

#### Expected Performance of RPWELL-DHCAL Dan Shaked Renous RD51 Collaboration Meeting - 15.06.2021



# Future Lepton Collider Experiments Require E<sub>Jet</sub> Resolution of $\frac{\sigma}{E} \leq \frac{30\%}{\sqrt{E}}$

#### Jet energy resolution is limited by high dependence on the HCAL

• 70% of the jet energy is carried by hadrons

#### Intrinsic limitation of hadronic calorimeters (HCAL)

- Large fluctuations in the fraction of the EM and Hadronic component
  - Non-compensation: different response to EM and hadronic components
- Large jet-by-jet energy deposition fluctuations
- Large fluctuations in the fraction of the 'invisible energy' deposited energy not contributing to the measured signal

#### Two possible solutions:

- Build compensating calorimeters ⇒ Dual readout
- Reduce the dependency on the HCal  $\Rightarrow$  Particle flow calorimeters

#### Particle Flow Calorimetry

- Traditionally: Jet-energy is measured as a whole
  - Measured in ECAL/HCAL
  - ~70% of the energy is measured in HCAL with  $\frac{\sigma}{F} \approx -\frac{1}{\sqrt{2}}$

$$\approx \frac{60\%}{\sqrt{E[GeV]}}$$

- High granularity Particle Flow: Reconstruct individual particles
  - Charged particle momentum is measured precisely in tracking system
  - Neutral hadrons (10%) energy is measured in HCAL

Perfect PFA can yield ~ 
$$\frac{19\%}{\sqrt{E[GeV]}}$$
  
using HCAL with  $\frac{55\%}{\sqrt{E[GeV]}}$  energy resolution \*



Charged Hadrons Photons Neutral Hadrons



Marshall et. al. arXiv: 1308.4537

The Largest contributions to Jet Energy Resolution Neutral hadron energy resolution (HCAL)

Confusion term – deposited energy can be assigned to more than particle.





neutral hadrons



Marshall et. al. arXiv: 1308.4537

### (S)DHCAL: Requirements

- (Semi) Digital readout
- 1 cm<sup>2</sup> granularity
- 40-50 layers of sampling element with absorbers in between
- As thin as possible
  - minimizing cost of the magnet system
- High detection efficiency
- Low pad multiplicity one pad fire per track
- For SDHCAL: Proportional response



Repond, CHEF 2013

### The RPWELL

#### Advantages:

- Strong discharge energy quenching
  - A few nA compared to 50-500 nA in other WELL-like structures\*
- Environmental friendly gas mixture
- Charge evacuation through the bulk lowering the pad multiplicity

#### Disadvantage:

#### • Thickness

- 3.8 mm gas gap (drift+WELL) compared to 1.15 mm for the GRPC\*
- Uniformity limited by quality of raw material



- Silicate glass resistive plate (~10<sup>10</sup> Ωcm)
- Resistive plate coupled to anode through graphite-epoxy layer (~  $M\Omega)$

RPWELL - a Possible Technology for SDHCAL

- High granularity:
  - 1x1 cm<sup>2</sup> semi-digital readout pads
  - 1.4-cm-thick sampling elements
- Excellent response of single sampling element
  - ~98% efficiency
  - 1.3 average pad-multiplicity



### Work Flow



### Simulated 50-layers RPWELL Fe-DHCAL

- Pions beam energy values:
  2, 3, 4, 5, 6, 10, 15, 20, 25, 30, 32, and 36 GeV
- 50k events per energy value
- 98%, 95% and 90% <u>uniform</u> MIP detection efficiency
- 1.37 average pad multiplicity (TB Jul. '15)

### **Event Selection**

Suppress energy leakage:

- Select only showers that start in layers 1-10
  - Shower start definition following CALICE\*
  - Expected efficiency 64%
    - 10 layers  $\cong \lambda_{i,\pi}$
- The following results are for 6-36 GeV



### Energy Reconstruction and Resolution



### Calorimeter Response

- The response is describe by  $\langle N_{hits} \rangle = a \cdot E_{beam}^{b}$
- Less efficiency => Less hits a
  - The importance performance uniformity



#### **Reconstruction Bias**

- All the configurations yield less then 1% bias
- No significant effect for detection efficiency



### $\pi^{-}$ Energy Resolution

- No effect for MIP detection efficiency
  - Assuming uniformity
  - The effect might be in confusion term
- All results are less than  $\frac{52\%}{\sqrt{E[GeV]}}$ 
  - Reminder: a perfect PFA + HCAL with  $\frac{55\%}{\sqrt{E[GeV]}} \Rightarrow \frac{\sigma_{jet}}{\sqrt{E[GeV]}} = \frac{19\%}{\sqrt{E[GeV]}}^{*}$



### Effect of Pad-Multiplicity – part I

- Testing for 1.6 average pad-multiplicity
- Ratio of  $\langle N_{hits} \rangle$  = ratio of pad-multiplicity





RD51 Collaboration Meeting - 15.06.2021

### Effect of Pad-Multiplicity – part II

- Minor difference in energy resolution
- High pad-multiplicity is contributes to confusion.



Comparison to Other Technologies

- Comparable to GRPC-DHCAL\*
- Validated by Data
- Pad-multiplicity 1.6
- Software compensation



| Term                | RPWELL [1.37 PM] | GRPC [1.6 PM]   |
|---------------------|------------------|-----------------|
| Stochastic [% GeV ] | $51.8 \pm 0.1$   | $51.5 \pm 1.5$  |
| Constant [%]        | $8.9 \pm 0.02$   | $10.6 \pm 10.5$ |

### Conclusions & Outlook

RPWELL-based DHCAL was simulated

Provides insights on requirements of DHCAL Sampling Elements

- Stable and uniform operation is desired
- High MIP detection efficiency and low Pad-multiplicity
  - At the level of  $\pi$  energy resolution less crucial
  - Confusion term more essential (to be tested using PFA )

#### Next steps:

- Test effects of detection efficiency and pad-multiplicity as part of PFA
- Improve event selection to include results of low-energy pions



# Thank you!

Questions?

RD51 Collaboration Meeting - 15.06.2021

## Back up slides

### Experimental Setup



Source pion-beam (2-6 GeV/c) – CERN/PS/T10

Single DAQ system – based on MICROROC chip

#### 8 layers

- 2 cm Steel absorbers between layers
- $\lambda_{int}$  = 20 cm: 45% chance of shower inside our setup
- X<sub>0</sub> = 1.8 cm: 99.9% chance of EM shower inside our setup

#### Sampling elements:

- 2+1 16x16 cm<sup>2</sup> bulk + resistive bulk  $\mu$ M

- 3 48x48 cm<sup>2</sup> resistive bulk  $\mu$ M
- 2 48x48 cm<sup>2</sup> RPWELL

Simulation: GEANT4 Physics Lists 3 different physics lists: QGSP\_BERT, QGSP\_BERT\_EMZ, FTFP\_BERT\_EMZ

- QGSP Quark-Gluon String Pre-compound model
- BERT Bertini cascade model
- FTFP Fritiof Pre-compound model
- LEP Low Energy Parametrized model



### Simulation: Digitization

#### Assigning hits to corresponding 1×1 cm<sup>2</sup> readout pads

#### Apply detection efficiency:

- Each hit gets a number in [0,1] (uniform distribution)
- Keeping only those below the given detection efficiency input value.

#### Apply pad-multiplicity:

- Random sampling of pad-multiplicity distribution
- Adding randomly edge-sharing pads to the event

#### Digitize

• Count one hit per pad

### Error Estimation

- Entering standard erorr of  $\langle N_{hits} \rangle$  to the fit of the response
- Calculating the "up" nad "down" versions of the response fit
  - Over- and under-estimation
- Energy is reconstructed by nominal, "up" and "down" versions
- Errors are propagated along the calculation:  $\varepsilon_{res} = \frac{\varepsilon_{rec}}{\langle E_{rec} \rangle^2} \varepsilon_{\langle E_{rec} \rangle}$
- Differences between the versions and the nominal estimation are considered
- $\varepsilon_{v} = \frac{\sigma_{rec}}{\langle E_{rec} \rangle} \frac{\sigma_{rec,v}}{\langle E_{rec} \rangle_{v}}$ ;  $v \in \{up, down\}$
- $\varepsilon_{res}^{v} = \varepsilon_{v} \oplus \varepsilon_{res}$ ;  $v \in \{up, down\}$