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We want to use Garfield++ and COMSOL to model the signal 
formation in detectors with resistive elements.

Outline:
• Components of the dynamical weighting potential
• Simulating a MRPC
• Signal formation in an AC-coupled LGAD
• Signal formation in a MicroCAT readout structure
• Summary

Introduction

1Garfield++: https://garfieldpp.web.cern.ch/garfieldpp/
COMSOL Multiphysics: https://www.comsol.ch

https://garfieldpp.web.cern.ch/garfieldpp/
https://www.comsol.ch/


The time-dependent weighting potential is a superposition of 
a static prompt and a dynamic delayed component.

The prompt component of your signal is the instantaneous 
induction of current on the electrode source by the movement of 
the charge carrier.

Components of the dynamical weighting potential
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The delayed component of your signal encodes the 
responds of the resistive material to the field lines of this 
charge carrier.

Let us take a simple geometry to get an intuition:
• g = 50 μm
• b = 5 μm
• w = 200 μm
• T = g/v = 0.4 ns

Components of the dynamical weighting potential
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In order to relatively efficiently simulate a MRPC two separate questions ought to be addressed:

• A grid-based Monte Carlo simulation for the avalanche dynamics

• The weighting potential of the readout electrodes.

Simulating a MRPC
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When propagating electrons though notes of a lattice, the growth in its resulting effective Townsend 
avalanche can be done using a simple Monte Carlo method.

Due to space-charge effects there is a suppression of avalanche growth.

Grid-based avalanche dynamics calculations

5W. Riegler and C. Lippmann and R. Veenhof, Nucl. Instrum. Meth. A (2003).

à Saturation at 1.6*107 electrons.



On the question of the weighting potential: for a strip of width 
wx centered at the origin when  zm-1< z < zm it is:

In the case of a readout plane the solution is: 

Weighting potentials in a MRPC
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In general, a readout strip’s signal will not be comprised equally from 
that induced by each layer.

This is imbalance will decrease when the strip’s width increases.

Strip width and the contributions of layers
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We will do a first comparison of the efficiency and time to 
measurements taken with a MRPC 

Here a discriminator threshold of 30 fC is assumed.

Next step: benchmark the simulations

8PreliminaryM. Shao, et al.,  Nucl. Instr. and Meth. A:  Vol. 492, Issue 3 (2002) 344
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Using COMSOL the dynamic weighting potential can be 
calculated for the AC-coupled LGAD’s readout system.

This has been done for five different geometries.

Weighting potential for AC-coupled LGAD

9Nicolò Cartiglia 4-D Tracking with Ultra-Fast Silicon Detectors



Evaluating signals for a 100-200 geometry
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To understand the roll that the 
prompt component plays in this 
signal one can look at the central 
pad on the bottom row.

Prompt weighting potential:

Full weighting potential:



Evaluating signals for a 100-200 geometry
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Induced current for an 18 GeV/c pion track
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Given a pion tracking though the sensor the resulting signal can be calculated.



Induced current for an 18 GeV/c pion track
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As an further example we take the MicroCAT’s two-
dimensional interpolating readout structure. 
A reduced number of electronic readout channels 
nevertheless reaching a spatial nevertheless reaching 
good spatial resolution by using the delayed component 
of the signal.

.

Signal formation in a MicroCAT detector

14

H. Wagner et al. Nucl.Instrum.Meth. A 482 (2002) 334–346

F. Bartol et al. J. Phys. III France, 6 (1996), p. 337
A. Sarvestani et al. Nucl.Instrum.Meth.  A 410 (1998) 238–258



The induced current on the readout pins on one pad has been calculated for a charge carrier 
traversing an induction gap of 200 μm downwards in T = 4 ns. The surface resistivity is:
• Rpad = 100 kΩ/❑
• Rstrip = 1 kΩ/❑

Signal formation in a MicroCAT detector
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The same can be done for a Townsend avalanche.
Here a single electron has been placed in a uniform electric 
field, starting on the top of the induction gap.

Signal formation in a MicroCAT detector
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We want to use Garfield++ and COMSOL to model the signal formation in detectors with resistive 
elements.

• Efficient multigap resistive plate chamber simulations will soon be possible in Garfield++.
• The tools developed during the project allow us to make a full description of the signal of:

• The MicroCAT readout,
• The AC-coupled LGAD.

Outlook:

• Benchmarking MRPC simulations against measurements.
• Using the developed tools to look at more detectors with resistive elements.

Thank you for your attention!

Summary 
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