DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

LM1 production report – RD51 Meeting – 06/21

M Vandenbroucke on behalf of F. Jeanneau for the Saclay team

STATUS OF LM1 PRODUCTION TODAY

- 1 mechanical module (2018)
- 32 standard production modules already at Cern
- First spare module shipped last week

Still to be produced:

- Second spare module (additional PCB needed to build Eta panel)
- 1 stereo doublet for aging studies.

- 177 panels built and measured
- → 108 drift panels (36 central, 72 external)
- → 144 mesh stretched and transferred
- → 69 RO panels (35 Stereo and 34 Eta)

STEPS FOR MODULE CONSTRUCTION AND VALIDATION

- Panel building and planarity measurements of panels
- Readout Panels Passivation
- Washing and Drying
- Drift Panels Preparation
- Module Assembly
- HV Tests
- Gas Tightness
- Alignment (Rasfork) Meas.
- Module Planarity
- Conditioning/Drying of Module
- Test in Cosmic rays

1 Module = 5 Pannels = 3 Drifts +2 Readout = 4 MM gaps

LM1 Modules Cross-Section

From: "The large inner Micromegas modules for the Atlas MuonSpectrometer Upgrade: construction, quality control andcharacterization" https://arxiv.org/pdf/2105.13709.pdf

PANEL PLANARITY

Pannel building is glueing PCB on honey comb + bars

Planarity of each panel is measured in 3 steps:

- Face A vacuum ON
- Face A on shimes
- Face B on shimes

PANEL PLANARITY: MEASUREMENT SET

RO PANEL PLANARITY

DRIFT PANEL PLANARITY

RO PANEL PREPARATION - PASSIVATION

- Panel finalization → FEB pin and alignement pin gluing
- Panel passivation: due to a lack of resistivity of resistive anodes and flaws in the layout of resitive strips, the edge of the panels, where resistance values are lower, must be passivated by applying a thin layer of glue.

Cumulative distribution of R, DB for all modules types

From JF Laporte

WASHING AND DRYING

All panels are washed (sometimes several times) and dried

DRIFT PANEL PREPARATION

- Mesh tension is checked and must stay between 7 and 10 N.m
- Kapton tape is applied on the mesh to match the glue passivation on the corresponding RO panel.
- Electrical insulation between mesh and drift electrode is checked.

MODULE ASSEMBLY

- Modules are assembled by stacking 5 panels (2 RO and 3 drift) onto the assembly station.
- In our case the alignment is done by construction, using the mechanical inserts precisely glued during the panel construction on the marble table.
- Each panel is carefully checked and cleaned: vacuum-cleaned, antistatic roller and a lot of isopropanol (especially for the RO panels)

HV TESTS

- Each module is assembled gap by gap
- Each gap is validated if it sustains 850V in air with low dark current (<50nA)

- If too much current → new dry cleaning
- If short → kapton method (use of large kapton foils to neutralize sector and localize the weak area by dichotomy)

Page 1

STEPS FOR MODULE CONSTRUCTION AND VALIDATION

- Panel building and planarity measurements of panels
- Readout Panels Passivation
- Washing and Drying
- Drift Panels Preparation
- Module Assembly
- HV Tests
- Gas Tightness
- Alignment Rasfork Measurements
- Module Planarity
- Conditioning/Drying of Module
- Test in Cosmic rays

1 Module = 5 Pannels

= 3 Drifts +2 Readout

= 4 MM gaps

LM1 Modules Cross-Section

From: "The large inner Micromegas modules for the Atlas MuonSpectrometer Upgrade: construction, quality control andcharacterization"

https://arxiv.org/pdf/2105.13709.pdf

GAS TIGHTNESS

ALIGNEMENT (RASFORK) MEASUREMENTS

- Rasfork has been developed at Saclay for doublet and quadruplet alignment checks.

Figure 23: A Rasnik mask etched on PCB.

From PF Giraud

MODULE PLANARITY

Edge: from 78.173 - 0.333 Core: from 78.318 - 0.373

78.173 + 0.649 78.318 + 0.899

Edge: ≤ 0.290 Core: ≤ 0.247

CONDITIONING

- After module closure, conditioning is needed before applying HV in Ar CO2 mixture.
- Few days at 45°C under gas flow to remove humidity trapped in the material (essentially FR4 and kapton)
- Transfer on the cosmic bench then HV ramping-up for one day (controlled by software)

TESTS IN COSMICS

Plofu

M34:

- Trip of L1R5 and L2R5 during test
- All sectors good at BB5

Fraction of good sectors - R Probe - Both Sides

MODULE EFFICIENCIES

Efficiency: Layer 1

Efficiency: Layer 3

Efficiency: Layer 4

IMPORTANT DECONDITIONING WITH TIME

Proportion of good sections (HV > 550 V)

Average HV Efficiency LM1

- Main difference between Saclay and Cern is the time used for conditioning (drying and HV ramp-up)
- Gas flow without heating is not enough to remove humidity
- No storage under gas flow at Cern (humidity!)
- Continuous gas flow on the wheel → margin for improvement

CONCLUSION

- 32 LM1 modules + 1 spare have been produced and delivered at Cern
- Still one spare to produce and one Stereo doublet for studies
- This is (almost) the end of a very complicated production
- Despite the technical problems (mainly due to low resistivity) this technology is well adapted for large area. For future, a stronger prototype policy should be considered and avoid success-oriented planning.
- The work of the Isobutane group carries a large hope to operate these detectors in a more secure mode
- Special thanks to our Frascati colleagues who came several times at Saclay to help us during production

Thank you!