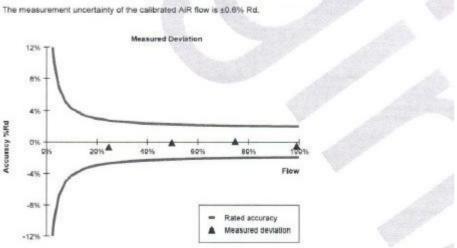
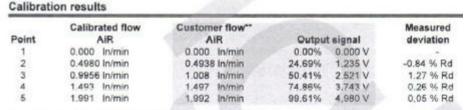

Device for flow meter absolute calibration at low gas flows

András László (Wigner Research Centre for Physics, Budapest)

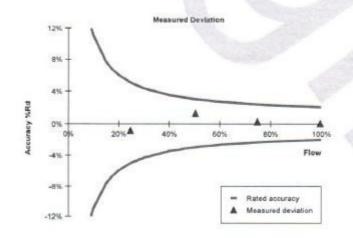
(Dezső Varga, Gergő Hamar, András László et al, at Wigner RCP)

Motivation

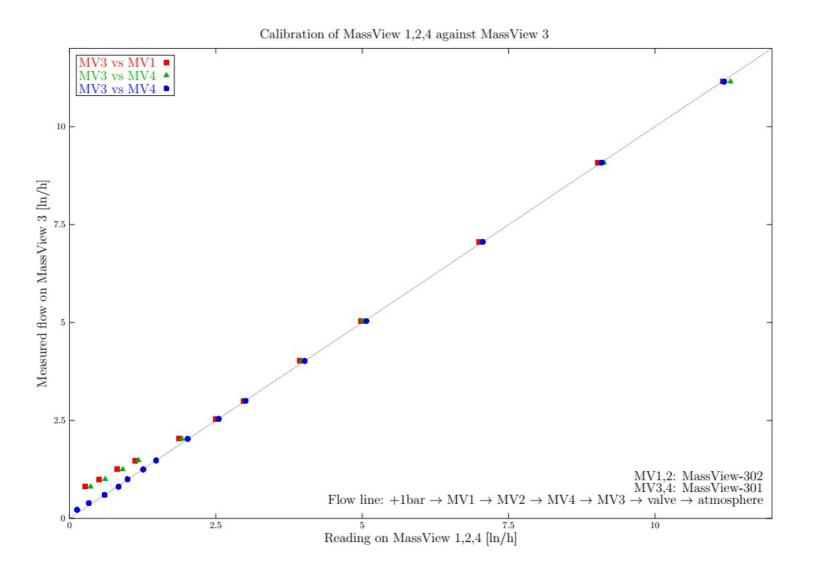

- In lab applications, sometimes not premixes are used, but gases are mixed locally.
- In a typical gas mixture, only a fraction of quenching gas is used. E.g. Ne(90):CO₂(10):N₂(5)
- Keeping the small proportion of additive gases stable is an issue.
 (E.g. gas mixers can be used, based on thermal mass flow meters.)
- Also, quantification of the proportion of additive gases is an issue.
 (Factory calibration mostly available at large flows, and limited gas types, and expensive.)
- Had negative experience with specs and reliability of factory calibrations.
 (In the range of < 5 ln/h flow.)
- We needed some kind of reliable calibration mechanism.


Typical industrial solutions

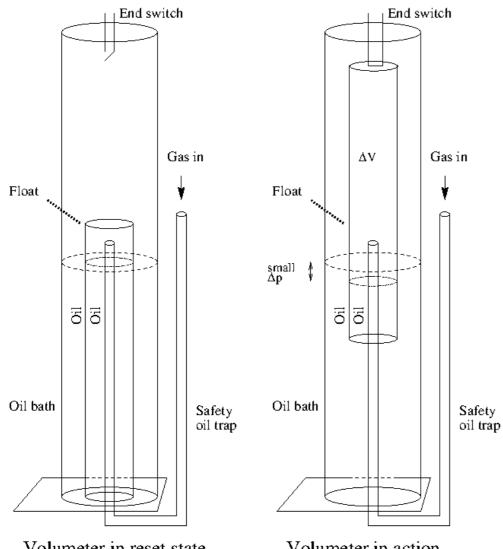
- Variable Area flow meters:
 - simple solution, can be good down to ~0.5 l/h,
 - e.g. Vögtlin Q-flow 80, Q-flow 140 ; Omega FL-3207G
 - not for precision, not electronically readable, cannot be used for active control
- Thermal mass (molar) flow meters:
 - based on constancy of the molar specific heat of gases at constant pressure
 - electronically readable, can be used for active flow control
 - e.g. Brooks 5850TR in mixer mode; or Bronkhorst MassView-301 / 302
 - rather expensive, ~1kEUR / channel + mixer ~5kEUR
 - not only specific heat is needed, but also device and gas dependent calib constants
 - mostly accurate for flows > 5 ln/h, calibration issues for lower flows
 - manufacturers not very helpful with sorting out calibration issues

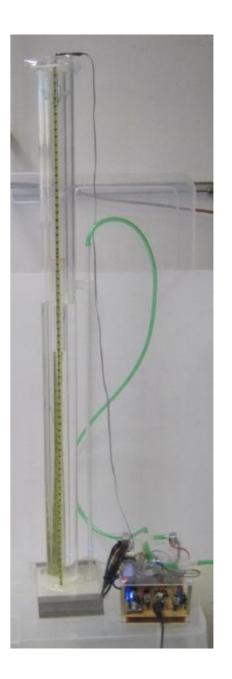

Calibration specs not very stringent for < 5 ln/h range

D-1-4	Calibrated flow AIR 0.000 mln/min		Customer flow** AIR 0.6660 mln/min		Output signal		Measured deviation
Point							
. 1					0.33%	0.017 V	
2	49.76	mln/min	49.42	mln/min	24.71%	1.236 V	-0.68 % Ro
3	99.53	mln/min	99.41	mln/min	49.71%	2,485 V	-0.12 % Ro
4	149.3	mln/min	149.4	mln/min	74.69%	3.735 V	0.05 % Ro
5	199.1	mln/min	198.0	mln/min	99.02%	4.951 V	-0.53 % Ro
he measu	rement uncer	tainty of the calib	orated AiR flow	is ±0.6% Rd.			



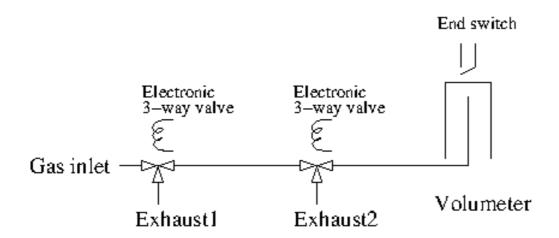
The measurement uncertainty of the calibrated AiR flow is ±0.6% Rd


- not only specific heat is needed, but also device and gas dependent calib constants
- mostly accurate for flows > 5 ln/h, calibration issues for lower flows
- manufacturers not very helpful with sorting out calibration issues


Cross-calibration issues at < 5 ln/h range

Solution: build a calibration device

- A volumeter, with an end switch
- Input valves controlled by a Raspberry Pi



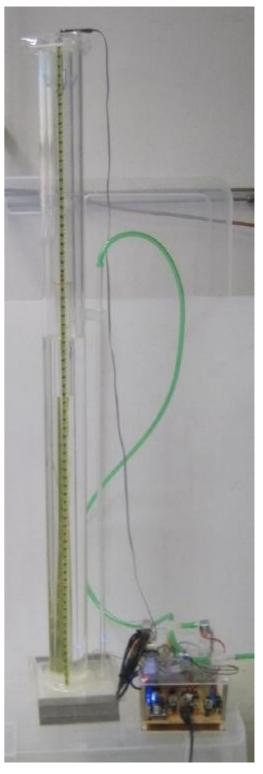
Volumeter in reset state

Volumeter in action

Working principle:

- Standby:
 - "Gas inlet" connected to "Exhaust1"
 - "Volumeter" connected to "Exhaust2"
- Measurement:
 - "Exhaust2" closed
 - "Exhaust1" closed
- Measurement stopped when end switch activated:
 - "Exhaust1" opened
 - Elapsed time measured => volumetric flow obtained
 - Volumetric flow converted to mass (molar) flow using ambient temperature and pressure

Main components:


- Volumeter with a very light weight floating cylinder
- Custom made end switch

• 2 piece of 3-way solenoid valve

- Air temperature sensor (DS18B20)
- Air pressure sensor (Bosch BME280)
- Raspberry Pi Model 4

Pressure buildup correction

• Generally:

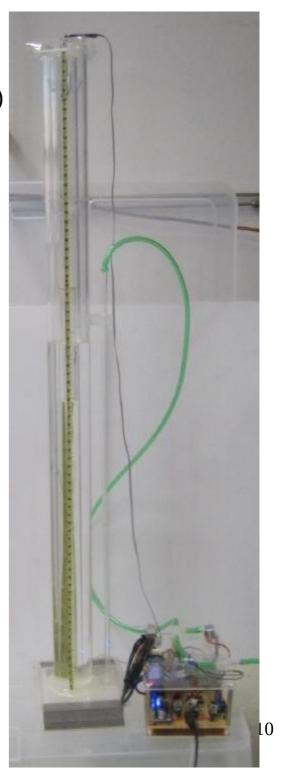
$$pV = nRT$$

At reset state:

$$p_{atm} V_0 = n_0 R T_{atm}$$

At end state:

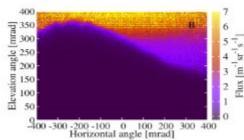
$$(p_{atm} + \Delta p)(V_0 + \Delta V) = (n_0 + \Delta n) R T_{atm}$$


• Therefore, molar increase of gas amount (measured in normalized volume):

$$\Delta V_{N} := \Delta n R T_{N} / p_{N} = T_{N} / T_{atm} (p_{atm} / p_{N} \Delta V + \Delta p / p_{N} \Delta V + \Delta p / p_{N} V_{0})$$

$$(p_{N} := 101325 Pa, T_{N} := 20 °C)$$

Characteristics:


- Repeatability error for 0.3-5.0 ln/h range : ~ 0.5% (upper bound)
- Systematic corrections taken into account:
 - buildup of oil pressure: ~ 1% correction
 - compression of gas in buffer volume: ~ 0.5% correction
- Final systematic uncertainties (global):
 - from uncertainty of oil pressure buildup: ~0.05%
 - from compression of gas in buffer volume: ~0.05%
 - volumeter dimensions uncertainty: ~1%
 - timing uncertainty: max ~0.1% due to sampling

Spinoff: gas supply for extreme low consumption systems

Sometimes gaseous detectors are used in field applications.

(E.g. Sakurajima Muography Observatory, Sci.Rept.8(2018)3207. Or in caves etc.)

- Only tracking and multiple scattering => no perfect gas needed => can work at low flows
- It is very advantageous if gas bottle exchange is only 1-2 x per year.
- Gas dosaging using solenoid valve:

Concluding remarks

- Encountered calibration issues with industrial mass flow meters at < 5 ln/h range.
- Decided to build a calibration device.
- Based on: volumeter with an end switch + solenoid valves, Rpi controller.
- Repeatability error: ~0.5%
- Systematic uncertainty (global normalization, correlated): ~1%
- Strength: very high relative accuracy at low (< 1 ln/h) flows.
- A small spinoff application: gas dosaging systems with solenoid valves, for extremely low consumption systems (field applications).

Backup