2021 RD51 Test Beam

			Jun			Jul				Aug	S			5	бер				0ct			Nov	1
	Week	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
/lachi	ne				a										TS1 Colde	x							
ea	T2-H2 option	12	CMS Outer Tracker	SPS & TT20 Setup	NA Setup 7	NA61 9 16	HINE	FASER cal 7	ATLAS FCAL PULSE	STORM	KLEVEI	CMS HGCAL 7	NA61 SHINE 7	ATLAS ZDC 7	NA6 SHIN 7	E IN	<mark>A65</mark> 14	CMS HGCAL 7	8	N	1 A 61 SH I 33	VE	
North Area	T2-H4 option	1		SPS & TT20 Setup	NA Setup 7	GIF RD51 9	200 100	LНСЬ 18	A 1000 ES		NA 2	<mark>64e</mark> 8		GIF 7	ų	HCf 14	CMS	ECAL	LHCb CAL 7	GI	F RD51 14	HERD	GIF 5
No	T2-H4 req.					CMS ECAL 9																	

Mon. 12/07/2021 – Wed. 21/07/2021

Wed. 20/10/2021 – Wed. 3/11/2021

Physics Scope (2021)

Generic and Application driven R&D

Muon/Tracking: GEM, mm and μRWELL **TPC:** TimePix (LC), Twin and Tandem GEM TPC (Beam monitoring)

Timing: PICOSEC micromegas, FTM

Calorimetry: RPWELL (DHCAL)

Medical: mm (Proton Computed Tomography)

Project driven R&D

HL-LHC: GEM (CMS), mm (ATLAS) and μRWELL (LHCb) **FCC-ee:** μRWELL (IDEA) **PBC:** mm and GEM (AMBER/COMPASS++)

Detector Commissioning

e+e- collider : CGEM(BESIII)

FE electronics and DAQ

TIGER-GEMROC VMM3a-SRS

	firmed setup			
011	Week 28-29	Project/Experiment	Beam Requirements	Reference Team
	AMBER upgrade (mm & TIGER)	AMBER upgrade (mm & TIGER)	mu	INFN Torino
	BES III	Upgrade of current inner drift chamber with a cylindrical GEM	mu, pi	INFN Ferrara
	PICOSEC	Fast and Precise timing with MPGD (micromegas)	mu, e-	PICOSEC Coll.
	RD51	New FE&DAQ for beam telescopes (SRS/VMM3a)	mu, pi, high rate	RD51 VMM

Week 43-45	Project/Experiment	Beam Requirements	Reference Team	
COMPASS Upgrade	AMBER upgrade (mm & TIGER)	mu	INFN Torino	
RPWELL	DHCAL	mu, pi	WEIZMANN	
COMPASS++/AMBER	COMPASS++/AMBER upgrade (GEM)	mu	BONN-GDD	
CMS	GE2/1, ME0	mu, pi	CMS GEM	
IDEA project	uRWELL	mu	LNF uRWELL	
FTM, High Resolution GEM	FTM, GEMs	mu, pi	INFN Bari	
Small Pad Resistive mm & embedded readout	Small Pad Res. Mm	mu, pi	INFN Roma 3, Naples, CERN	
SRS/VMM3a Gem TPC	GEM TPC	mu, pi	HIP	
PICOSEC	Fast and Precise timing with MPGD (micromegas)	mu, e-	PICOSEC Coll.	
Proton Computed Tomography	Detector commissioning / Med	mu	LMU	
Tandem Gem TPC	Beam Monitoring TPC	mu, pi	Wigner	
RD51	New FE&DAQ for beam telescopes (SRS/VMM3a)	high rate pi	RD51 VMM	
RD51	RD51 muRWELL telescope	mu, pi, high rate	RD51 muRWELL tracker	

Physics Scope (2021)

Generic and Application driven R&D

Muon/Tracking: GEM, mm and μRWELL TPC: TimePix (LC), Twin and Tandem GEM TPC (Beam monitoring) Timing: PICOSEC micromegas, FTM Calorimetry: RPWELL (DHCAL) Medical: mm (Proton Computed Tomography)

Project driven R&D

HL-LHC: GEM (CMS), mm (ATLAS) and μRWELL (LHCb) **FCC-ee:** μRWELL (IDEA) **PBC:** mm and GEM (AMBER/COMPASS++)

Detector Commissioning

e+e- collider : CGEM(BESIII)

FE electronics and DAQ

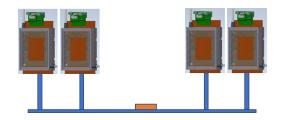
TIGER-GEMROC VMM3a-SRS WG7 - Common Test Facilities -

09:00	COMPASS Upgrade - mm and new DAQ (TIGER)	Maxim Alexeev	C
	remote-only	09:00 - 09:1	.6
	COMPASS++/AMBER upgrade	Michael Lupberger	C
	remote-only	09:15 - 09:3	80
	RPWELL	Luca Moleri et al.	e
	remote-only	09:30 - 09:4	46
	IDEA, uRWELL	Giovanni Bencivenni	e
	remote-only	09:45 - 10:0	00
10:00	BESIII	Giulio Mezzadri et al.	C
	remote-only	10:00 - 10:1	6
	FTM, High Resolution GEM	Piet Verwilligen	C
	remote-only	10:15 - 10:3	30
	News from MB & ECFA Detector R&D Roadmap	Leszek Ropelewski et al.	e
	remote-only	10:30 - 10:3	35
	Coffee Break		
	remote-only	10:35 - 10:8	50
	CMS GEM	Piet Verwilligen	C
11:00	remote-only	10:50 - 11:0	05
	Small Pad Micromegas	Mauro Iodice	e
	remote-only	11:05 - 11:2	20
	PICOSEC	Antohija Utrobicic	e
	remote-only	11:20 - 11:3	35
	VMM3a in a GEM-TPC in twin configuration	Francisco Ignacio Garcia Fuentes	Ø
	remote-only	11:35 - 11:8	50
	Tandem GEM TPC	Dezso Varga et al.	e
12:00	remote-only	11:50 - 12:0	06
	Commissioning of Alu Micromegas and TPC for Proton Computed Tomography	Jona Bortfeldt et al.	Ø
	remote-only	12:05 - 12:2	20
	General news and Info	Yorgos Tsipolitis et al.	Ø
	remote-only	12:20 - 12:2	25
	RD51-WG7 subscription		C
	remote-only	12:25 - 12:2	26

More info @ https://indico.cern.ch/event/989298/timetable/#20210219.detailed

COMPASS MM prototyping

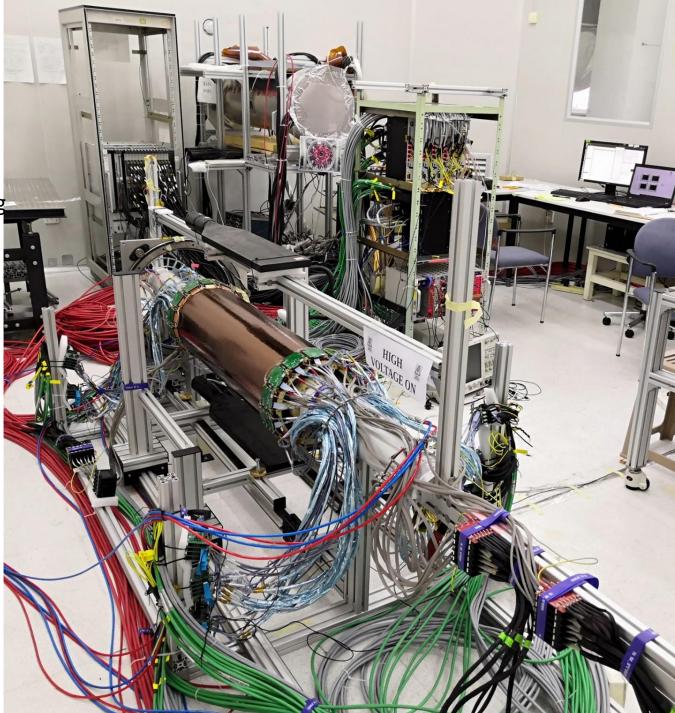
The main objective of the long term project is a study for a possible substitution to the aging MWPC chambers


The main objective during this TB will be to test the future test bench, based on prototype MMs and gather experience on internal tracking in beam conditions

People present at the test: 2 colleagues from Dubna

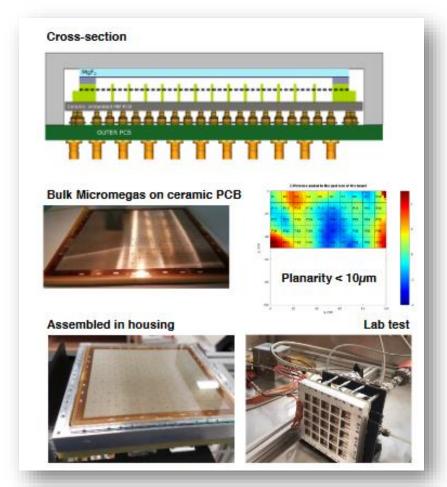
1-2 permanent and 1-2 present at CERN from Torino

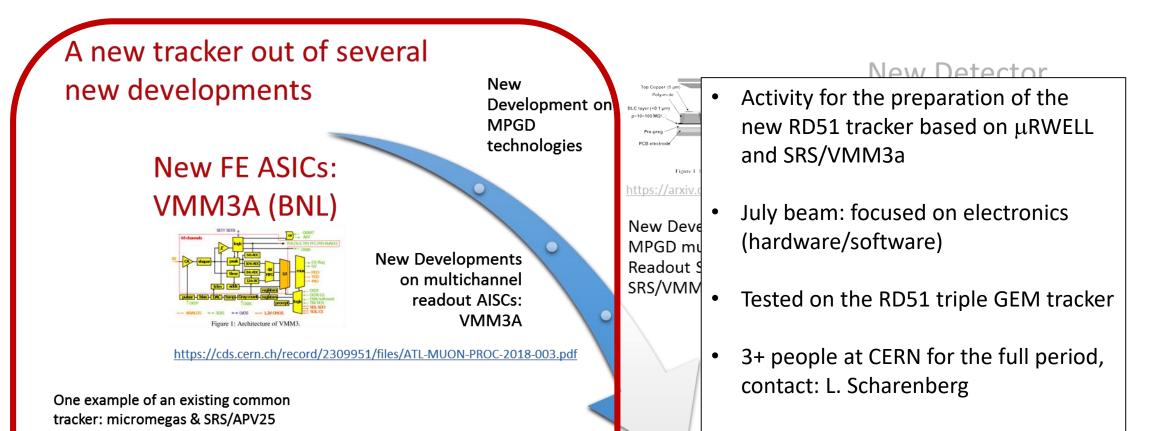
- We plan to be at CERN starting 08.07 and till the end of the TB (to be confirmed)
- > All the material will arrive with the arriving people no special transport is foreseen
- > No departure constraints, we will be present at CERN for the whole July



<u>Contact person</u>: Maxim Alexeev alekseev@to.infn.it

BESIII Cylindrical GEM detector


- From the beginning of the pandemic outbreak, 2/3 of the CGEM detector is taking cosmic data in Beijing with a "temporary", remotely-controlled setup
- Since we cannot travel to China, we are continuing the electronics integration and validation in Italy
- The main purpose of the Test Beam is the validation of the full readout chain including the newly developed global/local fanout system
- About 8 people from INFN Ferrara and Turin will participate
- The arrival at CERN is currently scheduled for the afternoon of July 8th – the setup will travel with us, and we'll wait for it at the end


PICOSEC- July test beam

1. PICOSEC: precise timing detector.

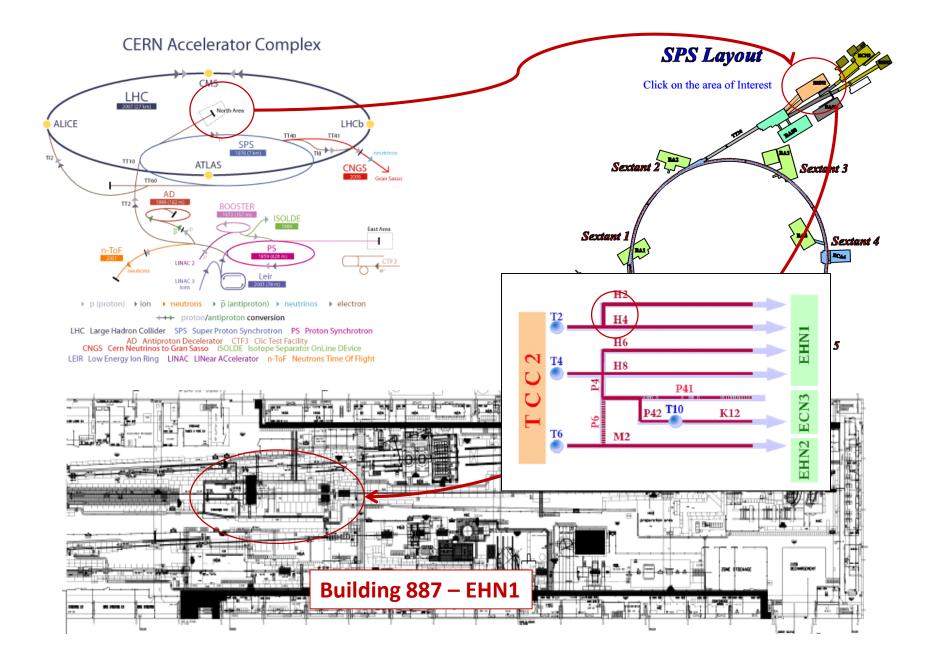
- Detectors to be tested:
 - PICOSEC 100 channel prototype: characterization of the time resolution over the multiple channels.
 - single pad detector: test of different photocathodes, single gap, new preamplifier from Saclay, SAMPIC readout.
 - multi-pad PICOSEC with resistive MM: characterization of the time resolution over the multiple channels [to be confirmed]
- 2. Number of people coming: up to 5 people, ref. contact: Antonija Utrobicic
- 3. Material and 100 channel prototype are at CERN. Single pad detector, preamplifiers and multi-pad PICOSEC with resistive MM will arrive at CERN within next 2 weeks.
- 4. No constrains in departure.

SRS/VMM3a based DAQ for the new RD51 Tracker

New

track

Important investment (about 40kCHF in total) of resources from the collaboration.


Additional Support may come from AIDAinnova test beam and DAQ WP

- Material already at CERN
- No constraints on departure

352/LHCC143_OpenSession_RD51.pdf

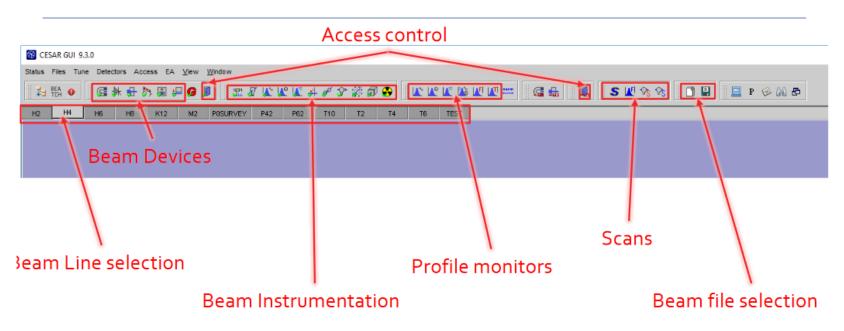
10011/attachments/2033123/3321

Some general info We will not go through all of them in detail but good to have them

http://sba.web.cern.ch/sba/BeamsAndAreas/resultbeam.asp?beamline=H4

H2/H4 General Information

- Two unique experimental beam lines
 - Magnetic spectrometers with maximum dp/p : 2%
 - · Separating momenta and not particle species !
- Available momenta : 20 400 GeV/c
 - Mixed hadron or pure electron modes
 - Purity variable with momentum/intensity and beam line configuration
- Spill duration: ~4.8 s flat-top, 1-2 spills / supercycle

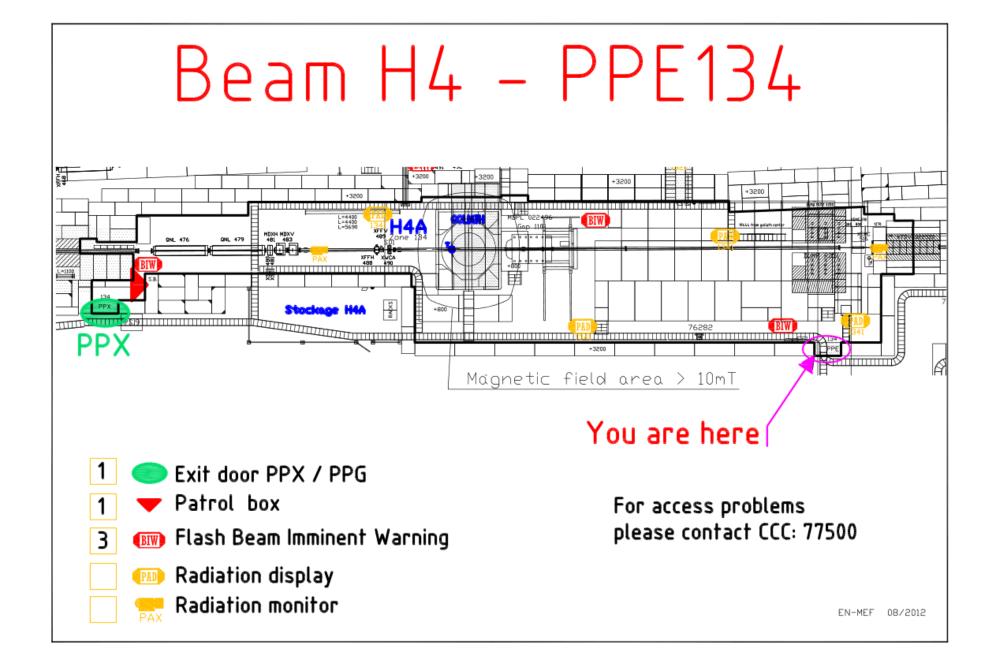

5/20/2021

- Rates @ your detector : a few hundred particles/spill 1E7 particles /spill
 - RP and other limitations may apply
- Very dynamic facilities
 - Modifiable, easily accessible, and adaptable to user needs....within limits.

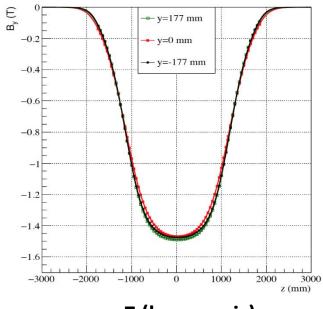
H4 beam line

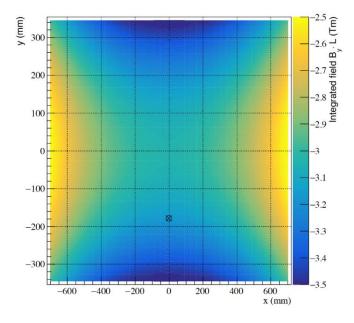
- The H4 beam line is located in EHN1. It is a high-energy, high-resolution general purpose beam suitable for both experiments and tests. Main parameters: Pmax= 330 (450) GeV/c, Acc.=1.5 μSr, Δp/pmax= ±1.4 % The maximum momentum is 400 GeV/c.
- detailed user guide: H4
- Beam types:
 - polarized protons for $\Lambda0$ decay, enriched low-intensity beam of anti-protons, or K+
 - electrons from γ-conversion,
 - Attenuated primary beam, Heavy ion beam
- Maximum intensities for 10¹² incident protons at 400 GeV/c:
 - π+, e fluxes similar to H2
 - $\bullet~\sim 10^7$ protons at 400 GeV/c
 - $\bullet~\sim 10^7~\text{Pb}$

CESAR

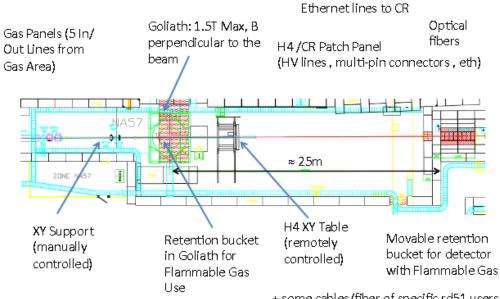

CESAR is the software that allow you ton control the beam, and ask for Beam on or off:

- When opening CESAR in the control PC you just click on "logging by location"
- When you request for Beam on you should enter your NICE credential.
- Please contact me (<u>bastien.rae@cern.ch</u>) to organize a small training (~45min).


B.Rae 18.05.2021


5

Goliath Magnet


Z (beam axis)

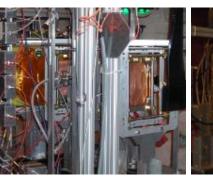
RD51 Test Beam Organization/Sharing/Common infrastructures/...

Internal (beam sharing between groups) and external (GIF++ and with any other parallel user) coordination

Typical Shift Scheme

	MAIN	Parasitic1	Parasitic2
Shift1	ALICE TPC	WIS/Aveiro/Coimbra	LNF
Shift2	ATLAS NSW	ALICE TPC	WIS/Aveiro/Coimbra
Shift3	CMS GEM	ATLAS NSW	ALICE TPC
Shift4	LAPP/UA/NCSR/IRFU	CMS GEM	ATLAS NSW
Shift5	LNF	LAPP/UA/NCSR/IRFU	CMS GEM
Shift6	WIS/Aveiro/Coimbra	LNF	LAPP/UA/NCSR/IRFU
Shift7	ALICE TPC	WIS/Aveiro/Coimbra	LNF

...+ some cables/fiber of specific rd51 users


Mechanical

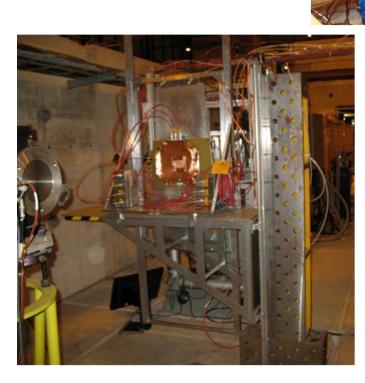
RD51 DCS (Control and monitoring) Environmnetal plots during Test Beam

Mrg Pistal Or

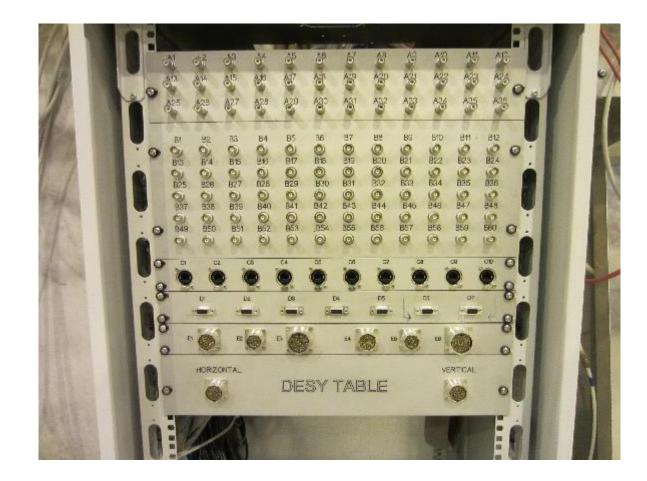
RD51 Trackers and SRS/APV25 DAQ

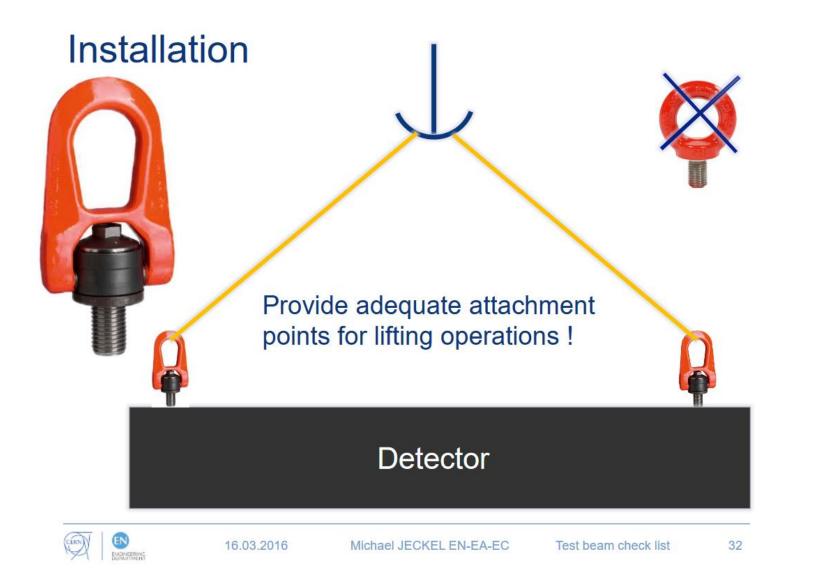
support (Miranda)

Remotely controllable platform (CERN SPS/NA)



Infrastructures (gas, HV, LV, sensors,...)


Moving tables & supports from CERN/NA & RD51



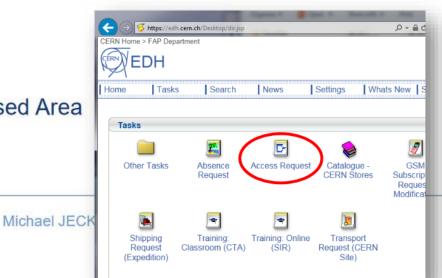
Installation — patch panel Zone PPE **172** (H2B), **134** (H4A), **146** (H6A), **138** (H8A) & **158** (H8B)

A: 36 x SHV B: 60 x BNC C: 10 x RJ45 D: 6 x Type D D: 2 x Profibus E: 2 x Burndy 12 E: 2 x Burndy 19 E: 2 x Burndy 28 F: DESY table control

To move detectors/material in the experimental hole with the crane

Access and Safety

Access


 Fill in an EDH- Access Request for the control room and for patrol rights.

Link: Electronic locks instructions

 To enter the experimental hall the personal dosimeter is enough.

CERN DOSIMETRY SERVIC

Safety courses @ SIR: **CERN** Safety Introduction Electrical Safety – Awareness Radiation Protection - Supervised Area **CERN** - Beam Facilities

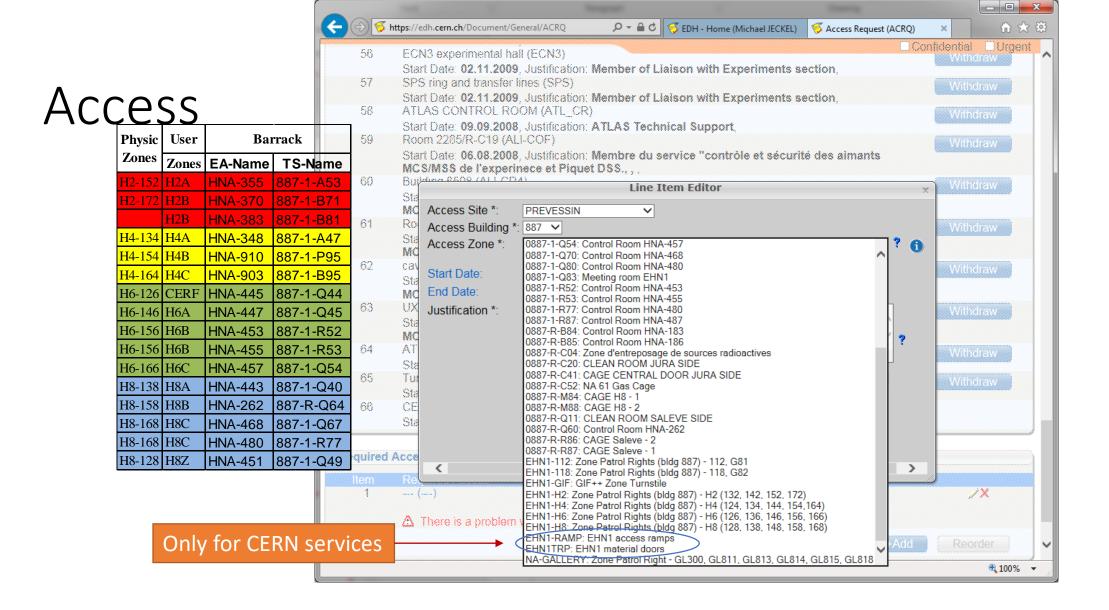
RNAME / NOW DE FAMILL

Test beam check list

Michael JECKEL EN-EA-EC

EDMS:1745256

https://indico.cern.ch/event/700663/contribu tions/2874577/attachments/1617340/257129 7/Test beam check list.pdf


0887-1-A47

Search permission Go Row text contains '0887' \checkmark Code ↑≞ Description 0887-1-A47 Control Room HNA-348

OUR CONTROL ROOM

16.03.2016

General Safety in EHN1

 Necessary PPEs (Personal Protective Equipment) to enter the building are: helmet, safety shoes and personal dosimeter

Additional PPEs might be required, depending on the activities to be performed.

- Every experimental area is equipped with safety installations, as fire extinguishers and AUG (General Emergency Stop – cut the power in the entire building).
 Please, take some time to familiarise with their position!
- Any professional incident shall be declared via: <u>https://edh.cern.ch/Document/General/Accident</u>

https://indico.cern.ch/event/1034416/contributions/4344062/subcontributions/337738/attachments/2248309/3813634/EHN1_Users_Safety.pdf

ACCESS MODES OF A SECONDARY BEAM AREA

- 'CLOSED' area: no access permitted, beam potentially present;
- 'LOCKED' area: no access possible (except for fire brigade and radiation protection)
- 'ACCESS WITH KEY': entering is possible by taking a key, one key per person entering (short KEY ACCESS)
- 'FREE' access: access without restrictions
- 'PATROL': It has a very limited duration and serves changing a zone status from "FREE" to any other mode.

ACCESS MODES NO BEAM NO BEAM BEAM AUTHORIZED NO ACCESS ACCESS AUTHORIZED NO ACCESS VALIDATE -PB FREE VALIDATE LOCKED KEY ACCESS CLOSED VALIDATE PB ► PATROL VALIDATE

REMARK

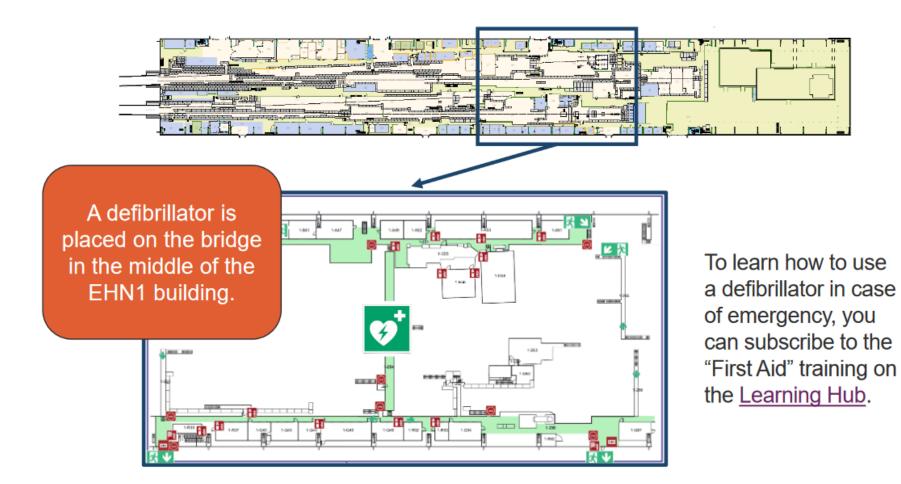
EMERGENCY BUTTON

On each door there is an emergency button above the handle. It's also give you information if you have enter or not.

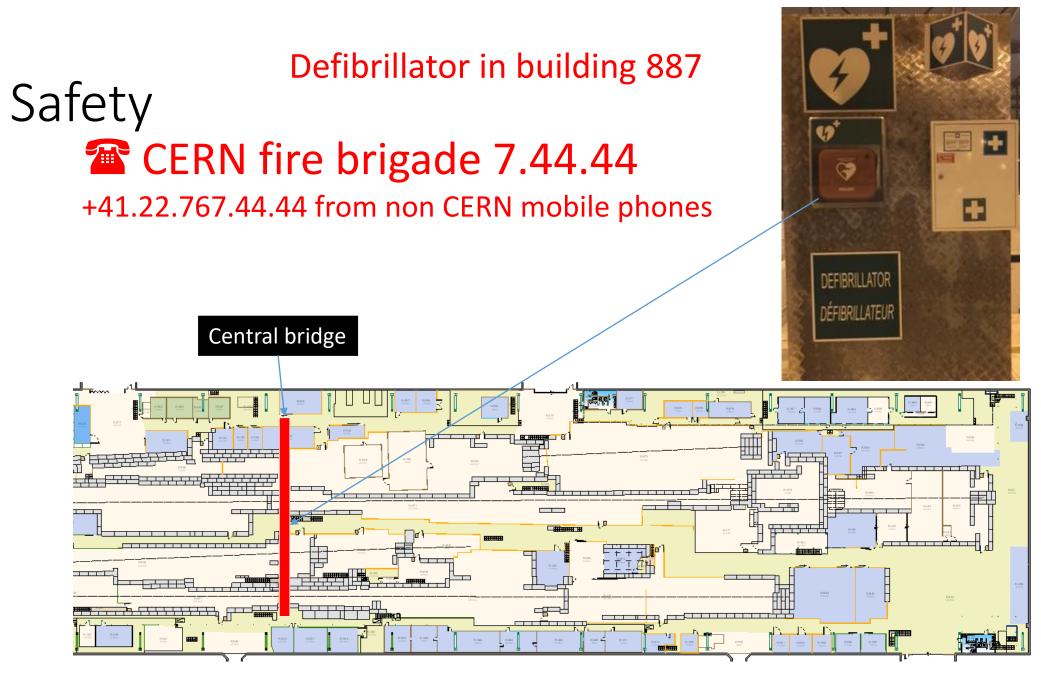
YOU MUST USE THE EMERGENCY BUTTON ONLY IN CASE OF EMERGENCY !

B.Rae 18.05.2021

Access and Control user Zone


B.Rae 18.05.2021

Access and Control user Zone



Defibrillator in EHN1

CERN

Assembly points in EHN1

• There are two assembly points, located at the sides of EHN1. Please, take some time familiarise yourself with their location!

Jura side: close to picnic area

Salève side: car park by the ramp, close to building 892

In case of

evacuation alarm,

leave immediately

the building and go

to the assembly

point!

Safety contacts

• In case of any safety related questions, different safety actors will be available:

TSO – Territorial Safety Officer

Contact: EHN1-TSO@cern.ch

DSO – Department Safety Officer

Contact: ep-adso@cern.ch

COVID-19 Information

- Maximum number of people displayed on control rooms doors (after assessment)
- Masks, hand disinfectant, surface disinfectant, etc. will be provided by CERN
- If any symptoms appear or if you are a confirmed close contact of a positive case, stay at home and contact the CERN Medical Service via the TRAMED application <u>https://tramed.web.cern.ch</u>

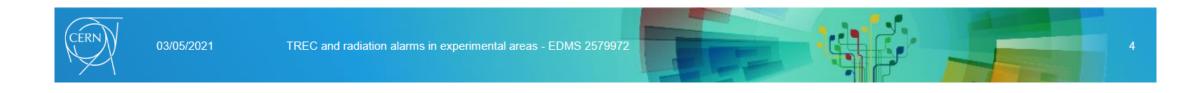
NEVER come to **CERN** with symptoms!

- The TRAMED declaration is followed up by a call from the CERN Medical Service. Any COVID test consequence of this declaration is payed by CERN.
- If you are declared as a COVID case (suspected or confirmed), collaborate with the Medical Service and the CoTrac for the tracing of your past activities (working areas, close contacts, etc.)
- Possession of a proximeter and COVID-19 safety training (link) are necessary to enter CERN

TREC in experimental areas & Radiation Monitoring System in experimental areas

F. Aberle, C. Ahdida, G. Dumont, R. Froeschl, J-F. Gruber

03/05/2021 EDMS 2579972



https://indico.cern.ch/event/1034416/contributions/4344062/ subcontributions/337739/attachments/2247503/3812139/TRE C_and_Radiation_monitoring_Exp_areas.pdf

Every material leaving a beamline has to be traced in TREC and controlled by RP

• Every material leaving a radiologically classified building has to be controlled by RP

- Identify the material (traceability stickers) before installing in the beamline. Trace reasonably (i.e. do not use one code per screw)
- Do the request **well in advance**, with indication of the time when the material will be available for the measurement (measurement deadline). Use comments in TREC if needed
- Deposit the material in the Buffer Zone, if possible. Otherwise, call the RP Officer (Meyrin: 72504, Prévessin: 75252)
- Sign the EDH created by TREC, and wait for the RPO signature before leaving the building
- Update the location of your equipment when it has been transported

Reminders (often forgotten)

- The TREC code follows the equipment part until the end of his life
- Record your request in TREC
- Indicate a responsible person who is at CERN and available to sign in EDH
- Sign your EDH
- Wait until RPO signature before leaving
- In case of urgency, contact the RPO
- For specific cases, contact the RPO

Radiation alarm displays

Flashing RED light + Audible ALARM → Leave the concerned area calmly Flashing ORANGE light + WARNING SOUND → Limit your stay in the concerned area Continuous green light = NORMAL situation (low radiation levels, system OK)

03/05/2021

TREC and radiation alarms in experimental areas - EDMS 2579972

Possible sources of EHN1 radiation alarms

- Beam transport and steering
 - In the NA Target area
 - In the transfer lines upstream and around EHN1
 - In the beam lines in EHN1
- Beam intensity

03/05/2021

- Collimator settings are a major source of alerts/alarms
- Beam particle type
- Status of beam intercepting devices
 - Including their surrounding

Recommended actions in case of radiation alarms in EHN1

- In case of **any alarm** in a zone under your responsibility
 - Understand & remove the source of the alarm
 - CCC, beam line physicists, radiation monitoring data
- EHN1 is a very large building
 - You can safely stay in EHN1 if there is no radiation alarm in your vicinity
 - In case of doubt, please contact the responsible of the zone where the alarm occurs (via the CCC)

