

Skyrmions in the Little Higgs Models: a new type of Dark Matter?

Marc Gillioz

Institute for Theoretical Physics, University of Zurich

(MG, A. von Manteuffel, P. Schwaller, D. Wyler, arXiv:1012.5288)

Outline

- What are Skyrmions?
- The Littlest Higgs Model
- Properties of the "Little Skyrmion"
- Can it account for the observed dark matter?
- Conclusions

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

Skyrmions are topological solitons

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

Skyrmions are topological solitons

- classical static solution of the field equations
- finite size
- finite energy
- ⇒ they look exactly like particles

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

Skyrmions are topological solitons

- classical static solution of the field equations
- finite size
- finite energy
- ⇒ they look exactly like particles

- cannot be deformed into the vacuum by infinitesimal transformations
- ⇒ they are associated with a conserved topological quantity (winding number)

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

Originally, they appear in the Skyrme model

(T.H.R. Skyrme, 1961)

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \partial_{\mu} \Phi \partial^{\mu} \Phi^{\dagger} + \frac{1}{32e^{2}} \operatorname{Tr} \left| \left[\Phi^{\dagger} \partial_{\mu} \Phi, \Phi^{\dagger} \partial_{\nu} \Phi \right] \right|^{2}$$

where they describe baryons as bound states of Mesons (G.S. Adkins, C.R. Nappi, E. Witten, 1983)

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

In this case the topologically conserved quantity is the baryon number

$$-\frac{1}{24\pi^2}\epsilon_{ijk}\int d^3x \operatorname{Tr}(\Phi^{\dagger}\partial_i\Phi)(\Phi^{\dagger}\partial_j\Phi)(\Phi^{\dagger}\partial_k\Phi) \in \mathbb{Z}$$

Little Higgs models:

(N. Arkani-Hamed, A.G. Cohen, H. Georgi, 2001)

- Higgs as a Goldstone boson
 of a spontaneously broken symmetry
 - ⇒ naturally lighter than the breaking scale
- Explicit collective symmetry breaking: at least 2 copies of the electroweak gauge group, breaking down to the diagonal subgroup

$$[SU(2) \times U(1)]^2 \to SU(2) \times U(1)$$

If any of the 2 gauge couplings is set to zero, there is no EW symmetry breaking

$$g = \frac{g_1 g_2}{\sqrt{g_1^2 + g_2^2}}$$

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

The **Littlest** Higgs

(N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, 2002)

Symmetry breaking pattern $SU(5) \rightarrow SO(5)$

⇒ 14 Goldstone bosons: a scalar (the little Higgs), a complex triplet, the other 7 are eaten by the gauge bosons

The low-energy theory is described by a **sigma-model** in terms of a SU(5) symmetric matrix Σ

$$\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger}$$

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

The **Littlest** Higgs

(N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, 2002)

Symmetry breaking pattern $SU(5) \rightarrow SO(5)$

⇒ 14 Goldstone bosons: a scalar (the little Higgs), a complex triplet, the other 7 are eaten by the gauge bosons

The low-energy theory is described by a **sigma-model** in terms of a SU(5) symmetric matrix Σ

$$\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} + \frac{1}{32e^2} \operatorname{Tr} \left| \left[\Sigma^{\dagger} D_{\mu} \Sigma, \Sigma^{\dagger} D_{\nu} \Sigma \right] \right|^2$$

Higher derivative operators are naturally present, among them the Skyrme term

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

The **Littlest** Higgs

(N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, 2002)

Symmetry breaking pattern $SU(5) \rightarrow SO(5)$

⇒ 14 Goldstone bosons: a scalar (the little Higgs), a complex triplet, the other 7 are eaten by the gauge bosons

The low-energy theory is described by a **sigma-model** in terms of a SU(5) symmetric matrix Σ

$$\mathcal{L} = \underbrace{\frac{f^2}{4}} \operatorname{Tr} D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} + \frac{1}{32e^2} \operatorname{Tr} \left| \left[\Sigma^{\dagger} D_{\mu} \Sigma, \Sigma^{\dagger} D_{\nu} \Sigma \right] \right|^2$$

Higher derivative operators are naturally present, among them the Skyrme term

sym. breaking scale Skyrme coupling

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

Mass:

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

$$\langle r^2 \rangle = \left(1.058 \frac{1}{fe} \right)$$

The little Skyrmion is:

- heavy
- stable (at least on cosmological timescales)

Can the dark matter be made of skyrmions?

Only if the skyrmion is

- interacting very weakly
- largely produced in the early universe

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

Problem: skyrmion production and annihilation are non-perturbative processes!

Naive cross-section estimate: $\sigma \sim \pi \langle r^2 \rangle$

Computation of the relic density using microMEGAs

(Belanger, Boudjema, Brun, Pukhov, Rosier-Lees, Salati, Semenov, 2010)

(A. Belyaev, C.R. Chen, K. Tobe, C.P. Yuan, 2006)

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

Conclusions

- Skyrmions are present in little Higgs models
- They are heavy, but might interact only very little, hence are a viable dark matter candidates
- Still, computing the coupling of skyrmions to ordinary matter requires quantisation of the model (not an easy task)

- Skyrmions
- The littlest Higgs
- Properties
- Dark matter

 In general, topological objects appear in many other models, and their phenomenology should be studied