VMM3a/SRS-based DAQ for the new RD51 tracker

Lucian Scharenberg

CERN GDD Team, University of Bonn

RD51 Collaboration Meeting, CERN 18 June 2021

SPONSORED BY THE

Outline

- Introduction to VMM3a and SRS
- Contributions from the community to the activity
- Tracker components
 - Hardware
 - Firmware
 - Software
- Plans for the forthcoming beam periods

Introduction to VMM3a and SRS

- VMM3a has been integrated into the SRS (many presentations in recent year during RD51 meetings, also this week)
- Principle scheme

Introduction to VMM3a and SRS

- VMM3a is a multi-channel analogue+digital ASIC → digital data stream
- Provides the following information
 - Peak amplitude → 10-bit ADC
 - Peak time → 1 ns resolution

No access to the waveform of the signal

- Access to charge information → position reconstruction algorithms
- Access to peak time information with this resolution → study intrinsic detector resolution
- Adjustable electronics gain → small MIP signals, compensate for detector effects (e.g. 60/40% charge sharing ratio)
- Flexible with detector capacitances (>~300 pF) → large detectors
- High-rate capability
 - Plus side: more statistics and more possible settings for detector characterisation (less data taking time required for one setting)
 - Downside: data storage

Contributions from the RD51 community to this specific activity

- Lucian Scharenberg (CERN GDD, University of Bonn)
- Hans Muller (CERN GDD, RD51)
- Dorothea Pfeiffer (ESS)
- Karl Flöthner (CERN GDD, University of Bonn)
- Daniel Sorvisto (Helsinki Institute of Physics, CERN GDD)
- Jona Bortfeldt (Ludwig Maximilian University of Munich)
- Miranda van Stenis (CERN GDD)
- In case you are interested and want to contribute
 - → contact me: lucian.scharenberg@cern.ch
- → join the WG5.1: https://e-groups.cern.ch/e-groups/Egroup.do?egroupName=rd51-wg51

Tracker components: hardware

Electronics

- 16 RD51 VMM hybrids V5
 - 2048 readout channels
- 2 FECs
- 2 DVMMs
- 1 CTF
- 1 Powercrate 2k
- 2 PMXs (on-detector powerbox)
- 1 DAQ computer
- 1 network switch (10 Gbps)
- Cables (HDMI, power, ground, Ethernet)

Detectors

- 4 COMPASS-like triple-GEM detectors
- 10 x 10 cm² active area
- 256 + 256 strips

Tracker components: firmware

https://gitlab.cern.ch/rd51-slow-control/vmmsc/-/tree/ESS

'Default' firmware

- → shipped on the currently available hybrids
- → joint development effort within RD51, especially Bonn, ESS and GDD

FEC:

fecv6_vmm3_top_21031200.bit

Hybrid:

vmm3h_1_020920_20201118.bit

Tracker components: software Online monitoring Control software Data stream DAO PC Data stream 10 Gbps Data network card stream Online reco Aggregator Quick-monitor the content of the **UDP** packages Write UDP packages Offline analysis directly to disk

Tracker components: software (ACQ)

- RD51 VMM slow control software (open source)
 - https://gitlab.cern.ch/rd51-slow-control/vmmsc
- Data acquisition by writing network packages directly to disk (open source)

https://github.com/the-tc pdump-group/tcpdump

Tracker components: software (monitoring)

- Wireshark with Lua-plugin (open source)
 - https://gitlab.com/wireshark/ wireshark
 - https://gitlab.cern.ch/rd51-slo w-control/vmmsc/-/blob/ESS /vmm3a_plugin.lua
- DAQ and online monitoring software developed by ESS (open source)
 - https://github.com/ess-dmsc /essdag
- Main tools: Event Formation Unit (EFU) and Daquiri (open source)
 - https://github.com/ess-dmsc /event-formation-unit
 - https://github.com/ess-dmsc /daquiri

Tracker components: software (analysis)

- Cluster reconstruction: vmm-sdat from Dorothea Pfeiffer (open source)
 - → https://github.com/ess-dmsc/vmm-sdat
- Track reconstruction: modified APV25/SRS tracking software from *Jona Bortfeldt*

Plans for the forthcoming beam periods

- July 2021: Development and commissioning of a tracking system read out with the new VMM3a/SRS DAQ
 - Operate RD51 GEM telescope with VMM3a/SRS
 - Reconstruction and tracking software for VMM3a/SRS
 - Understanding electronics features on spatial resolution (effect of the NL) and time resolution
- October 2021: Detector performance studies, using the previously commissioned DAQ system
 - μRWELL (prototype for the 2022 RD51 tracker)
 - GEM detectors for COMPASS++/AMBER → Bonn University/GDD

for your Attention

