Compact TPC with GridPix Readout (PID and tracking option for the ATHENA Detector at EIC)

Prakhar Garg StonyBrook University

Current Group:

T K Hemmick, K Dehmelt, S Park, P Garg (SBU)

N Smirnov, (Yale)

J Kaminski (Bonn)

Kinematics for EIC physics

A schematic showing how hadrons and the scattered lepton for different $x - Q^2$ are distributed over the detector rapidity coverage.

A cutaway illustration of a generic EIC concept detector

Ref: EIC Yellow Report

ATHENA: A Totally Hermetic Electron-Nucleus Apparatus

- Will be designed to fit in at IP6 in EIC Accelerator Complex
- Inspired by the Yellow Report detector concept based on a new central detector magnet up to 3T
- Collaboration formation is in progress
- ATHENA Logo Voting is still ongoing

A <u>Call for EIC Detector Proposals</u> has been issued by DOE & BNL/JLab on March 6, 2021, with an expected proposal submission deadline on December 1st, 2021.

Many PID options are under consideration

Update since last meeting

➢ PID Working Group has met weekly (May 17 - 31)
Identified main detector proponents & gathering regular updates

B field impact on forward RICH performance	Chandradoy Chatterjee (INFN)	Estimate how the field lines of the IP6 proposed magnet affect PID performance in the forward RICH
Low-p TOF	Wenqing Fan (LBNL)	
Low momentum PID at High B-field (GridPix)	Prakhar Garg (SBU)	
mRICH	Murad Sarsour (GSU)	Simulation & performance studies
dRICh	Christopher Dilks (Duke)	Simulation & performance studies
DIRC	Joe Schwiening (GSI) Greg Kalicy (CUA)	Advice on design, simulation, performance issues
DAQ	Alexandre Camsonne (JLab)	Gathering DAQ requirements from PID WG
LGADs for TOF-PID	Wei Li (Rice)	simulation & performance studies, design, cost estimate etc.
SiPM for RICH optical readout	Roberto Preghenella (INFN)	R&D on SiPM as an option for the readout of the forward RICH
Pressurized argon for the gaseous RICH	Francesco Noto (INFN)	mechanical studies and simulations for a pressurized argon vessel for the forward gas RICH

Kick-off Meeting

https://docs.google.com/spreadsheets/d/12KuS04oyldH2t L LxmPhO9kwqJRWfeHVBJCPKDNXBT8/edit?usp=sharing

PID detector updates					
DIRC	mRICH	dRICH			
GridPIX	TOF	LGAD			

technology/implementation updates					
B Field maps	B-field impact on RICH	SiPM for RICH readout			
Pressurized Ar	LAPPD				

PID Performance Requirements

Reminder: PID requirements

3σ π/K/p separation

- forward (p/A going): up to 50 GeV/c
- backward (e- going): up to 7 GeV/c
- central region: up to 10 GeV/c

Challenges

- radiation hardness, B field, timing resolution
- material, integration, services, gaps
- simulation, performance
 - CAD & GEANT

Detector techniques/technologies

- low p_T
 - dE/dx (GridPix TPC)
 - TOF (LGAD)
- mid p_T
 - quartz Cherenkov (DIRC)
 - areogel Cherenkov (dRICH, mRICH)
- high p_T
 - gas Cherenkov (dRICH)
- photodetectors
 - SiPM
 - LAPDD
 - MCP-PMT

Vertex/tracking performance and requirements:

Results from the YR studies compared with PWG performance summary:

Tracking performance (All-silicon concept, B = 3 T)							
			Momen	tum res.	Transverse pointing res.		
η			Performance Requirements		Performance	Requirements	
-3.5 to -3.0			σp/p ~ 0.1%×p ⊕ 2% σp/p ~ 0.1%×p ⊕ 0.5%	dca(xy) ~ 60/pT μm ⊕ 20 μm			
-3.0 to -2.5		Backward			dca(xy) ~ 30/pT μm ⊕ 40 μm		
-2.5 to -2.0							
-2.0 to -1.5		Detector	σp/p ~ 0.02%×p ⊕ 1%	σp/p ~ 0.05%×p ⊕ 0.5%	dca(xy) ~ 40/pT μm ⊕ 10 μm	dca(xy) ~ 30/pT µm ⊕ 20 µm	
-1.5 to -1.0							
-1.0 to -0.5							
-0.5 to 0	Central	Barrel	77/2 - 0.039/ ×2 0.0 F9/	% σp/p ~ 0.05%×p ⊕ 0.5%	dog(sa) = 20/pT um	dca(xy) ~ 20/pT μm ⊕ 5 μm	
0 to 0.5	Detector	Darrei	σp/p ~ 0.02%×p ⊕ 0.5%		dca(xy) ~ 30/pT μm ⊕ 5 μm		
0.5 to 1.0							
1.0 to 1.5	1						
1.5 to 2.0		Forward Detector	σp/p ~ 0.02%×p ⊕ 1%	σp/p ~ 0.05%×p ⊕ 1%	dca(xy) ~ 40/pT μm ⊕ 10 μm	dca(xy) ~ 30/pT µm ⊕ 20 µm	
2.0 to 2.5							
2.5 to 3.0					doc/sol = 60/sT 0 20	dca(xy) ~ 30/pT μm ⊕ 40 μm	
3.0 to 3.5			σp/p ~ 0.1%×p ⊕ 2%	σp/p ~ 0.1%×p ⊕ 2%	dca(xy) ~ 60/pT μm ⊕ 20 μm	dca(xy) ~ 30/pT μm ⊕ 60 μm	

Hybrid (Si+TPC)

$\overline{}$	$\overline{}$							
Tracking performance (Hybrid concept, B = 3 T)								
		Momentum re	Minimum pT		Transverse pointing res.			
		Performance	Requirements	Performance	Requirements	Performance	Requirements	
	1	gp/p ~ 0.05%×p ⊕ 2%	$an/n \sim 0.1\% \times n = 0.5\%$		100-150 MeV/c	dca(xy) ~ 50/pT um # 10 um		
J	Backward	Op/p = 0.00 /8-P @ 2 /8	Op/p = 0.1784p = 0.078		100-150 MeV/c	dca(xy) = σο/ρτ μπ Φ το μπ	dca(xy) ~ 30/pT μm ⊕ 40 μm	
J		$an/n \sim 0.11\% \times n = 0.4\% (0.8 \text{ GeV/c})$	(160-220 MeV/c	100-150 MeV/c	dca(xy) ~ 25/pT μm ⊕ 3 μm		
J	Detector	σp/p ~ 0.04%×p ⊕ 1% (8-30 GeV/c)	σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c		dca(xy) ~ 30/pT μm ⊕ 20 μm	
J				300 MeV/c	100-150 MeV/c			
J		1	1					
Central	Barrel		σp/p ~ 0.05%×p ⊕ 0.5%	400 MeV/c	100-150 MeV/c	dca(xy) ~ 15/pT μm ⊕ 2 μm	dca(xy) ~ 20/pT μm ⊕ 5 μm	
Detector	1	σp/p ~ 0.03%×p ⊕ 0.5% (5-30 GeV/c)		(90% acceptance)				
J								
J	$g_{D}/p \sim 0.11\% \times p \oplus 0.4\% (0-8 \text{ GeV/c})$	1	300 MeV/c					
J	Forward	vard σp/p ~ 0.04%×p ⊕ 1% (8-30 GeV/c)	σp/p ~ 0.05%×p ⊕ 1%	I —	100-150 MeV/c	dca(xy) ~ 25/pT μm ⊕ 3 μm	dca(xy) ~ 30/pT μm θ 20 μm	
J				160-220 MeV/c	100-150 MeV/c			
J	1		σp/p ~ 0.1%×p ⊕ 2%		100-150 MeV/c	——— dca(xv) ~ 50/n1 um ⊕ 10 um	dca(xy) ~ 30/pT μm ⊕ 40 μm	
					100-150 MeV/c		dca(xy) ~ 30/pT μm ⊕ 60 μm	
		Rarrel	Momentum res Performance Sp/p ~ 0.05%×p ⊕ 2% Backward Detector $\sigma p/p \sim 0.11\% \times p \oplus 0.4\% \ (0-8 \ GeV/c)$ Central Detector $\sigma p/p \sim 0.11\% \times p \oplus 0.2\% \ (0-5 \ GeV/c)$ $\sigma p/p \sim 0.11\% \times p \oplus 0.2\% \ (0-5 \ GeV/c)$ $\sigma p/p \sim 0.03\% \times p \oplus 0.5\% \ (5-30 \ GeV/c)$ Forward Detector $\sigma p/p \sim 0.11\% \times p \oplus 0.4\% \ (0-8 \ GeV/c)$ $\sigma p/p \sim 0.04\% \times p \oplus 1\% \ (8-30 \ GeV/c)$	Momentum res. Performance Requirements Backward Detector $\sigma p/p \sim 0.05\% \times p \oplus 2\%$ $\sigma p/p \sim 0.11\% \times p \oplus 0.5\%$ Central Detector Barrel $\sigma p/p \sim 0.11\% \times p \oplus 0.4\%$ (0-8 GeV/c) $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ Forward Detector $\sigma p/p \sim 0.11\% \times p \oplus 0.4\%$ (0-8 GeV/c) $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$	Momentum res. Minim Performance Requirements Performance Backward Detector $\sigma p/p \sim 0.05\% \times p \oplus 2\%$ $\sigma p/p \sim 0.1\% \times p \oplus 0.5\%$ $\sigma p/p \sim 0.1\% \times p \oplus 0.5\%$ $\sigma p/p \sim 0.11\% \times p \oplus 0.4\%$ (0-8 GeV/c) $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ $\sigma p/p \sim 0.05\% \times p \oplus 0.$	Momentum res. Minimum pT Performance Requirements Performance Requirements Backward Detector σp/p ~ 0.05%×p ⊕ 2% σp/p ~ 0.11%×p ⊕ 0.5% 100-150 MeV/c σp/p ~ 0.11%×p ⊕ 0.4% (0-8 GeV/c) σp/p ~ 0.04%×p ⊕ 1% (8-30 GeV/c) σp/p ~ 0.05%×p ⊕ 0.5% 160-220 MeV/c 100-150 MeV/c 300 MeV/c 300 MeV/c 100-150 MeV/c 100-150 MeV/c 100-150 MeV/c 300 MeV/c 100-150 MeV/c 100-150 MeV/c 100-150 MeV/c 100-150 MeV/c Forward Detector σp/p ~ 0.11%×p ⊕ 0.4% (0-8 GeV/c) σp/p ~ 0.05%×p ⊕ 1% (8-30 GeV/c) σp/p ~ 0.05%×p ⊕ 1% 300 MeV/c 100-150 MeV/c 100-150 MeV/c σp/p ~ 0.04%×p ⊕ 1% (8-30 GeV/c) σp/p ~ 0.05%×p ⊕ 1% 100-150 MeV/c 100-150 MeV/c	Detector Performance Requirements Performance Requirements Performance Requirements Performance Requirements Performance Performance	

PID in Central Region:

Currently Central Arm Principal Technology is DIRC but:

Kaon threshold = 0.47 GeV/c

Curling Limit $p_T = 0.45 \text{ GeV/c}$

Lower momentum?

Motivation

P < 0.5 GeV/c

Dual Approach:

- Standalone Garfield (optimize detector)
- GEANT (integrate into full simulation)

Stony Brook University

Restating the issue

- DIRC has low-p limitations:
 - Curl Up (0.45 GeV/c)
 - Kaon threshold (0.47 GeV/c)
- Rather than lower the field:
 - PID at low radius.
 - dE/dx separations huge!
 - 1.6X pi-K
 - 2.25X K-p
 - GridPIX
 - Established
 - Robust
 - Excellent tracking

Few Words about GridPix

Known and Proven Technology for GridPix

- GridPix is a 55 μm × 55 μm pixel readout for a gaseous TPC
- First Timepix3 based GridPix test beam (2017)
- Quad module performance from test beam (2018)
- Investigations of the 8 quad detector (2020)

Ultimate dE/dx Device

- Avalanche grid in front of 55 x 55 μm2 pixels.
- Greater than 90% efficiency for single electrons.

Goal:

- Enough diffusion to get every electron into a different hole
- Count electrons one-by-one.
- Three generations of development and continuing.
- Large area is VERY expensive, but this proposal is small area.

Some References:

- Talk on GridPix for future experiments in Topical workshop on New Horizons in Time Projection Chambers,
- Talk on Timepix4 detectors by X. Llopart in 2nd MUonE Collaboration Meeting at CERN
- PhD thesis on The Pixel-TPC: A feasibility study, by Michael Lupberger

4-sided buttable pixel arrangement

- Model 4 replaces wires bond with bump bond (improves active area) (93.7% -> 99.5% active area)
- DAQ interface by Through-Silicon-Vias (TSV).

We are in close contact with Jochen Kaminski et. al. from Bonn and having weekly meeting since recently!!

Low Momentum PID

- High magnetic field curls low(er) momentum particles.
 - Option #1: We don't care about them. (bad option)
 - Option #2: Lower the B-field for "special runs". (poor option)
 - Option #3: PID on these particles BEFORE they curl up.

For high Momentum PID?

Anticipated Performance for PID:

University

Lehraus Plot

- Using 5.4 as a standard TPC
 - $5.4*(0.25)^{-0.37} = 9.0$
- Measured for GridPIX (truncated Mean)
 - 4.1% at 1 meter
 - $4.1*(0.25)^{-0.37} = 6.85$
 - This was the prior assumption quoted by us.
- Roughly 20 sigma at 0.5 GeV/c
- Useful range overlaps with DIRC

Overly Simplified Momentum Resolution

- Figure of Merit:
 - $\sigma_p \propto \frac{\sigma_{hit}}{\sqrt{N_{meas}}} \equiv Figure \ of \ Merit$
- Can be compared to Silicon with detailed Monte Carlo
- Here is simple-minded estimate

• Figure of Merit(Si) =
$$\frac{\frac{20 \, \mu m}{\sqrt{12}}}{\sqrt{4}} = 2.9 \, \mu m$$

- Gas:
 - Including efficiency ~3000 electrons (minimum!) per track
 - Each suffers digitization (σ = 55 μ m/sqrt(12) = 16 μ m)
 - Diffusion(Length) = $25 \frac{\mu m}{\sqrt{cm}} \sqrt{L}$
 - D(2cm) = 35 μ m \rightarrow FOM = 0.70 μ m
 - D(25cm) = 125 μ m \rightarrow FOM = 2.3 μ m
 - D(50cm) = 176 μ m \rightarrow FOM = 3.2 μ m
 - D(100cm) = 250 μ m \rightarrow FOM = 4.6 μ m
- Although ignoring many significant effects, initial result is on the order of the layers of silicon.

- All PID technologies have a "dynamic range"
- Most of the locations require multiple/complementary solutions.
- Its a Complex phase space.
- o GridPix based Readout opens new possibilities for both PID and Tracking options
- Detailed studies are underway for GridPix based option, stay tuned.

