

Electronics for timing detectors: the CMS PPS timing system

$\frac{\rm Edoardo\ Bossini}{\rm on\ behalf\ of\ the\ CMS\ and\ TOTEM\ Collaborations}$

OUTLINE:

RD51 TW, 15 June 2021

- Overview of PPS timing system
- Sensor characteristics
- FE integration and performance
- Readout with NINO+HPTDC
- Readout with SAMPIC
- Outlook and conclusions

PPS detector

CMS

Symmetric experimental setup w.r.t. the interaction point to detect leading protons

- Standard RP units composed of 3 RPs (2 vertical, 1 horizontal)
- Hosted detector brought to few mm from the beam
- RP infrastructure from TOTEM

Detector operate in a vacuum

In 2017-2018 PPS RPs were inserted at 12 σ_{beam} + 0.3 mm (~1.5 mm) from the LHC beams

Very high non-uniform irradiation field, with a peak of \sim 5x10¹⁵ p/cm²(\sim 2x10¹⁵ neq/cm²)

Sensors in Run 2

Tracking (2 stations per sector) 2016: 2 TOTEM strip detector stations 2017: 1 strip and 1 3D pixel stations 2018: 2 3D pixel stations

Timing (1 station per sector)

2016: 4 single diamond planes (SD)2017: 3 SD and 1 UFSD planes2018: 2 SD and 2 <u>double diamond (DD) planes</u>

Another timing system, based on 4 planes of UFSD, was operated by TOTEM

ROMAN POTs

Timing detectors

Average number of interactions per bunch crossing $\langle \mu \rangle$ in 2018 is ~35. Beam longitudinal dimension σ_z ~7.5 cm. Tracking system cannot reconstruct the primary vertex of detected protons.

PPS Detector requirements:

- Station resolution of 10-30 ps on <u>MIP</u> is the final goal.
- ➢ High efficiency for MIP detection
- ➢ High radiation hardness (up to ~5 · 10¹⁵ p/ cm² for 100 fb⁻¹, highly non uniform)
- Low density/thickness detector (to fit more planes inside a RP and reduce material budget)
- Segmentation needed to avoid double hit on same pad
- Detector must operate in a vacuum

Solution: measure the proton time of flight in the two sectors:

*Z*_{PP} = c∆t/2
 Pile-up background reduction

PPS diamond sensors

Sensor capacitance: 0.2-2 pF

Originally designed for TOTEM , then used in PPS.

Sensor based on ultra pure single crystal CVD diamonds. Each crystal has dimensions $4.5x4.5x0.5 \text{ mm}^3$, total area coverage $\sim 80 \text{ mm}^2$.

Detector segmentation, optimized to reduce number of channels while keeping double hit probability low, is carried out in the metallization phase.

Pads are directly connected to pre-amplifier input to reduce input capacitance (\sim 0.2 pF with 0.25 μ m bonding wire diameter).

Main signal characteristics:

- Fast intrinsic rise time (few ps)
- Very low noise (<nA) → Noise dominated by pre-amp input stage
- Low signal \sim 1 fC/MIP
- Electron/hole mobility nearly equal

Front. in Phys., 8 (2020) p.248

Diamond hybrid board

12 discrete amplification channels, with a design adapted from the HADES collaboration, on each hybrid board [JINST 12 (2017) no.03, P03007]

4 crystals (8 in DD configuration) are mounted on a custom hybrid board

<u>Shaper</u>: 2xBFG425 Si BJT matched amplifier for shaping the signal

<u>Amplifier</u>:

Monolithic microwave integrated circuit ABA-53563, near linear phase, absolute stable amplifier

TOTEM

CMS

2nd & 3rd stage

Definition of the shaping time -> ~1.5 ns for diamonds

RD51 TW, 15 June 2021

Double diamond performance

JINST 12 (2017) no.03, P03026

Sensor readout performed with oscilloscope. Actual sensor technology limit.

Time difference distribution between DD and reference MCP ($\sigma_{t,\rm MCP}{\sim}40~ps$)

Signal amplitude comparison between DD and SD

Signal from corresponding pads is connected to the same amplification channel:

- Higher signal amplitude
- Same noise (pre-amp dominated) and rise time (defined by shaper)
- Higher sensor capacitance
- Need a very precise alignment

Better time resolution (factor \sim 1.7) w.r.t SD

UFSD sensors

UFSD are LGAD (Low Gain Avalanche Detector) optimized for timing:

- Reduced sensor thickness (~50 um)
- \blacktriangleright High (E~300 kV/cm in the multiplication region) and uniform electric field
- Small size to keep capacitance low

Surface	Capacitance	HV	Time precision
[mm ²]	[pF]	[V]	[ps]
1.8	3.1	180	32
2.2	4.4	180	33
3.0	6.0	180	38
7.0	14	180	57
14	28	180	102
2.2	4.4	140	49
2.2	4.4	160	41
2.2	4.4	180	33

JINST 12 (2017) P03024

UFSD detectors used in the TOTEM timing system and in PPS (1 plane in 2017).

Same hybrid board with modifications:

- ABA stage removed
- Pre-amp feedback reduced to maintain fast signal rise time with the larger sensor capacitance (~2 pF/mm2 @ 50um thickness)

Diamond timing sensors

Some issues prevented exploiting the full potential of the detector:

- RF noise pickup inside RP -> reduced amplifier gain
- Beam induced HV discharges -> reduced HV
- Discrimination stage not fully optimized
- Digitization effect

The timing detector was operated during the full Run 2. In 2018 the first DD planes were installed:

- Very high detector efficiency
- Final vertex resolution ~2 cm
- Timing information (time and measurement precision) integrated in the reconstructed proton information
- Timing can be used in physics analysis to suppress pile-up background.

Detailed studies on radiation <u>damage to sensor and</u> <u>electronics</u> available in <u>CMS NOTE-2020/007</u>. All timing planes dismounted and tested @ DESY.

Timing measurement

Time walk

$$\sigma_{tot}^2 = \sigma_{jitter}^2 + \sigma_{walk}^2 + \sigma_{digi}^2$$

Requirements for good timing:

- High SNR and slew rate of the sensor signal
- Signal shape must be constant
- Possibility to perform time walk correction
 - Time over Threshold
 - Constant Fraction Discriminator (CFD)
 - Signal charge measurement
 - Signal sampling

Rise time ~ 1-1.5 ns SNR ~ 50-100 Amplitude ~ 300-700 mV

To cope with the high particle rate (~1MHz/channel) in the PPS application, a readout with a fast discriminator (NINO) and TDC (HPTDC) was chosen for the PPS timing system readout

Run 2 layout

NINO Discriminator

- Characteristic integration time ~500ps
- Test with pulser showed a resolution ~25 ps in SE configuration.
- Performance depends on input signal SNR
- Decoupling capacitor C1 can be used to tune the input charge
- Keep C1 above 1 pF, compensate with input attenuator
- Keep individual threshold values above 1.2V!

Readout with a sampler

SAMPIC chip:

- ➢ 16 channel/chip
- Up to 64 sample/hit @ 10 GSa/s
- 1.5 GHz bandwidth
- 8-11 bit resolution
- ➤ 0.25-1.6 µs channel dead time

SAMPIC used as readout system for the TOTEM timing (UFSD) during the special TOTEM-CMS joint data taking in 2018. Special optics -> Lower rate

To be used in TOTEM/CMS needs additional capability:

- Event buffering
- Event building
- Synchronization with central DAQ
- Zero suppression and data compression

Readout firmware

Hit selection, frame building and data reduction to be done inside Digitizer central FPGA (Microsemi SF2)

CMS.

TOTEM

- \triangleright Delay & synchronization of incoming waveforms
- Control of data frame integrity (header, trailer, WC) \geq
- \geq Waveform timestamp reconstruction and trigger matching logic (programmable tolerance)
- Large volume of data handled : event is built after \geq ~100 us from trigger arrival to collect all SAMPIC waveforms
- Assembly of global event info \geq
- \triangleright Dynamic allocation of payload
- Selection of up to 7 matching channels \geq
- Zero suppression \geq
- USB readout & control available \geq

Sampic experience in real data taking

SAMPIC operated at 7.8 Gsa/s, with 8 bit voltage resolution. 24 samples collected for each waveform (recording window of \sim 3.1 ns)

SAMPIC used as readout system for the TOTEM timing (UFSD) during the special TOTEM-CMS joint data taking in 2018:

- Special run successfully performed during 6 days of continuous data taking (2-7 July)
- Very good quality of the collected waveform
- Operations with CMS DAQ fully stable
- Efficiency of the readout above 99%
- No sizable timing degradation introduced

PoS TWEPP2018 (2019) 137

Clock system

- LHC clock is derived from CMS TCDS (Timing Control Distribution System)
- System delay changes over optical path is constantly monitored -> 1 measurement every 10min.
- Data stored to files in csv format. File rotation system -> 1 file per day.
- Clock jitter measured at RP receiver <2ps</p>

Clock source based on Silicon Lab 5344 chip:

- Zero delay mode → constant phase delay between input and output
- Clock phase will be tuneable in ~18ps steps.

In 2017 PPS used also a clock distribution based on an RF connection.

Main run 3 upgrades (sensors & readout electronics)

Important upgrade program ongoing for the timing system:

- An additional timing station will be built and installed in each sector. Each station will be equipped with 4 DD planes (2SD +2DD in 2018) → 8
 DD planes in each sector + 70 ps/plane (including digitization) → 25
 ps/arm.
- New hybrid boards -> increase in amplification stability and HV isolation, further optimization of performance
- New NINO board -> reduce timing degradation in digitization phase and add secondary readout
- Sensor readout with SAMPIC chip (fast sampler @ 7.8 Gsa/s) will be available for commissioning phase and sensor monitoring (cannot sustain hit rate at nominal luminosity)

Conclusions

- > The CMS PPS group has developed a timing system based on scCVD diamonds.
- Integration of the crystals and signal amplification is provided through a dedicated hybrid board, hosting 12
 3-stage amplification channels.
- > Test Beam data show that the sensor arranged in DD architecture can reach a precision of 50 ps.
- > A similar hybrid has been used to amplify the signal of UFSD detector (best resolution achieved ~30 ps)
- The timing system was successfully operated in Run2 and provided timing information useful for pile-up suppression
- > The PPS readout is based on the chain NINO+HPTDC, able to sustain the particle rate
- A readout with SAMPIC, successfully used in the special CMS-TOTEM data taking, will be added in Run 3 as a parallel readout system for sensor monitoring and calibration. Other upgrades are ongoing.
- A special clock distribution system has been developed to grant appropriate synchronization among detectors separated by ~400m.