

Simulation of µRWELL-based cylindrical inner tracker for Super Tau-Charm Facility (STCF)

USTC Zhujun Fang, Yi Zhou

On behalf of the STCF detector working groups

Outline

- 1. STCF detector system
- 2. µRWELL-based cylindrical inner tracker for STCF
- 3. Detector optimization research
- 4. Multi-hit reconstruction and spatial resolution simulation
- 5. Discussion and conclusion

Overview: STCF

Super Tau-Charm Facility:

- Newly designed e⁻e⁺ collider
- Luminosity: 0.5×10^{35} /cm²/s
- Center of mass energy region: 2-7 GeV/c

Detector system:

- Inner tracker
- Main drift chamber
- Particle identifier
- Electromagnetic calorimeter
- Muon detector

Alternative inner trackers

Silicon pixel detector

Advantages:

- Low material budget $(0.15-0.2\% \text{ X/X}_0)$
- High counting rate capability **Disadvantages:**

Disadvantages:

Limited detector size 2021/6/17

Silicon strip detector

Advantages:

- Large detection area
- High counting rate capability **Disadvantages:**

Medium-high material budget $(0.5\%-1\% \text{ X/X}_0)$

MPGD

Advantages:

Large detection area

- Medium material budget
 - $(0.5\% 0.6\% \text{ X/X}_0)$
 - Complex detector structure

RD51 Collaboration Meeting and Topical Workshop

µRWELL-based cylindrical inner tracker

µRWELL detector

- Low material budget (below 0.25% X/X₀)
- Good spatial resolution
 (~ 60 μm)
- High counting rate capability
- High radiation hardness

Detector design

Detector optimizations

Optimization aspects

- Detector structure
- Gas component
- Working point
- Readout design

Influenced performance

- Structural strength
- Material budget
- Spatial resolution
- Occupancy

Geant4 & Garfield++ simulations

Parameters: spatial resolution

Due to the 1 T magnetic field in Z direction, situations are different:

- Electron drift velocity
- Transverse & longitude diffusion coefficients
- Lorenz angle

•

Gas volume width

Gas component

Drift electric field strength

Ideal parameters simulation

Gradient descent method in multi-dimensions

Optimal region:

- Gas width: 5 mm
- Lorenz angle: 20-40 deg
- V_{drift} : ~2 cm/µs
- $\sigma_{Transverse} < 100$ μm/sqrt(cm)

Real situation optimization

Target: tens of gas components from Garfield database

Gas volume width in this step: 5 mm

Optimal gas component: Ar:CO₂=85:15

(or Ar:DME=90:10)

Optimal electric drift field strength: 500 V/cm

Readout strip design

X strips (Top): 80 μm

V strips (Bottom): 320 μm

Pitch: 400 µm

X/V strip angle: 15 degree

Insulator layer between DLC & readout strip: 20 µm

Insulator layer between Top & Bottom readout strips: 25 µm

Multi-hit simulation

Generate signals and backgrounds:

Signal: p_T=100 MeV/c mu⁺, 1 particle

Background: "STCF background full simulation generator",

~5 charged particles

Parameterize the physical processes in Geant4 (fast simulation):

- Ionizing and primary electron generation (Sampling: Fano distribution)
- Electron migration (Sampling: transverse and longitude diffusion)
- Electron multiplication (Sampling: polya distribution)
- Induced signal generation in readout array (Garfield++: weighting potential)
- Waveform generation (Hit pile-up)

Fast simulation

Energy deposit in 5 mm gas

Number of primary ionized electronenergy deposit distribution

Fast simulation

Multi-hit reconstruction

Multiple hit reconstruction:

- Identify single-track signal as single hit
- Combine spiral-hits as a signal cluster
- Ignore pile-upped signals (no waveform sampling)

Multi-hit reconstruction

Reconstruction process:

- Separate multiple hits in space and time
- Matching hits in X and V strips by peak time,
 fired-strip amount, total induced charge
- Combine the unmatched hits as clusters

Reconstruction performance

- Signal hit: ~92% can be reconstructed.
- Single background hit: ~80% reconstructed.
- Pile-up lost hit
- Ghost hit

Influence of magnetic field

Negative charged particle

Positive charged particle

Blue: particle track projection in z-rφ

Yellow: electron drift projection influenced by magnetic field

Red: real hits distribution

Influence of magnetic field

Real hits distribution may parallel to V strips:

- µTPC mode (for most cases)
- Charge center-of-gravity method (when real hits parallels to V strips)

2021/6/17

Spatial resolution simulations

For p_T=100 MeV/c kaon⁺: residual distribution of reconstructed hit point

Spatial resolution simulations

Many parameters influences the spatial resolution:

- p_T of charged particle
- Polar angle of particle
- Negative/positive charged

Spatial resolution: ~100 μm in r ϕ and 400 μm in z direction

Discussion

Realizing µRWELL-based cylindrical detector:

- Detector manufacturing technology
- Making μRWELL film to cylindrical shape

We want to test the prototype detector within 1 year

Conclusion

- 1. A μRWELL-based cylindrical inner tracker design is proposed for STCF, mainly for the low material budget and low cost in large detection area.
- 2. The predicted budget is 0.2%-0.25% X/X₀ per layer of detector.
- 3. By Geant4 & Garfield++ simulation, the optimal gas component is determined as $Ar:CO_2=85:15$, with a electron drift field as 500 V/cm.
- 4. Under STCF background level, around 92% of signal hit can be reconstructed, with a spatial resolution of around 100 μ m and 400 μ m in r ϕ and z direction, respectively.

THANKS FOR YOUR ATTENTION

Detector structure & material

Structure	Material	Thickness (cm)	Material budget (X/X ₀)	
Inner tube	Aluminum (X_0 =8.897 cm)	0.001	0.011%	
	Polyimide ($X_0 = 28.57 \text{ cm}$) 0.01		0.035%	
	Aramid honeycomb/Rohacell foam $(X_0 \approx 267 \text{ cm})$	0.2	0.075%	
Gas Volume	Argon-based gas mixture $(X_0=11760 \text{ cm})$	0.5	0.0043%	
Outer tube (µRWELL film)	Aluminum (X_0 =8.897 cm)	0.0015	0.017%	
	Polyimide ($X_0=28.57$ cm)	0.03	0.106%	
	DLC ($X_0 = 12.13 \text{ cm}$)	0.0001	0.00082%	
Total	·		0.249%	

2021/6/17

Outer tube: µRWELL foil

Inner tube-Cathode
Structure support material
Inner tube-PI film

STCF inner tracker

Detector realization:

- Low budget material selection
- Cylindrical formation
- New bonding method
- Non-destructive detector assembly method

	Kapton 1	Glue 1	Structur al material	Glue 2	Kapton 2	total
Honeycomb-based	0.028%	0.009%	0.033%	0.009%	0.030%	0.105%
Rohacell-based	0.028%	0.009%	0.010%	0.008%	0.029%	0.084%