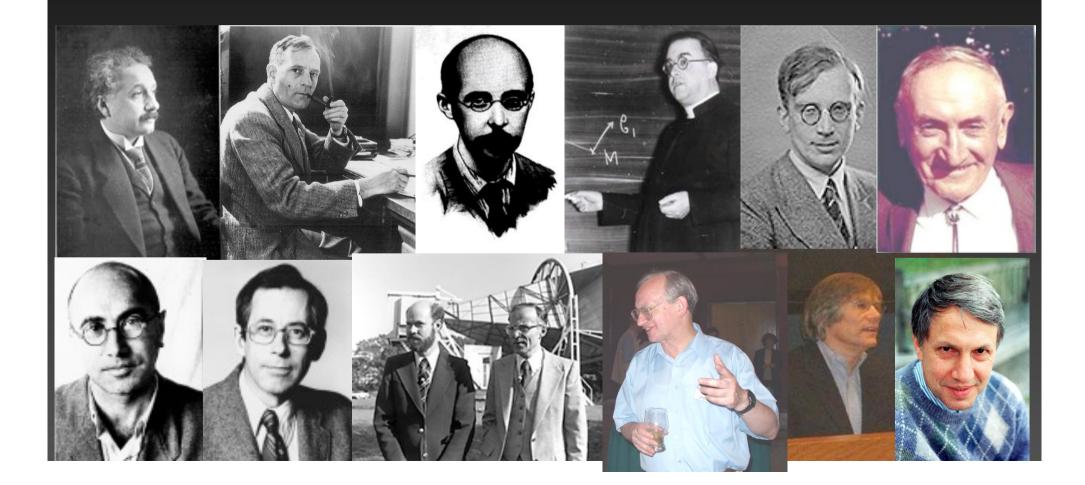
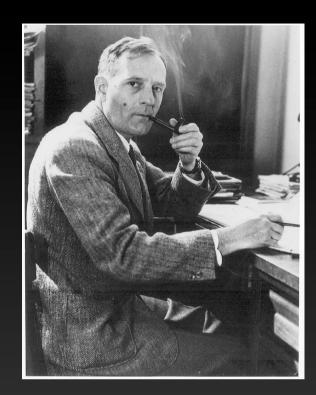
Part I: Homogeneous cosmology

CHIPP PhD Winter School 2011, Leukerbad Julien Lesgourgues (CERN & EPFL)



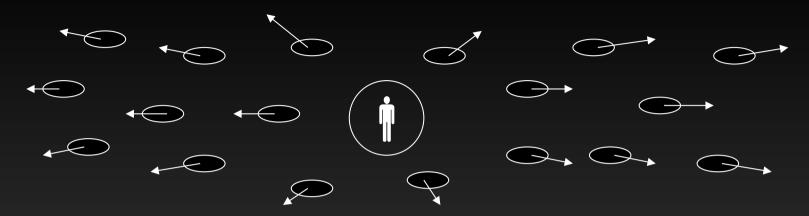
Universe Expansion Friedmann Law Hot Big Bang scenario



- 1923 : Edwin Hubble :
 - 2,50 m telescope at Mount Wilson (CA)
 - cepheids in other galaxies
 - first probe of galactic structure !!!
 - correlation between redshift and distance

Universe expansion ???

• IN GENERAL: expansion ⇒ center



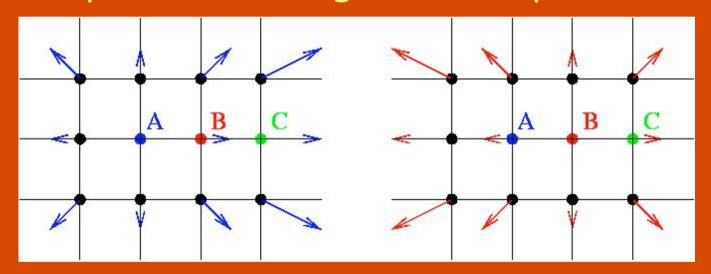
- Against « cosmological principle » (Milne):
 - Universe homogeneous ...
 - no privileged point!

QUESTION: is any expansion a proof against homogeneity?

ANSWER: not if v = Hr \Leftrightarrow linear expansion

... like infinite rubber grid stretched in all directions ...

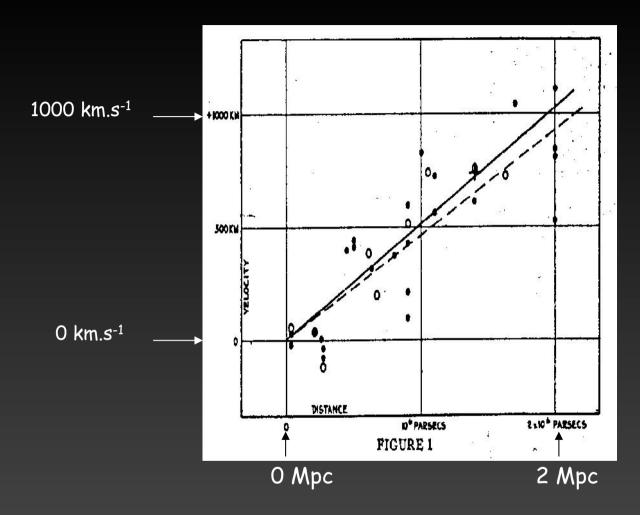
Proof that *linear expansion* is the only possible homogeneous expansion:



- $\mathbf{v}_{B/A} = \mathbf{v}_{C/B}$

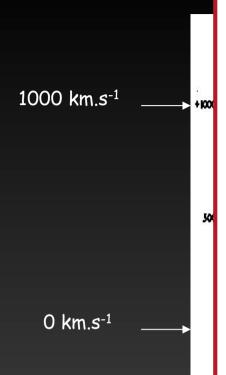
- homogeneity
- $v_{C/A} = v_{C/B} + v_{B/A} = 2 v_{B/A} \Rightarrow linearity$

• 1929: Hubble gives the first velocity / distance diagram:



 $H = v / r = 500 \text{ km.s}^{-1}.\text{Mpc}^{-1}$ for Hubble ($\approx 70 \text{ km.s}^{-1}.\text{Mpc}^{-1}$ for us) 1 Mpc = 3.10^6 lyr = 3.10^{22} m

1929: Hubble gives the first velocity / distance diagram:



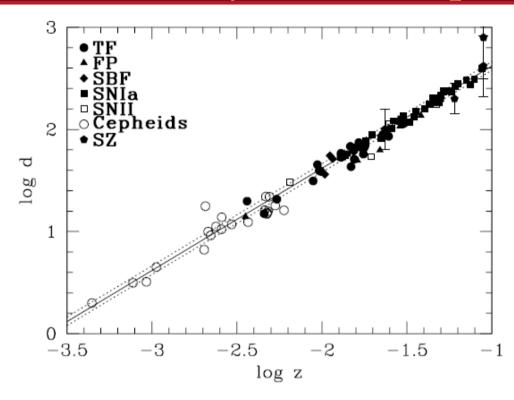


Figure 1.4: A recent Hubble diagram published by the Hubble Space Telescope Key Project in 2000 (Astrophys. J. 553 (2001) 47-72), based on cepheids, supernovae and other standard candles till a distance of 400 Mpc. The horizontal axis gives the radial velocity, expressed as $\log_{10}[v/c] = \log_{10} z$ where z is redshift; the vertical axis shows the distance $\log_{10}[d/(1 \text{Mpc})]$.

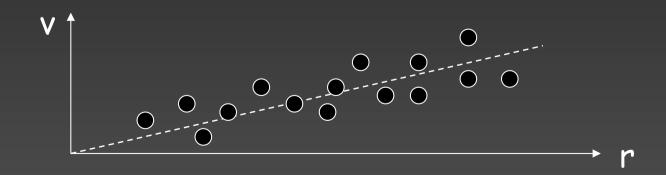
H = v / r = 500 km.s $log_{10}[d]$ 1 Mpc = 3.10⁶ lyr = 3.10²² m

THE UNIVERSE IS IN HOMOGENEOUS EXPANSION

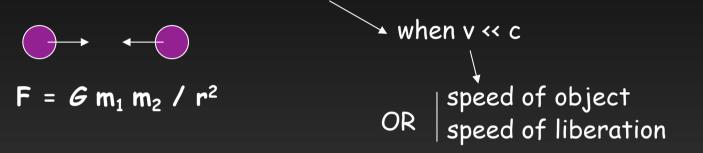
- 1929: starting of modern cosmology ...

Remark: what do we mean by « the Universe is homogeneous »?

- today: data on very large scales ⇒ confirmation of homogeneity beyond ~ 30 - 40 Mpc
- local inhomogeneities ⇒ scattering

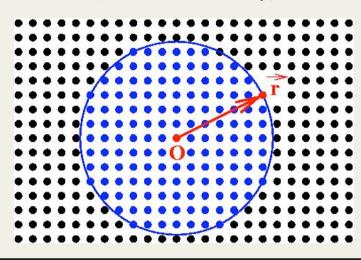


- on cosmic scales, only gravitation
- Newton's law = limit of General Relativity (GR)



- Newton's law should describe expansion at small distances with v = H r « c ...
- but historically, GR proposed the first predictions / explanations !!!

· Gauss theorem:



$$\ddot{r} = -G M_r / r^2$$

$$M_r = constant = (4/3) \pi r^3 \rho_{mass}$$

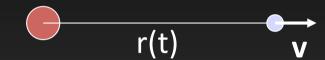
$$\Rightarrow \dot{r}^2 = 2 G M_r / r - k$$

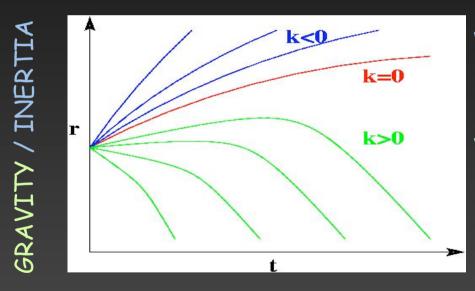
$$= (8/3) p G \rho_{mass} r^2 - k$$

Newtonian expansion law: $(r/r)^2 = (8\pi G/3) \rho_{mass} - k/r^2$

Newtonian expansion law: $(r/r)^2 = (8\pi G/3) \rho_{mass} - k/r^2$

- $-\rho_{\text{mass}}(t) \propto r(t)^{-3}$
- same motion as a two-body problem:





$$\begin{array}{c}
\rho_{\text{mass}} < \\
\rho_{\text{mass}} = \\
\rho_{\text{mass}} >
\end{array}$$

$$3 (\dot{r} / r)^{2} \\
8 \pi G$$

- $k \neq 0$ \Rightarrow non-homogeneous expansion??? v = H r and $v \ll c$ \Rightarrow $r < R_H = c / H$

- applying G.R. to the Universe: some history
 - 1916: Einstein has formulated G.R.
 - 1917: Einstein, De Sitter try to build the first cosmological models (PREJUDICE: STATIC / STATIONNARY UNIVERSE)

```
    1922: A. Friedmann (Ru)
    1927: G. Lemaître (B)
    1933: Samuel Robertson,
    Walker (USA)
    investigate most general
    HOMOGENEOUS, ISOTROPIC,
    NON-STATIONNARY
    solutions of G.R. equations
```

- 1929: Hubble's law (first confirmation)
- 1930-65 : accumulation of proofs in favour of FLRW
- 1965 : CMB discovery : full confirmation

basic principles of G.R.	FLRW solution
space-time is curved	2 types of curvatures : {a(t), k}
free-falling objects follow <i>geodesics</i>	ultra-relativistic matter : \$\times\$ BENDING OF LIGHT EQUATION
curvature caused by / related to matter	FRIEDMANN LAW

1) the curvature of the FLRW Universe:

$$ds^{2} = c^{2}dt^{2} - a(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta \ d\phi^{2}) \right]$$

- Comoving coordinates, proper time
- 2 types of curvature, R_c, R_H

$$R_{c}(t) = \frac{a(t)}{\sqrt{|k|}}$$

$$R_H(t) = ca(t)/\dot{a}(t)$$

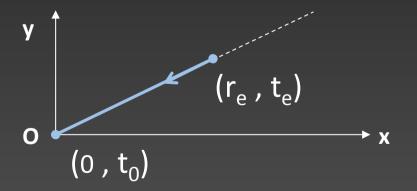
- Terminology: flat, closed, open
- All compatible with homogeneity
- with H=a/a, one recovers z=Hr/c

2) the geodesics in the FLRW Universe

a) non-relativistic limit (zero velocity):

$$(r, \theta, \phi) = constant$$

- galaxies are still in coordinate space ...
- ... but all distances are proportional to a(t)
- b) ultra-relativistic limit (upcoming photons): straight line in 3-D space,



$$\int_{r_e}^{0} -\frac{dr}{\sqrt{1-kr^2}} = \int_{t_e}^{t_0} \frac{c \, dt}{a(t)}$$

3) relation between matter and curvature in FLRW

EINSTEIN

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

With FLRW metric, $G_{\mu\nu}$ diagonal with $G_{11}=G_{22}=G_{33}$

Same for $T_{\mu\nu}$ (of background cosmological fluid)

$$T^{\mu}_{\nu} = \left(\begin{array}{cccc} \rho & 0 & 0 & 0 \\ 0 & -p & 0 & 0 \\ 0 & 0 & -p & 0 \\ 0 & 0 & 0 & -p \end{array}\right)$$

relation between matter and curvature in FLRW 3)

FRIEDMANN LAW:

$$G_{00}=8\pi G~T_{00}$$
 gives

$$rac{3}{R_H^2}\pmrac{3}{R_k^2}=8\pi\mathcal{G}
ho$$
 i.e. $\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi\mathcal{G}}{3}rac{
ho}{c^2}-rac{kc^2}{a^2}$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi\mathcal{G}}{3}\frac{\rho}{c^2} - \frac{kc^2}{a^2}$$

Remark: for non-relativistic matter, E = m $c^2 \Rightarrow \rho = \rho_{mass} c^2$ > then Friedmann law looks similar to Newtonian expansion law $(\dot{r}/r)^2 = (8\pi G/3) \rho_{mass} - k/r^2$, but CRUCIAL DIFFERENCES:

- 1) $a(t) \neq r(t)$: very different interpretation
- 2) $k \neq 0$ not in contradiction with homogeneity
- 3) accounts for non-relativistic and relativistic matter

Bianchi: conservation of energy $\dot{\rho} = -3\frac{\dot{a}}{c}(\rho + p)$

$$\dot{\rho} = -3\frac{\dot{a}}{a}(\rho + p)$$

Friedmann law:

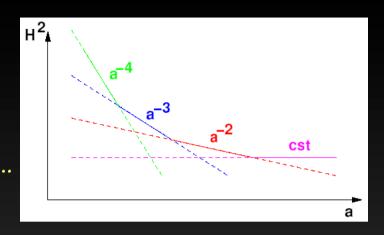
$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi\mathcal{G}}{3c^2}\rho_{\rm R} + \frac{8\pi\mathcal{G}}{3c^2}\rho_{\rm M} - \frac{kc^2}{a^2} + \frac{\Lambda}{3}$$

- most « complete » scenario :
- phases can be skipped,
 but order cannot change

- RADIATION DOMINATION : $a \propto t^{1/2}$ H = 1 / (2 t)
- MATTER DOMINATION : $a \propto t^{2/3}$ H = 2 / (3 t)
- CURVATURE DOMINATION:
- k < 0 (open) : $a \propto t$ H = 1/t
- k > 0 (closed): $a \rightarrow 0$, then a < 0 or \Rightarrow
- VACUUM DOMINATION : $a \propto \exp(\Lambda t/3)^{1/2}$ H \rightarrow constant

the matter budget :

— if we can measure $\{\rho_R, \rho_M, k, \Lambda\}$ today, we can extrapolate back ...



- today:

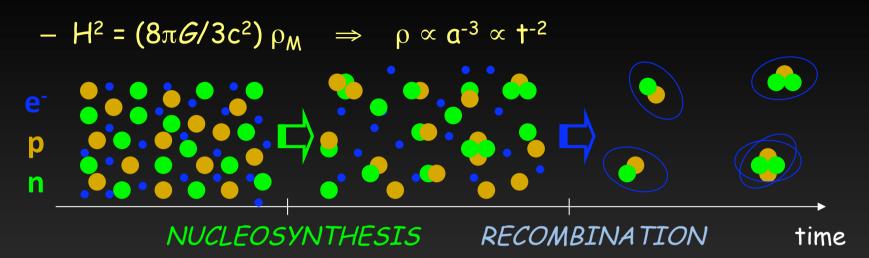
$$1 = \frac{8\pi \mathcal{G}}{3H_0^2 c^2} \left(\rho_{R0} + \rho_{M0}\right) - \frac{kc^2}{a_0^2 H_0^2} + \frac{\Lambda}{3H_0^2} = \Omega_R + \Omega_M - \Omega_k + \Omega_\Lambda$$

- flatness condition : $\Omega_0 \equiv \Omega_R + \Omega_M + \Omega_\Lambda = 1$
- $-\Omega_{\rm X} = \rho_{\rm X} / \rho_{\rm c}^{0}$ with $\rho_{\rm c}^{0} = 3 H_{0}^{2} c^{2} / 8\pi G$
- $-\omega_X = \Omega_x h^2$ is just ρ_x in some units (h=H₀/100 km s⁻¹Mpc⁻¹)

- COLD or HOT BIG BANG???
 - studies based on the most simple possible scenario:
 - Universe contains only non-relativistic matter
 - evolution under the laws of nuclear physics between Big Bang and today

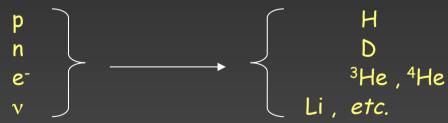
S COLD BIG BANG SCENARIO

· COLD BIG BANG :



- NUCLEOSYNTHESIS:

• ensemble of nuclear reactions



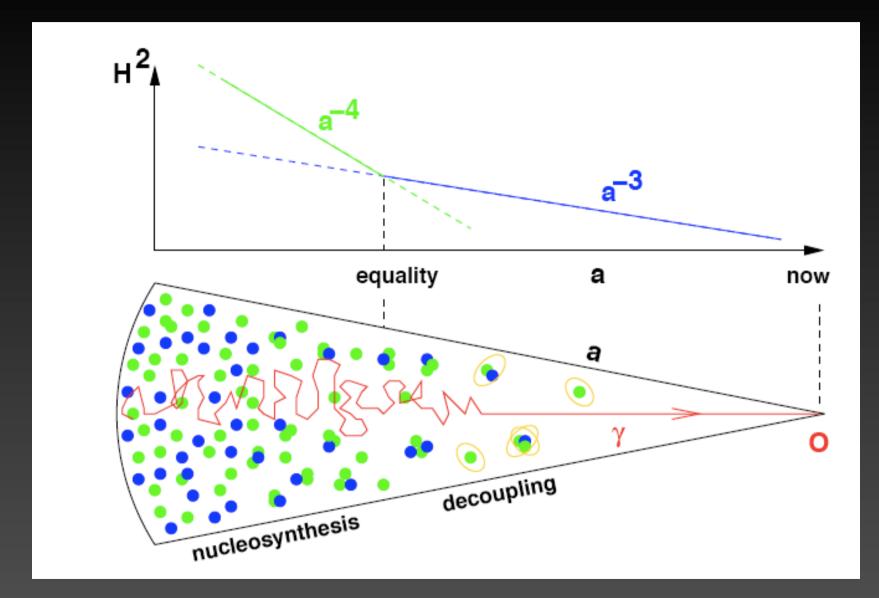
freeze-out due to expansion

pioneering works on nucleosynthesis:

```
1940 : Gamow et al. (USSR → USA)
1964 : Zel'dovitch et al. (USSR)
1965 : Hoyle & Taylor (UK)
1965 : Peebles et al. (USA)
```

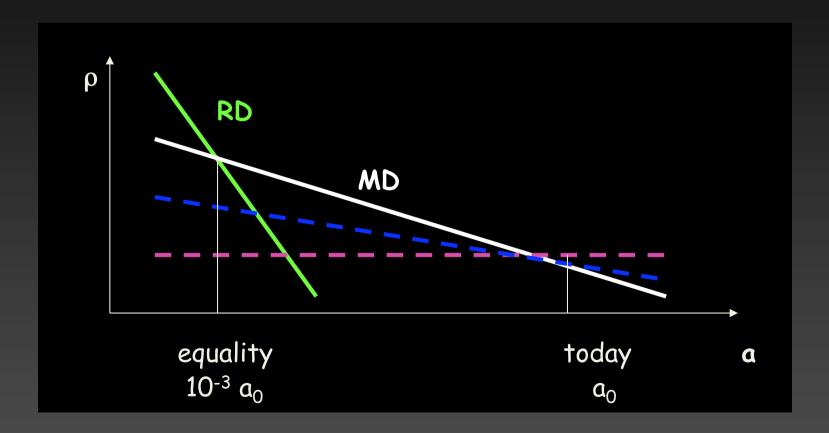
– COLD BIG BANG

· HOT BIG BANG:



• is there curvature / Λ domination today?

- structure formation \Rightarrow long-enough M.D. $\Rightarrow \Omega_{\rm m} \ge 0.2$
- if $\Omega_{\rm k}\!\sim\!1$ or $\Omega_{\Lambda}\!\sim\!1$, curvature / Λ domination started recently :

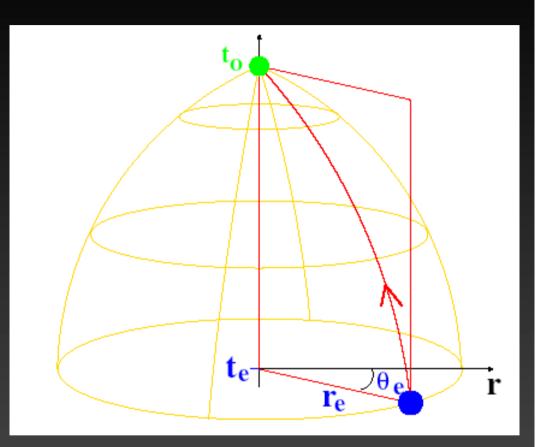


Distances Horizons Need for inflation

• past light-cone:

- in Euclidian space:

•
$$r_e = c (t_0 - t_e)$$



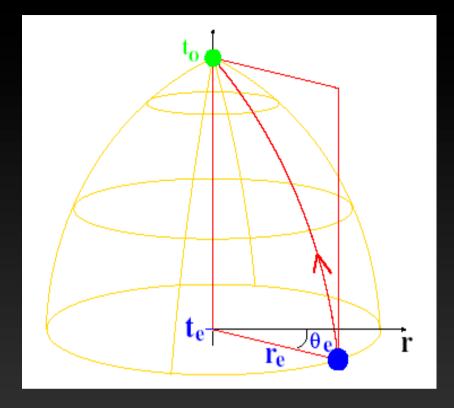
- in Friedmann:

$$\int_{r_e}^{0} \frac{dr}{\sqrt{1 - kr^2}} = \int_{t_e}^{t_0} \frac{c}{a(t)} dt$$

• the redshift:

$$z = \Delta \lambda / \lambda = \lambda_0 / \lambda_e - 1$$

$$z = a(t_0) / a(t_e) - 1$$



- Newtonian: $z = v / c \le 1$; G.R.: no limit, as observed ...
- at short distance, we can recover Hubble law (z = v / c = H r / c)

$$z = \frac{a(t_0)}{a(t_0 - dt)} - 1 = \frac{1}{1 - \frac{\dot{a}(t_0)}{a(t_0)}dt} - 1 = \frac{\dot{a}(t_0)}{a(t_0)}dt = \frac{\dot{a}(t_0)}{a(t_0)}\frac{dl}{c}$$

in reality, we observe sum of gravitational + Doppler redshifts

distances:

- distance in coordinate space χ (comoving distance)

$$\chi$$
 = r in flat space, $\int_0^{r_e} \frac{dr}{\sqrt{1-kr^2}}$ otherwise

- same expressed in physical units of today [a(t_0) χ]
- angular distance (for standard rulers)

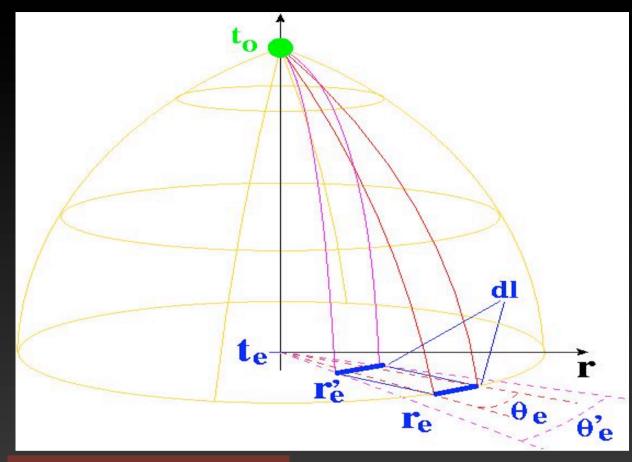
$$d_A \equiv \frac{dl}{d\theta} = a(t_e) \ r_e = a(t_0) \frac{r_e}{1 + z_e}$$

 $r_e(z_e)$ and $d_A(z_e)$ non-linear!

luminosity distance (for standard candles)

$$d_L \equiv \sqrt{\frac{L}{4\pi l}} = a(t_0) r_e (1 + z_e)$$

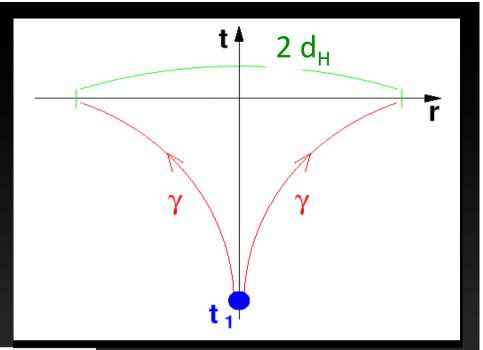
 $r_e(z_e)$ and $d_L(z_e)$ non-linear!



$$\frac{dt}{dr} = \frac{a(t)}{c (1-kr)^{1/2}}$$

- CLOSED UNIVERSE: objects seen under larger angle
- OPEN UNIVERSE: objects seen under smaller angle

causal horizon:



$$d_H = a(t) \int_0^r \frac{dr}{\sqrt{1 - kr^2}} = a(t) \int_{t_1}^t \frac{dt'}{a(t')}$$

- if a \sim tⁿ (n=1/2 for radiation, 2/3 for matter) and t >> t₁:

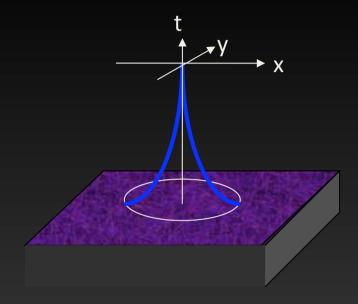
$$d_H(t) = \frac{t}{1-n} = \frac{n}{1-n} R_H(t)$$

size of observable universe :

- Nearly equal to :

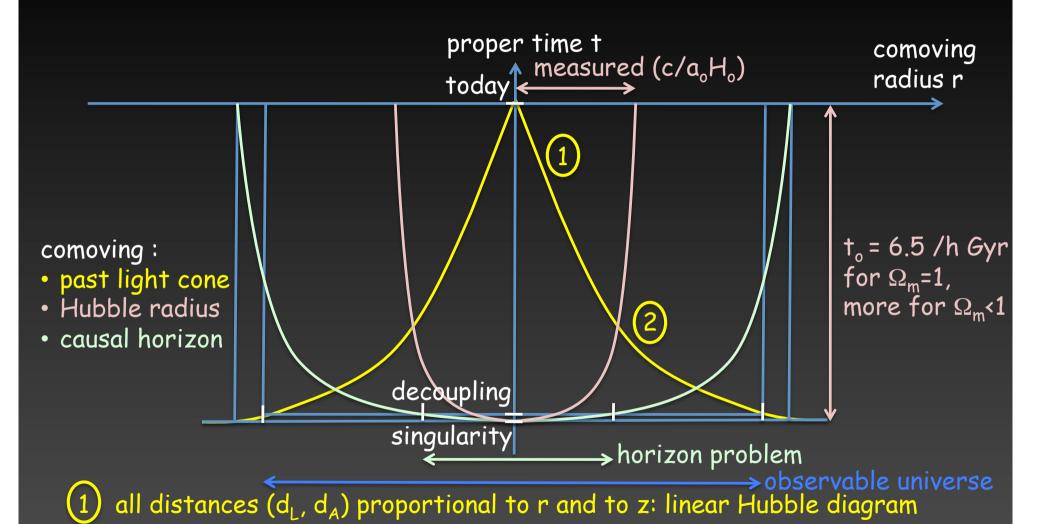
$$d_H = a(t) \int_0^r \frac{dr}{\sqrt{1 - kr^2}} = a(t) \int_0^t \frac{dt'}{a(t')}$$

$$\mathbf{t}_{\text{dec}}$$



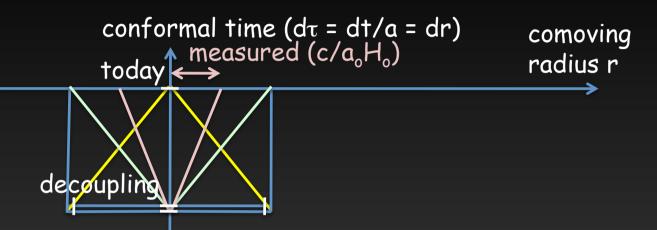
 $-R_H(t_0)$ =3000/h Mpc, so radius of observable universe close to 6000/h Mpc

Horizon issues



(2) non-trivial corrections induced by spacetime curvature: R_c , a(t)

Horizon issues



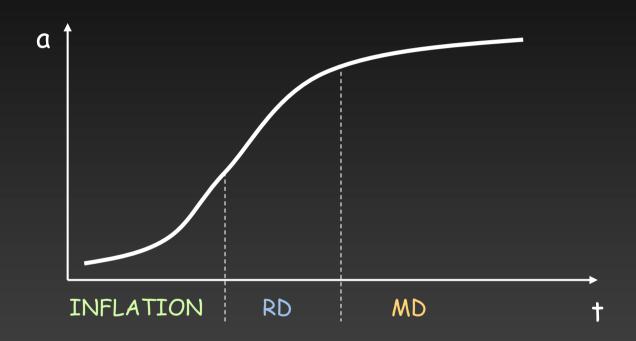
comoving:

- past light cone
- Hubble radius
- causal horizon

• inflation:

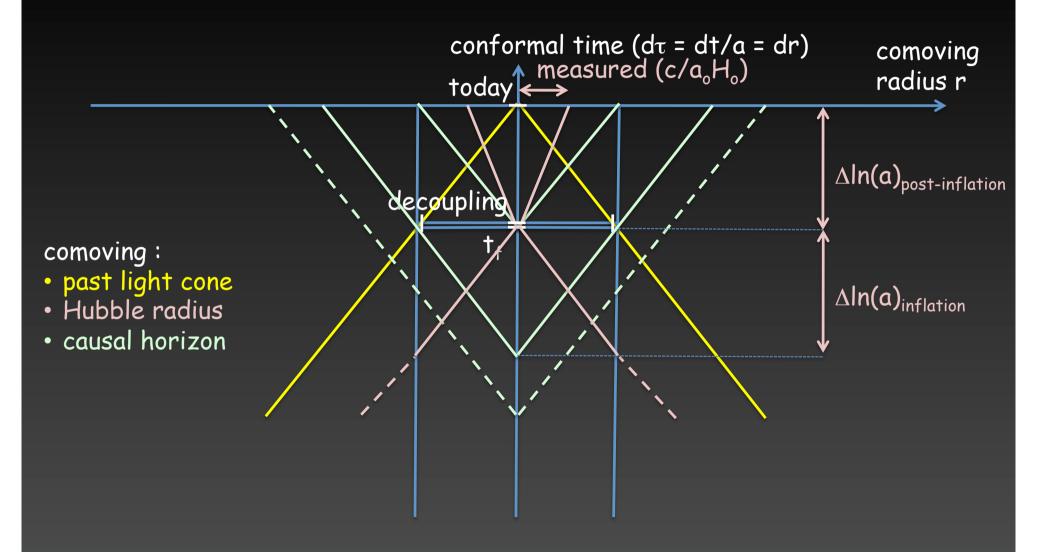
(Guth 79; Starobinsky 79)

- defined as an initial accelerated expansion stage:

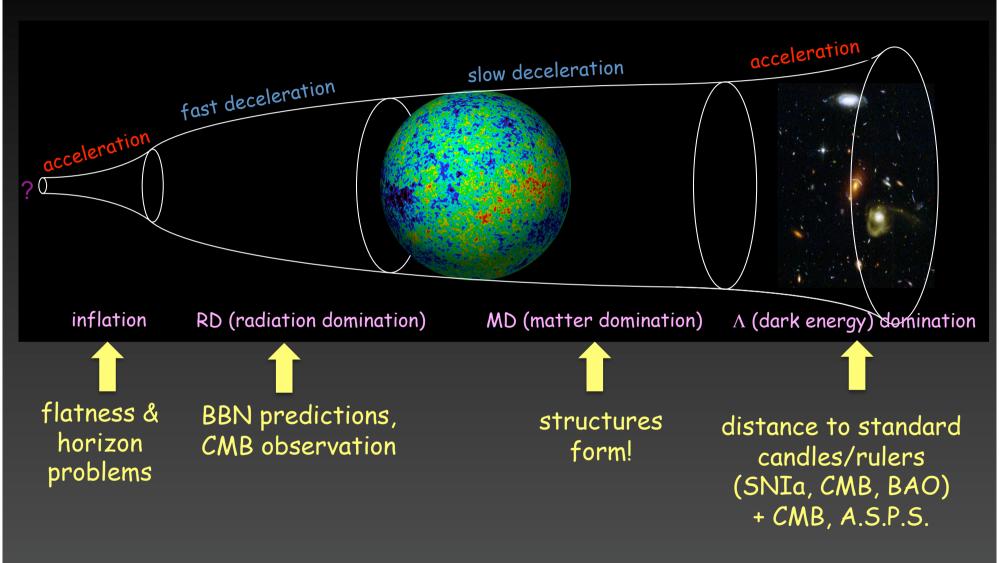


$$d_H(t_i, t) = d_H(t_i, t_f) + 2R_H(t)$$

Horizon issues



Homogeneous evolution



Horizon issues

- Cosmo Quizz !!!
 - 1. Adding a stage of inflation to sCDM implies that the universe expands quicker in the early universe
 - 2. Adding a stage of inflation to sCDM implies that our observable universe was larger than expected at early times
 - 3. In case of everlasting Λ domination, future observers in the MW will ultimately see no other comoving objects (galaxies, ...) because they will all be out of causal contact