
Translating Analyses Into Prototype Analysis Systems

Brian O. Cruz Rodríguez Jim Pivarski

Objective

- Translate the Higgs to four leptons, CMS Open Data analysis example into a prototype analysis system that uses Coffea and Awkward-array
 - The four-leptons decay include: 4muons, 4electrons, and 2muons2electrons
- Compare the prototype and original's time-to-insight, functionality and reusability

 To show that the translation is working, I'll show results from getting the Higgs mass histogram (shown in red)

Downloading the Dataset

Download the simulated Higgs to 4 leptons AODSIM sample from the <u>CERN</u>
 Open Data Portal into a Docker container

File Indexes

Creating a Docker container from the CMSSW_5_3_32 image

```
PS C:\Users\bocr9> docker run -it --privileged --name ihepproject --net=host --env="DISPLAY" --volume C:\Users\bocr9\shared-folder\:/home/cmsusr/shared
-folder cmsopendata/cmssw_5_3_32 /bin/bash
```

 Download the <u>cms-opendata-analyses/HiggsExample20112012</u> Github repository in the Docker container and compile the codes with *scram b*

```
[17:44:42] cmsusr@www.www.www.~/CMSSW_5_3_32/src $ git clone git://github.com/cms-opendata-analyses/HiggsExample20112012.git Cloning into 'HiggsExample20112012'...
```

 Downloading the <u>cms-opendata-analyses/AOD2NanoAODOutreachTool</u> Github repository too, and compile the code as well

```
[17:46:46] cmsusr@ wuker-dww.top ~/CMSSW_5_3_32/src $ cd workspace/
eachTool -b v1.2 AOD2NanoAOD ~/CMSSW_5_3_32/src/workspace $ git clone git://github.com/cms-opendata-analyses/AOD2NanoAODOutre
```

Download the AODSIM index file

```
[17:57:06] cmsusr@:www.modes.com ~/CMSSW_5_3_32/src/MCdatasets $ 1s
CMS MonteCarlo2011 Summer11LegDR SMHiggsToZZTo4L M-125 7TeV-powheg15-JHUgenV3-pythia6 AODSIM PU S13 START53 LV6-v1 20000 file index.txt
```

 Add the index file as input to the proper Outreach Tool python configuration file, simulation_cfg.py

```
# HiggsToZZTo4L_M-125
files = FileUtils.loadListFromFile("/home/cmsusr/CMSSW_5_3_32/src/samples/AODSIM/AODSIM_2011/CMS_MonteCarlo2011_Summer11LegDR_SMHiggsToZZTo4L_M-125_7TeV-powheg15-JHUgenV3-pythia6_AODSIM_PU_S13
_START53_LV6-v1_20000_file_index.txt")
```

Add the original EDAnalyzer, HiggsDemoAnalyzerGit, to the config

```
# Register fileservice for output file
process.aod2nanoaod = cms.EDAnalyzer("AOD2NanoAOD", isData = cms.bool(False))
process.giteda = cms.EDAnalyzer("HiggsDemoAnalyzerGit")
process.TFileService = cms.Service(
    "TFileService", fileName=cms.string("2011MCNtuples.root"))
process.p = cms.Path(process.aod2nanoaod*process.giteda)
```

Run the config file to produce the NanoAOD

```
[19:23:47] cmsusr@ssates 3250000 ~/CMSSW_5_3_32/src/workspace/AOD2NanoAOD/configs $ cmsRun simulation_cfg.py
```

Move the produced file to the shared folder

JupyterLab: Translating the analysis

- Compare the original, C++ code (left) to the translated Python code (right)
- First, the Higgs decay to 4 muons
- Then, Higgs decay to 4 electrons
- Finally, Higgs decay to 2 muon and 2 electrons

Selecting the Outreach Tool's EDAnalyzer Events TTree

Selecting the Muon branch

Muons = aod2naod.Muon

```
Selecting the good muons from the branch
```

(np.abs(Muons.eta)<2.4)]

mu4 = good mu[ak.num(good mu) >= 4]

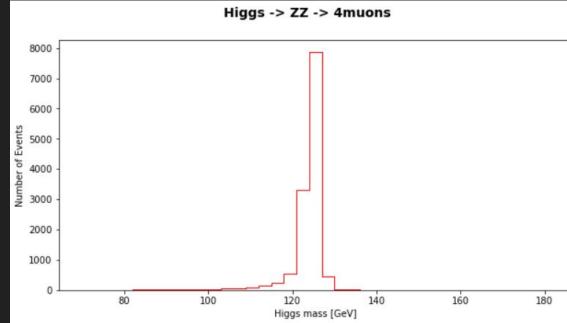
```
# sort the events from highest to lowest transverse momentum
mu4 = mu4[ak.argsort(mu4.pt, axis=-1, ascending=False)]
```

4 muon selection and pair combinations for Z bosons

```
// Now, for these goodmuons, pair up and calculate mass
                                                                          # select the first 4 muons from the sorted mu4
if (nGoodRecoMuon >= 4)
                                                                          f4 mu4 = mu4[:,0:4]
   const reco::Muon &muon1 = (*muons)[vIdPtmu.at(0).first];
   const reco::Muon &muon2 = (*muons)[vIdPtmu.at(1).first];
                                                                          # select the 4 muons with a zero net charge
   const reco::Muon &muon3 = (*muons)[vIdPtmu.at(2).first];
   const reco::Muon &muon4 = (*muons)[vIdPtmu.at(3).first];
                                                                          f4c0 mu4 = f4 mu4[ak.sum(f4 mu4[:,:,"charge"], axis=-1) == 0]
   if (muon1.charge() + muon2.charge() + muon3.charge() + muon4.charge() == 0)
      // First combination: Combine muon 1234
      if (muon1.charge() + muon2.charge() == 0) // each lepton pair cas = 0
                                                                          muon pair = ak.combinations(f4c0 mu4, 2)
         eZ12 = (sart(muon1.p() * muon1.p() + sam1)) +
               (sqrt(muon2.p() * muon2.p() + sqm1));
         pxZ12 = muon1.px() + muon2.px();
                                                                          muon_pair_c0 = muon_pair[(muon_pair["0"][:,"charge"]+muon_pair["1"][:,"charge"])==0]
         pyZ12 = muon1.py() + muon2.py();
         pzZ12 = muon1.pz() + muon2.pz();
```

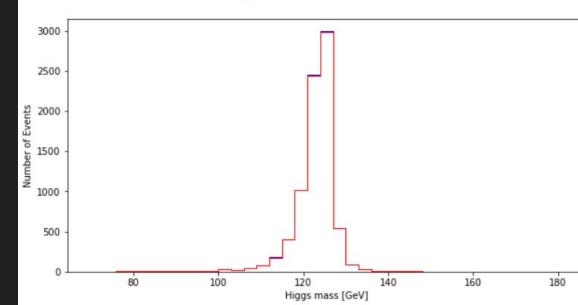
closest masses = np.min(delta, axis=-1) Determining the closest and the_closest = (delta == closest_masses) farthest Z boson return the closest if (ptZadaug) { if (mZa > 40. && mZa < 120.) { if (mZb > 12. && mZb < 120.) { h_mZa_4mu->Fill(mZa); h_mZb_4mu->Fill(mZb); // 4 vector p4Za.SetPxPyPzE(pxZa, pyZa, pzZa, eZa); p4Zb.SetPxPyPzE(pxZb, pyZb, pzZb, eZb); p4H = p4Za + p4Zb;mass4mu = p4H.M();

def closest(pair):


delta = abs(91.1876 - pair.mass[:])

```
Z = (muon pair c0["0"] + muon pair c0["1"])
Za = closest(Z)
Zb = Za[:,::-1]
Za mu = muon pair c0[Za]
Zb mu = muon pair c0[Zb]
Za mu = ak.flatten(Za mu)
Zb mu = ak.flatten(Zb mu)
Za M = (((Za mu["0"]+Za mu["1"]).mass>40)&((Za mu["0"]+Za mu["1"]).mass<120))
Zb M = (((Zb mu["0"]+Zb mu["1"]).mass>12)&((Zb mu["0"]+Zb mu["1"]).mass<120))
Z pt = (Za mu["0"].pt>20)&(Za mu["1"].pt>10)
good Za = Za mu[Z pt&Za M&Zb M]
good Zb = Zb mu[Z pt&Za M&Zb M]
higgs = good Za['0']+good Za['1'] + good Zb['0']+good Zb['1']
```

higgs = higgs[higgs.mass>70]


Plotting the Higgs decay to 4 muon mass histogram

```
import matplotlib.pyplot as plt
bins = np.arange(70, 184, 3)
fig, ax = plt.subplots(1,1, figsize=(10,5))
# outreach tool
ax.hist(higgs.mass, histtype="step", bins=bins, color = "blue")
# original
ax.hist(giteda_Higgs, histtype="step", bins=bins, color = "red")
fig.suptitle(r'Higgs -> ZZ -> 4muons', fontsize=14, fontweight='bold')
ax.set_xlabel('Higgs mass [GeV]')
ax.set_ylabel('Number of Events')
```


• Plotting the Higgs decay to 4 electron mass histogram

```
import matplotlib.pyplot as plt
bins = np.arange(70, 184, 3)
fig, ax = plt.subplots(1,1, figsize=(10,5))
# outreach tool
ax.hist(higgs.mass, histtype="step", bins=bins, color = "blue")
# original
ax.hist(giteda_Higgs, histtype="step", bins=bins, color = "red")
fig.suptitle(r'Higgs -> ZZ -> 4electrons', fontsize=14, fontweight='bold')
ax.set_xlabel('Higgs mass [GeV]')
Higgs -> ZZ -> 4electrons
ax.set_ylabel('Number of Events')
```


Plotting the Higgs decay to 2 muons and 2 electrons mass histogram

```
import matplotlib.pyplot as plt
bins = np.arange(70, 184, 3)
fig, ax = plt.subplots(1,1, figsize=(10,5))
ax.hist(higgs, histtype="step", bins=bins, color = "blue")
ax.hist(giteda_Higgs, histtype="step", bins=bins, color = "red")
fig.suptitle(r'Higgs -> ZZ -> 2mu2e', fontsize=14, fontweight='bold')
                                                                                                            Higgs -> ZZ -> 2mu2e
ax.set_xlabel('Higgs mass [GeV]')
ax.set_ylabel('Number of Events')
                                                                           8000
                                                                           7000
                                                                           6000
                                                                        Number of Events
2000
2000
                                                                           2000
                                                                           1000
                                                                                                                                    140
                                                                                          80
                                                                                                        100
                                                                                                                      120
                                                                                                                                                  160
                                                                                                                                                                180
                                                                                                                    Higgs mass [GeV]
```

Scale-up

- Make the python code scriptable
- Use a Kubernetes cluster in Google Cloud to scale up NanoAOD production.
 - Produce the NanoAODs of all the 21 Higgs analysis samples (in the Open Data Portal) with all their indexes and root files
 - Produce the Higgs plot shown earlier