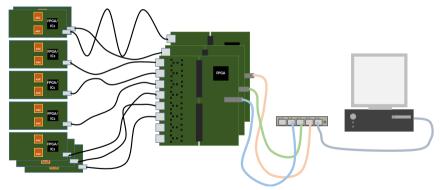
An automated VMM hybrid characterisation system

Finn Jaekel

Physikalisches Institut Universität Bonn

May 20, 2021

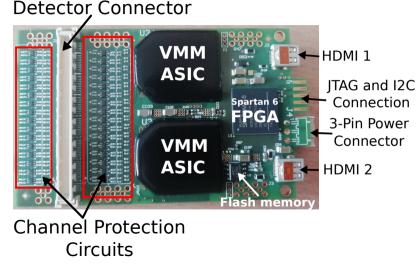
Contents



- 1 Context
- 2 The Test System
- 3 Yields
- 4 Possible Problems on VMM

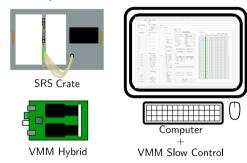
Scalable Readout System

- Detector readout system by the RD51 collaboration @ CERN
- Small and large detectors possible with same hardware

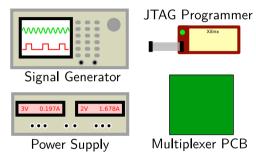

Hybrid \Leftrightarrow HDMI Cable \Leftrightarrow Adapter card+FEC \Leftrightarrow Ethernet \Leftrightarrow Switch \Leftrightarrow Ethernet \Leftrightarrow PC

[Implementation of the VMM ASIC in the Scalable Readout System,M.Lupberger]

SRS-VMM Project

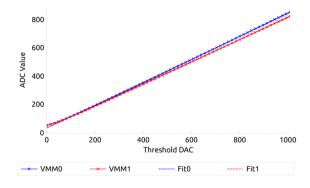

- VMM detector readout ASIC developed for ATLAS NSW Upgrade
- VMM hybrid implementation of VMM into SRS
- Project now in mass production phase
- Automated testing needed (better test quality, time saving)

Test System Overview

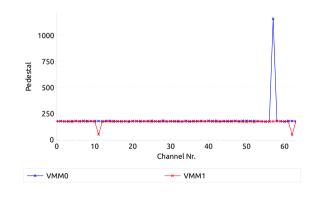


Minimal System

- Read VMM monitoring Output
- Read VMM data
- Many tests possible

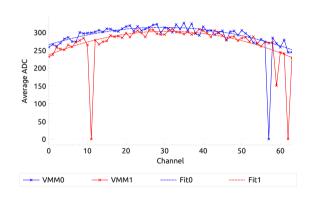

Optional extensions

- Load Firmware
- Measure power consumption of hybrid
- Test connection detector plug ↔ VMMs incl. protection circuit



■ Monitoring ADC Calibration

- Monitoring ADC Calibration
- Pedestal Tests



- Monitoring ADC Calibration
- Pedestal Tests
- Internal and External Test Pulses

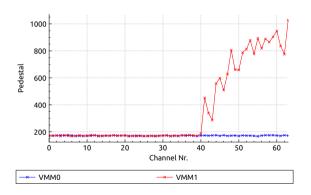
- Monitoring ADC Calibration
- Pedestal Tests
- Internal and External Test Pulses
- Test Pulse Average ADC Curve

VMM Classification

Class	Description
А	All channels working
В	One channel broken
С	2-3 channels broken
D	Many channels broken
Е	VMM broken (e.g. when Hybrid has a short,
	or MonitoringADC is broken)

Table: Single VMM-ASIC classification

Hybrid Classification



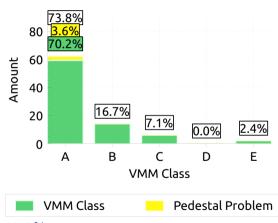
VMM class 1	VMM class 2	Hybrid class	Description
Α	А	а	Two good VMMs
Α	В	b	1-3 channels broken
Α	С	b	on hybrid
В	В	b	
В	С	b	\leq 3 broken channels total
В	С	С	> 3 broken channels total
A/B/C/D			One ok VMM
A/B/C/D			
Е	Е	d	Hybrid broken

Table: Hybrid classification

Pedestal Problem

- Problem occurs at high gains with fast pedestal measurements (Baseline jumps and has no time to settle)
- In operation could lead to problems with high charges
- Hybrids however usable
- "-" behind VMM class indicates this problem

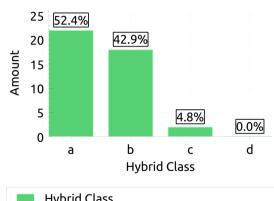
Tested Hybrids


- Batch Spring 2020
 - 10 Hybrids in Bonn
 - 6 Hybrids from Mainz
 - 26 from LSBB
- Batch Autumn 2020
 - 120 Hybrids in Bonn (Physikalisches Institut)
 - 14 Hybrids in Bonn (Helmholtz Institut für Strahlen- und Kernphysik)

VMM Yield - Batch Spring 2020

Class	Ν	N-
Α	59	3
В	14	0
С	6	0
D	0	0
Е	2	0
Total	81	3

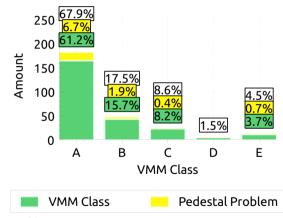
Table: VMM Yields Spring 2020


With Class A,B,C acceptable: Total VMM Yield 97.6%

Hybrid Yield - Batch Spring 2020

Class	Ν
а	22
b	18
С	2
d	0
u	_

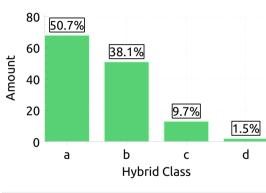
Table: Hybrid Yields Spring 2020


With Class a,b acceptable: Total Hybrid Yield 95.3 %

VMM Yield - Batch Autumn 2020

Class	Ν	N-			
Α	164	18			
В	42	5			
С	22	1			
D	4	0			
Е	10	2			
Total	242	26			

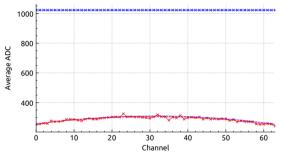
Table: VMM Yields Autumn 2020


With Class A,B,C acceptable: Total VMM Yield 94 %

Hybrid Yield - Batch Autumn 2020

Class	Ν
а	68
b	51
С	13
d	2
Total	134

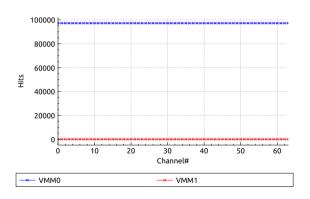
Table: Hybrid Yields Autumn 2020



Hybrid Class

With Class a,b acceptable: Total Hybrid Yield 88.8 %

Broken internal ADCs



→ VMM0		→ VMM1				Fit0			Fit1						
Hit: Hit: Hit: Hit: Hit:	6, 7, 8,	offset: offset: offset: offset: offset:	25, 26, 26,	vmmID: vmmID: vmmID:	3,	ch: ch: ch:	29, 0, 29,	bcid: bcid: bcid:	200, 200, 200,	tdc: tdc: tdc:	24, 52, 22,	adc: adc: adc:	1023, 367, 1023, 366, 1023,	over over	thr: thr: thr:

- All hits on all channels have ADC 1023
- Pulses visible on analog monitoring output, amplitude can be varied by changing test pulse height in slow control
- Internal channel ADCs seem to be broken

No Test pulses

- No pulses given out by the VMM
- Pulses visible on analog monitoring output
- Reason still unknown, maybe broken data line on HDMI

Side Note: VMM Tester Card (VTC)

- Tests HDMI pins and electronic connections
- Useful to test electronic functionality and find very bad hybrids in production
- VTC cannot find the problems with Channel ADCs
- VTC measures pedestal, but cannot find the problem as measurement is slower

[VTC User Guide, M. Hracek et al.]

Thank you for your Attention

Do you have questions?