode c

rounded to the nearest −0.02460...0

rounded towards −∞ −2073773.08... 0

rounded towards +∞ −0.008202... 0

rounded towards 0 −0.008202... 0

*IEEE-754 double precision, Reference :https://www.truenorthfloatingpoint.com/problem

Exact solution,

c = −5 × 1013 + ½ * 108 * 106 − ½ * 108 * 10−6
= −50

Some real life implications:

In January of 1982 the Vancouver Stock Exchange
started a stock index accumulating total stock value
for all 1,400 stocks listed on the exchange. but
truncating (rounding down) that sum up to 3000 times
per day resulting in a loss of index value of about $25
per month for about 23 months indicating an index
value of $524.811 when the actual value was
$1098.892.

https://www.truenorthfloatingpoint.com/problem

About clad

What is Automatic Differentiation (AD) ?

Simply speaking, it a set of techniques to evaluate the derivative of a function specified by a computer
program.

What is clad?

Clad is a source transformation automatic differentiation tool, implemented as a plugin to the clang
compiler.

double sqr(double x){

return x * x;

}

double sqr(double x){

return 1 * x + x * 1;

}

clad::differentiate(sqr, “x”)

About FP Error Estimation

A formula for most cases:

We can get this via the reverse mode in clad

This we know already as it is machine dependent

A bit hard to estimate

The absolute error in a function f.

All input and intermediate variables.

The maximum representational error in a floating point number. Machine dependent.

The derivative of f with respect to xi.

The error due to linearization the Taylor series expansion.

About FP Error Estimation

What’s reverse mode?

forward-mode computes the recursive relation :

reverse mode computes the recursive relation:

What does fp error estimation with clad look like?

double ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

void ApproximatePi_grad(double Tn,

double* _result, double& _final_error) {

// ...

{ ...

_delta_Tn1 += _d_Tn1 * _EERepl_Tn1 * Em;

... }

{ ...

_delta_tmp += _d_tmp * _EERepl_tmp * Em;

... }

{ ...

_delta_e += _d_e * _EERepl_e * Em;

... }

_delta_Tn += _result[0UL] * Tn * Em;

_final_error += _delta_e + _delta_tmp +

_delta_Tn1 + _delta_Tn;

}

clad::estimate_error

Here, all ‘_delta’ prefixed variables denote
the error in the variable they are prefixed to.

At the end, we just add all the errors to get
the final absolute error in the function!

How is clad’s fp error estimation different than others?

● Since clad generates error estimation code, means that we can generate error estimates on
a variety of input without having to re-evaluate the gradient each time.

● Clad’s error estimation comes off-the-shelf with it, not requiring you to set up complex
pipelines to use it.

● Clad’s fp error estimation does not bind the user to a single estimation model. Users can
build their own models and use those to calculate estimates with. For example, consider the
following user defined custom model...

All the user has to do is turn it into a clang::Expr.

Custom models in action

double ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

void ApproximatePi_grad(double Tn,

double* _result, double& _final_error) {

// ...

_delta_Tn1 += _d_Tn1 * (_EERepl_Tn1 -

(float)_EERepl_Tn1);

// ...

_final_error += _delta_e + _delta_tmp +

_delta_Tn1 + _delta_Tn;

}

clad::estimate_error

● Once the conversion is complete, the augmented code will look as follows:

+ custom error model

How it all comes together...

Clad
Error

Estimation
Handler

Error
Model

Clad’s gradient
generation

module

Generation of derivative
code augmented with

error estimation specific
code!

Exchange
of errors

and
derivatives.

clad::estimate_error called.

If a custom model is provided by the
user, clad registers it with its

ErrorEstimationModelRegistry.
Otherwise, the in-built default model is

used.

Clad transfers all estimate_error
calls to the handler.

While the derivatives are being generated,
clad dispatches calls to the model’s function

to fetch the “formula” for calculating the error
estimates. Clad provides the model function
with the necessary derivatives and values.

These tasks are interleaved and happen
simultaneously (not multithreaded as of yet).

Finally, we get the
gradient along with fp

error estimation specific
code!

An interesting use-case: numerical stability of
algorithms

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning

Recall the ApproximatePi function we used before. Let’s assume another function
which does the same job -- approximates pi. However it looks a bit different...

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.

The background setup

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning

We use the ApproximatePi function iteratively in code as follows...

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

int count = 30;

double Sn= sqrt(2);

double pi;

double n = 4;

for (int i = 1; i < count; i++) {

 Sn = ApproximatePi(Sn);
 n = 2*n;

 pi = n * Sn / 2;

}

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.

Execution results

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

int count = 30;

double Sn= sqrt(2);

double pi;

double n = 4;

for (int i = 1; i < count; i++) {

 Sn = ApproximatePi(Sn);

 n = 2*n;

 pi = n * Sn / 2;

}

After executing the code for ~30 iterations, we get the
following results:

What is happening at the ~25th
 iteration?

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.

Sensitivity of intermediate variables

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

int count = 30;

double Sn= sqrt(2);

double pi;

double n = 4;

for (int i = 1; i < count; i++) {

 Sn = ApproximatePi(Sn);

 n = 2*n;

 pi = n * Sn / 2;

}

To figure out what is wrong, we can user clad’s error
estimation to analyse the sensitivity of each intermediate
variable. Which (in our case) is given as follows:

Now, let us look at the results of our sensitivity analysis...

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.

Analysing why ‘tmp’ causes instability and proposing a
fix

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning

double unstable_ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

For values of e closer to 4, the tmp terms results in
catastrophic cancellation, causing the future iterations of
the algorithm to be unstable.

We can fix this by rationalizing the term containing tmp.

double stable_ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

Let’s analyse some results to ascertain if the
instability is fixed.

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.

Analysing results of the fix

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning

double stable_ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

We will analyse 2 things:
● The comparison of results for 30 iterations
● Sensitivity in all intermediate variables

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.

Current implementation
● Currently, one can estimate errors over different functions, including ones with complex

sub-structures such as nested loops, multiple returns etc. We also partially support error
estimation of arrays/pointers (supporting input arrays is in progress). To calculate fp error
estimates of a function, one has to simply do the following

auto df = clad::estimate_error(myfunction);

df.execute(args…,grad, fp_error);

● We also support all types of custom models. The users have to create a shared object and
pass it to clad, thereon, clad will register it with the FPErrorEstimationRegistry so that it
can be used to generate code later.

● We also support a built-in TaylorApproximation model that users may use straight out of
the box. This is the current default and will be used if no custom model is provided.

● We are also working on adding the ability to write the error data for select variables in the
target function to a specified output stream. This may help for future analysis of the errors.

Future work

● More generalized error estimations. See how errors propagate through a function.
Propagation of uncertainty using automatic differentiation.

● Lossy Compression and Mixed Precision Tuning. The task of reducing the precision
of values that have an error lower than a maximum threshold specified.

● Utilize error estimates via clad in ROOT math libraries.

Thank you!

Github: Grimmmyshini

Email: Garimasingh0028@gmail.com

Find out more about clad here.

https://github.com/grimmmyshini
mailto:Garimasingh0028@gmail.com
https://github.com/vgvassilev/clad

