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About the project

Develop a floating point error estimation framework using clad, a source transformation AD tool for C++ 
implemented as a clang plugin. The framework aims to provide the users with the choice of multiple 

error estimation models and even allow them to add custom estimation models as they wish. 



Motivation

double c = -5e13;

for(unsigned int i = 0; i < 100000000; i++){

if(i%2) c = c - 1e-6;

else c = c + 1e6;

}

*Rounding Mode c

rounded to the nearest −0.02460...0

rounded towards −∞ −2073773.08... 0 

rounded towards +∞ −0.008202... 0 

rounded towards 0 −0.008202... 0

*IEEE-754 double precision, Reference :https://www.truenorthfloatingpoint.com/problem
 

Exact solution, 

c = −5 × 1013  +  ½  * 108 * 106  −  ½  * 108 * 10−6  
=  −50

Some real life implications:

In January of 1982 the Vancouver Stock Exchange 
started a stock index accumulating total stock value 
for all 1,400 stocks listed on the exchange. but 
truncating (rounding down) that sum up to 3000 times 
per day resulting in a loss of index value of about $25 
per month for about 23 months indicating an index 
value of $524.811 when the actual value was 
$1098.892. 

https://www.truenorthfloatingpoint.com/problem


About clad

What is Automatic Differentiation (AD) ? 

Simply speaking, it a set of techniques to evaluate the derivative of a function specified by a computer 
program.

What is clad? 

Clad is a source transformation automatic differentiation tool, implemented as a plugin to the clang 
compiler.  

double sqr(double x){

return x * x;

}

double sqr(double x){

return 1 * x + x * 1;

}

clad::differentiate(sqr, “x”)



About FP Error Estimation

A formula for most cases:

We can get this via the reverse mode in clad

This we know already as it is machine dependent

A bit hard to estimate

The absolute error in a function f.

All input and intermediate variables.

The maximum representational error in a floating point number. Machine dependent.

The derivative of f with respect to xi.

The error due to linearization the Taylor series expansion.



About FP Error Estimation

What’s reverse mode?

forward-mode computes the recursive relation :

reverse mode computes the recursive relation:



What does fp error estimation with clad look like? 

double ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

void ApproximatePi_grad(double Tn, 

double* _result, double& _final_error) {

// ...

{ ...  

_delta_Tn1 += _d_Tn1 * _EERepl_Tn1 * Em;  

... }

{ ...  

_delta_tmp += _d_tmp * _EERepl_tmp * Em;  

... }

{ ...  

_delta_e += _d_e * _EERepl_e * Em;  

... }    

_delta_Tn += _result[0UL] * Tn * Em;

_final_error += _delta_e + _delta_tmp + 

_delta_Tn1 + _delta_Tn; 

}

clad::estimate_error

Here, all ‘_delta’ prefixed variables denote 
the error in the variable they are prefixed to.

At the end, we just add all the errors to get 
the final absolute error in the function!



How is clad’s fp error estimation different than others?

● Since clad generates error estimation code, means that we can generate error estimates on 
a variety of input without having to re-evaluate the gradient each time.

● Clad’s error estimation comes off-the-shelf with it, not requiring you to set up complex 
pipelines to use it.

● Clad’s fp error estimation does not bind the user to a single estimation model. Users can 
build their own models and use those to calculate estimates with. For example, consider the 
following user defined custom model...  

All the user has to do is turn it into a clang::Expr. 



Custom models in action

double ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

void ApproximatePi_grad(double Tn, 

double* _result, double& _final_error) {

// ... 

_delta_Tn1 += _d_Tn1 * (_EERepl_Tn1 - 

(float)_EERepl_Tn1);  

// ...

_final_error += _delta_e + _delta_tmp + 

_delta_Tn1 + _delta_Tn; 

}

clad::estimate_error

● Once the conversion is complete, the augmented code will look as follows: 

+ custom error model



How it all comes together...

Clad
Error 

Estimation 
Handler

Error 
Model

Clad’s gradient 
generation 

module

Generation of derivative 
code augmented with 

error estimation specific 
code!

Exchange 
of errors 

and 
derivatives.

clad::estimate_error called.

If a custom model is provided by the 
user, clad registers it with its 

ErrorEstimationModelRegistry. 
Otherwise, the in-built default model is 

used. 

Clad transfers all estimate_error 
calls to the handler.

While the derivatives are being generated, 
clad dispatches calls to the model’s function 

to fetch the “formula” for calculating the error 
estimates. Clad provides the model function 
with the necessary derivatives and values.

These tasks are interleaved and happen 
simultaneously (not multithreaded as of yet).

Finally, we get the 
gradient along with fp 

error estimation specific 
code!



An interesting use-case: numerical stability of 
algorithms

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning 

Recall the ApproximatePi function we used before. Let’s assume another function 
which does the same job -- approximates pi. However it looks a bit different...  

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.


The background setup

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning 

We use the ApproximatePi function iteratively in code as follows...

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

int count = 30;

double Sn= sqrt(2);

double pi;

double n = 4;

for (int i = 1; i < count; i++) {

   Sn = ApproximatePi(Sn);
   n = 2*n;

   pi = n * Sn / 2;

}

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.


Execution results

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning 

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

int count = 30;

double Sn= sqrt(2);

double pi;

double n = 4;

for (int i = 1; i < count; i++) {

   Sn = ApproximatePi(Sn);

   n = 2*n;

   pi = n * Sn / 2;

}

After executing the code for ~30 iterations, we get the 
following results:

What is happening at the ~25th
  iteration?

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.


Sensitivity of intermediate variables

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning 

double ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

int count = 30;

double Sn= sqrt(2);

double pi;

double n = 4;

for (int i = 1; i < count; i++) {

   Sn = ApproximatePi(Sn);

   n = 2*n;

   pi = n * Sn / 2;

}

To figure out what is wrong, we can user clad’s error 
estimation to analyse the sensitivity of each intermediate 
variable. Which (in our case) is given as follows: 

Now, let us look at the results of our sensitivity analysis...

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.


Analysing why ‘tmp’ causes instability and proposing a 
fix

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning 

double unstable_ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

For values of e closer to 4, the tmp terms results in 
catastrophic cancellation, causing the future iterations of 
the algorithm to be unstable.  

We can fix this by rationalizing the term containing tmp.

double stable_ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

Let’s analyse some results to ascertain if the 
instability is fixed.

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.


Analysing results of the fix

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning 

double stable_ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

We will analyse 2 things:
● The comparison of results for 30 iterations
● Sensitivity in all intermediate variables

https://ieeexplore.ieee.org/document/8665747#:~:text=ADAPT%20provides%20a%20floating%2Dpoint,precision%20configurations%20of%20a%20program.


Current implementation
● Currently, one can estimate errors over different functions, including ones with complex 

sub-structures such as nested loops, multiple returns etc. We also partially support error 
estimation of arrays/pointers (supporting input arrays is in progress). To calculate fp error 
estimates of a function, one has to simply do the following 

auto df = clad::estimate_error(myfunction);

df.execute(args…,grad, fp_error);

 

● We also support all types of custom models. The users have to create a shared object and 
pass it to clad, thereon, clad will register it with the FPErrorEstimationRegistry so that it 
can be used to generate code later.

● We also support a built-in TaylorApproximation model that users may use straight out of 
the box. This is the current default and will be used if no custom model is provided. 

● We are also working on adding the ability to write the error data for select variables in the 
target function to a specified output stream. This may help for future analysis of the errors.  



Future work

● More generalized error estimations. See how errors propagate through a function. 
Propagation of uncertainty using automatic differentiation.

● Lossy Compression and Mixed Precision Tuning. The task of reducing the precision 
of values that have an error lower than a maximum threshold specified.

● Utilize error estimates via clad in ROOT math libraries.



Thank you!

Github: Grimmmyshini

Email: Garimasingh0028@gmail.com

Find out more about clad here.

https://github.com/grimmmyshini
mailto:Garimasingh0028@gmail.com
https://github.com/vgvassilev/clad

