NEUTRINO OSCILLATIONS

Luigi DiLella
 Physics Dept. and INFN, Pisa, Italy
 CHIPP PhD Winter School 2011

- Formalism of neutrino oscillations in vacuum
- Solar neutrinos
- Neutrino oscillations in matter
- The KAMLAND reactor experiment
- "Atmospheric" neutrinos
- The Chooz reactor experiment
- Long baseline oscillation searches at accelerators
- Future projects: measurement of the θ_{13} mixing angle
- Puzzling results: LSND and MiniBooNE experiments

Neutrino oscillations in vacuum

Hypothesis: neutrino mixing
(Pontecorvo 1958; Maki, Nakagawa, Sakata 1962)
$\nu_{\mathrm{e}} \nu_{\mu} \nu_{\tau}$ are not mass eigenstates but linear superpositions of mass eigenstates $v_{1} v_{2} v_{3}$ with eigenvalues $m_{1} m_{2} m_{3}$

$$
\left|v_{\alpha}\right\rangle=\sum_{i} U_{\alpha i}\left|v_{i}\right\rangle
$$

$$
\begin{array}{cc}
\alpha=e, \mu, \tau & \text { (flavour index) } \\
i=1,2,3 \quad \text { (mass index })
\end{array}
$$

$U_{\alpha i}$: unitary mixing matrix

$$
\left|v_{i}\right\rangle=\sum_{\alpha} V_{i \alpha}\left|v_{\alpha}\right\rangle
$$

$$
V_{i \alpha}=\left(U_{\alpha i}\right)^{*}
$$

Time evolution of a neutrino with momentum p produced in the flavour eigenstate ν_{α} at time $t=0$

$$
|\nu(t)\rangle=e^{i \mathbf{p} \cdot \mathbf{r}} \sum_{k} U_{\alpha k} e^{-i E_{k} t}\left|v_{k}\right\rangle
$$

$$
\text { Note: }|v(0)\rangle=\left|v_{\alpha}\right\rangle
$$

$$
E_{k}=\sqrt{p^{2}+m_{k}^{2}} \Rightarrow \begin{aligned}
& \text { the complex phases } e^{-i E_{k} t} \\
& \text { are different if } \boldsymbol{m}_{\boldsymbol{j}} \neq \boldsymbol{m}_{\boldsymbol{k}}
\end{aligned}
$$

\longrightarrow appearance of new flavour $\nu_{\beta} \neq \nu_{\alpha}$ at time $t>0$ Example for two - neutrino mixing

$$
\begin{aligned}
& \left|v_{\alpha}\right\rangle=\cos \theta\left|v_{1}\right\rangle+\sin \theta\left|v_{2}\right\rangle \\
& \left|v_{\beta}\right\rangle=-\sin \theta\left|v_{1}\right\rangle+\cos \theta\left|v_{2}\right\rangle
\end{aligned}
$$

$$
\theta \equiv \text { mixing angle }
$$

If $\nu=v_{\alpha}$ at production $(t=0)$:
$|v(t)\rangle=e^{i\left(\mathbf{p} \cdot \mathbf{r}-E_{1} t\right)}\left\{\cos \theta\left|v_{1}\right\rangle+e^{-i\left(E_{2}-E_{1}\right) t} \sin \theta\left|v_{2}\right\rangle\right\}$

For $m \ll \mathrm{p} \quad E=\sqrt{p^{2}+m^{2}} \approx p+\frac{m^{2}}{2 p}$
$\square E_{2}-E_{1} \approx \frac{m_{2}{ }^{2}-m_{1}{ }^{2}}{2 p} \approx \frac{m_{2}{ }^{2}-m_{1}{ }^{2}}{2 E} \equiv \frac{\Delta m^{2}}{2 E}$
Probability to detect V_{β} at time t if $v(0)=v_{\alpha}$:

$$
\mathscr{P}_{\alpha \beta}(t)=\left|\left\langle\nu_{\beta} \mid v(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} t}{4 E}\right)
$$

$$
\begin{aligned}
& \hbar=c=1 \\
& \Delta m^{2} \equiv m_{2}^{2}-m_{1}^{2}
\end{aligned}
$$

Using units more familiar to experimentalists:

$$
\mathcal{P}_{\alpha \beta}(L)=\sin ^{2}(2 \theta) \sin ^{2}\left(1.267 \Delta m^{2} \frac{L}{E}\right) \quad \begin{gathered}
L=c t \\
\begin{array}{l}
\text { distance between } \\
\text { neutrino source } \\
\text { and detector }
\end{array}
\end{gathered}
$$

Units: $\Delta m^{2}\left[\mathrm{eV}^{2}\right] ; L[\mathrm{~km}] ; E[\mathrm{GeV}]$ (or $\left.L[\mathrm{~m}] ; E[\mathrm{MeV}]\right)$
NOTE: $\mathscr{P}_{\alpha \beta}$ depends on Δm^{2} (not on m).
If $m_{1} \ll m_{2}, \Delta m^{2} \equiv \boldsymbol{m}_{2}^{2}-\boldsymbol{m}_{1}^{2} \approx \boldsymbol{m}_{2}^{2}$

Definition of oscillation length λ :

$$
\lambda=2.48 \frac{E}{\Delta m^{2}}
$$

Units: $\lambda[\mathrm{km}] ; E[\mathrm{GeV}] ; \Delta m^{2}\left[\mathrm{eV}^{2}\right]$ (or $\lambda[\mathrm{m}] ; E[\mathrm{MeV}]$)

Distance between neutrino source and detector
$E_{1}<E_{2}$ and/or $\Delta m^{2}{ }_{1}>\Delta m^{2}{ }_{2}$

Disappearance experiments

Use v_{α} source, measure v_{α} flux at distance L from source
Disappearance probability $\quad \mathscr{P}_{\alpha \alpha}=1-\sum_{\beta \neq \alpha} \mathscr{P}_{\alpha \beta}$

Examples:

- Experiments using \bar{v}_{e} from nuclear reactors ($\mathrm{E}_{\mathrm{v}} \approx$ few MeV : under threshold for μ or τ production)
- ν_{μ} detection at accelerators or in the cosmic radiation (search for $\nu_{\mu} \Rightarrow \nu_{\tau}$ oscillations if E_{v} lower than τ production threshold)

The main source of systematic uncertainties: knowledge of the neutrino flux in the absence of oscillations \longrightarrow use two detectors if possible

Appearance experiments

Neutrino source: v_{α}. Detect $v_{\beta}(\beta \neq \alpha)$ at distance L from source

Examples:

- Detect $v_{\mathrm{e}}+\mathrm{N} \rightarrow \mathrm{e}^{-}+$hadrons in a v_{μ} beam
- Detect $v_{\tau}+N \rightarrow \tau^{-}+$hadrons in a v_{μ} beam (Threshold energy $\approx 3.5 \mathrm{GeV}$)

The ν_{β} contamination at source must be precisely known (typically $v_{\mathrm{e}} / v_{\mu} \approx 1 \%$ in ν_{μ} beams from high-energy accelerators)
$\rightarrow \mathbf{a}$ near detector is often very useful

Under the hypothesis of two - neutrino mixing:

- Observation of an oscillation signal \rightarrow allowed parameter region in the $\left[\Delta m^{2}, \sin ^{2}(2 \theta)\right]$ plane consistent with the observed signal
- No evidence for oscillation \rightarrow upper limit $\mathscr{P}_{\alpha \beta}<\mathbf{P} \rightarrow$ exclusion region

Very large $\Delta m^{2} \rightarrow$ very short oscillation length λ
\rightarrow average over source and detector dimensions:
$\mathscr{P}_{\alpha \beta}(L)=\sin ^{2}(2 \theta)\left\langle\sin ^{2}\left(\pi \frac{L}{\lambda}\right)\right\rangle \approx \frac{1}{2} \sin ^{2}(2 \theta)$
small $\Delta m^{2} \rightarrow$ long $\lambda: L \ll \lambda \rightarrow \sin \left(\pi \frac{L}{\lambda}\right) \approx \pi \frac{L}{\lambda}$
$\mathscr{P}_{\alpha \beta}<P \approx 1.6\left(\Delta m^{2}\right)^{2} \sin ^{2}(2 \theta)\left(\frac{L}{E}\right)^{2}$ (onset of the first oscillation)

$$
\left(\lambda=2.48 \frac{E}{\Delta m^{2}}\right)
$$

Searches for neutrino oscillations: experimental parameters

v source	Flavour	Distance L	Energy	Min. accessible Δm^{2}
Sun	$v_{\text {e }}$	$\sim 1.5 \times 10^{8} \mathrm{~km}$	0.2-15 MeV	$\sim 10^{-11} \mathrm{eV}^{2}$
Cosmic rays	$\begin{aligned} & v_{\mu} \bar{v}_{\mu} \\ & v_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}} \end{aligned}$	$\begin{gathered} 10-13000 \\ \mathrm{~km} \end{gathered}$	$\begin{gathered} 0.2-100 \\ \mathrm{GeV} \end{gathered}$	$\sim 10^{-4} \mathrm{eV}^{2}$
Nuclear reactors	\bar{v}_{e}	20m-250 km	$<E>\approx 3 \mathrm{MeV}$	$\sim 10^{-6} \mathrm{eV}^{2}$
Accelerators	$\begin{aligned} & v_{\mu} \bar{v}_{\mu} \\ & v_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}} \end{aligned}$	15m-730 km	20 MeV 100 GeV	$\sim 10^{-3} \mathrm{eV}^{2}$

EXPERIMENTAL EVIDENCE / HINTS FOR NEUTRINO OSCILLATIONS

- Solar neutrino deficit: V_{e} disappearance between Sun and Earth Convincing experimental evidence Confirmation from a nuclear reactor experiment Measurement of the oscillation parameters
- "Atmospheric" neutrino deficit: $\nu_{\mu}, \overline{\mathrm{v}}_{\mu}$ disappearance in the cosmic radiation over distances of the order of the Earth diameter
Convincing experimental evidence
Confirmation from long baseline accelerator experiments Measurement of the oscillation parameters
- LSND experiment at Los Alamos (1996): $\overline{\mathrm{v}}_{\mathrm{e}}$ excess in a mixed $\nu_{\mu}, \bar{v}_{\mu}, v_{\mathrm{e}}$ beam To be confirmed - experimental results from the MiniBoone experiment at Fermilab (designed to verify LSND) unclear and confusing

Solar neutrinos

Birth of a star: gravitational contraction of a primordial gas cloud (mainly $\left.\sim 75 \% \mathrm{H}_{2}, \sim 25 \% \mathrm{He}\right) \Rightarrow$ density, temperature increase in the star core \Rightarrow NUCLEAR FUSION
Hydrostatic equilibrium between pressure and gravity
Final result from a chain of fusion reactions in the Sun core:

$$
4 \mathrm{p} \rightarrow \mathrm{He}^{4}+2 \mathrm{e}^{+}+2 v_{\mathrm{e}}
$$

Average energy produced as electromagnetic energy in the Sun core:

$$
\begin{gathered}
\mathrm{Q}=\left(4 \mathrm{M}_{\mathrm{p}}-\mathrm{M}_{\mathrm{He}^{4}}+2 \mathrm{~m}_{\mathrm{e}}\right) \mathrm{c}^{2}-\left\langle\mathrm{E}\left(2 v_{\mathrm{e}}\right)>\approx 26.1 \mathrm{MeV}\right. \\
\longrightarrow\left(2 \mathrm{e}^{+}+2 \mathrm{e}^{-} \rightarrow 4 \gamma\right)
\end{gathered}
$$

$$
\left(<\mathrm{E}\left(2 v_{\mathrm{e}}\right)>\approx 0.59 \mathrm{MeV}\right)
$$

Solar luminosity: $\mathfrak{L}_{\odot}=3.846 \times 10^{26} \mathrm{~W}=2.401 \times 10^{39} \mathrm{MeV} / \mathrm{s}$
Neutrino emission rate: $\quad \mathbf{d N}\left(v_{\mathrm{e}}\right) / \mathrm{dt}=2 \mathcal{L}_{\odot} / \mathbf{Q} \approx 1.84 \times 10^{38} \mathrm{~s}^{-1}$ Average neutrino flux on Earth: $\Phi\left(v_{\mathrm{e}}\right) \approx 6.4 \times 10^{10} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (average Sun - Earth distance $=1.496 \times 10^{11} \mathrm{~m}$)

STANDARD SOLAR MODEL (SSM)

(developed in 1960 and continuously updated by J.N. Bahcall and collaborators)
Assumptions: • hydrostatic equilibrium

- energy production by nuclear fusion
- thermal equilibrium (power output = luminosity)
- energy transport inside the Sun by radiation

Input data: - cross-sections for fusion reactions

- "opacity" (photon mean free path) as a function of distance from the Sun center

Method: - choice of initial parameters

- evolution to present epoch ($\mathrm{t}=4.6 \times 10^{9}$ years)
- compare predicted and measured quantities
- modify initial parameters if necessary

TODAY'S SUN: Luminosity $\mathscr{L}_{\odot}=3.846 \times 10^{26} \mathrm{~W}$
Radius $\mathrm{R}_{\odot}=6.96 \times 10^{8} \mathrm{~m}$
Mass $\mathbf{M}_{\odot}=1.989 \times 10^{30} \mathbf{k g}$
Core temperature $\mathrm{T}_{\mathrm{c}}=15.6 \times 10^{6} \mathrm{~K}$
Surface temperature $\mathrm{T}_{\mathrm{s}}=5773 \mathrm{~K}$
Hydrogen in Sun core $=34.1 \% \quad$ (initially 71\%) \quad as measured
Helium in Sun core $=63.9 \%$ (initially 27.1\%) $\}$ at the surface

Two reaction cycles

$$
\begin{aligned}
& \text { p - p cycle (} 0.985 \mathfrak{L}_{\odot} \text {) } \\
& 85 \% \begin{cases}\mathbf{p}+\mathbf{p} \rightarrow \mathbf{e}^{+}+v_{\mathrm{e}}+\mathbf{d} & \mathbf{p}+\mathbf{p} \rightarrow \mathbf{e}^{+}+v_{\mathrm{e}}+\mathbf{d} \quad \text { OR (0.4\%): } \mathbf{p}+\mathbf{e}^{-}+\mathbf{p} \rightarrow v_{\mathrm{e}}+\mathbf{d} \\
\mathbf{p}+\mathbf{d} \rightarrow \gamma+\mathbf{H e}^{3} & \mathbf{p}+\mathbf{d} \rightarrow \gamma+\mathbf{H e}^{3} \\
\mathbf{H e}^{3}+\mathbf{H e}^{3} \rightarrow \mathbf{H e}^{4}+\mathbf{p}+\mathbf{p} \quad \text { OR }\left(\sim 2 \times 10^{-5}\right): \mathbf{H e}^{3}+\mathbf{p} \rightarrow \mathbf{H e}^{4}+\mathbf{e}^{+}+v_{\mathrm{e}}\end{cases}
\end{aligned}
$$

CNO cycle (two branches)

$$
\begin{array}{ll}
\mathbf{p}+\mathbf{N}^{15} \rightarrow \mathbf{C}^{12}+\mathbf{H e} \mathbf{e}^{4} & \mathbf{p}+\mathbf{N}^{15} \rightarrow \gamma+\mathbf{O}^{16} \\
\mathbf{p}+\mathbf{C}^{12} \rightarrow \gamma+\mathbf{N}^{13} & \mathbf{p}+\mathbf{O}^{16} \rightarrow \gamma+\mathbf{F}^{17} \\
\mathbf{N}^{13} \rightarrow \mathbf{C}^{13}+\mathbf{e}^{+}+v_{\mathbf{e}} & \mathbf{F}^{17} \rightarrow \mathbf{O}^{17}+\mathbf{e}^{+}+v_{\mathbf{e}} \\
\mathbf{p}+\mathbf{C}^{13} \rightarrow \gamma+\mathbf{N}^{14} & \mathbf{p}+\mathbf{O}^{17} \rightarrow \mathbf{N}^{14}+\mathbf{H e}^{4} \\
& \mathbf{p}+\mathbf{N}^{14} \rightarrow \gamma+\mathbf{O}^{15} \\
& \mathbf{O}^{15} \rightarrow \mathbf{N}^{15}+\mathbf{e}^{+}+v_{\mathbf{e}}
\end{array}
$$

NOTE \#1: for both cycles $4 \mathrm{p} \rightarrow \mathrm{He}^{4}+2 \mathbf{e}^{+}+2 v_{\mathrm{e}}$
NOTE \#2: source of today's solar luminosity: fusion reactions occurring In the Sun core $\sim 10^{6}$ years ago (the Sun is a "main sequence star, practically stable over $\sim 10^{8}$ years).

Predicted solar neutrino flux and energy spectrum on Earth (p - p cycle)

$$
v_{\mathbf{e}}+C I^{37} \rightarrow \mathbf{e}^{-}+A r^{37} \quad \text { Energy threshold } \mathrm{E}\left(v_{\mathbf{e}}\right)=0.814 \mathrm{MeV}
$$

Detector: $390 \mathrm{~m}^{3} \mathrm{C}_{2} \mathrm{Cl}_{4}$ (perchloroethylene) in a tank installed in the Homestake gold mine (South Dakota, U.S.A.) under 4100 m water equivalent (m w.e.) (fraction of Cl^{37} in natural Chlorine $=24 \%$) Expected production rate of Ar^{37} atoms ≈ 1.5 per day

Experimental method: every few months extract Ar^{37} by N_{2} flow through tank, purify, mix with natural Argon, fill a small proportional counter, detect radioactive decay of $A r^{37}: \mathbf{e}^{-}+A r^{37} \rightarrow v_{\mathrm{e}}+\boldsymbol{C l}{ }^{37}$ (half-life $\tau_{1 / 2}=34 \mathrm{~d}$) (Final state excited Cl^{37} atom emits Augier electrons and/or X-rays) Check efficiencies by injecting known quantities of $A r^{37}$ into tank Results over more than 20 years of data taking

SNU (Solar Neutrino Units): the unit to measure event rates in radiochemical experiments:
1 SNU $=1$ event s^{-1} per 10^{36} target atoms
Average of all measurements:
$\mathrm{R}\left(\mathrm{Cl}^{37}\right)=2.56 \pm 0.16 \pm 0.16 \mathrm{SNU} \leftrightarrows$ Solar
(stat) (syst)

SSM prediction: $7.6{ }_{-1.1}^{+1.3}$ SNU \longleftarrow

Neutrino Deficit

"Real time" experiments with water Čerenkov counters

Neutrino - electron elastic scattering: $v+\mathbf{e}^{-} \rightarrow \mathbf{v}+\mathbf{e}^{-}$
Detect Čerenkov light emitted by electrons in water
Energy threshold $\sim 5 \mathrm{MeV}\left(5 \mathrm{MeV}\right.$ electron residual range in $\mathrm{H}_{2} \mathrm{O} \approx 2 \mathrm{~cm}$)
Cross-sections: $\sigma\left(v_{\mathrm{e}}\right) \approx 6 \sigma\left(\nu_{\mu}\right) \approx 6 \sigma\left(\nu_{\tau}\right)$

Solar Peak above 5 MeV

Two experiments:
Kamiokande (1987 - 94)
Fiducial volume: $680 \mathrm{~m}^{3} \mathrm{H}_{2} \mathrm{O}$ Super-Kamiokande (1996 -) Fiducial volume: $22500 \mathrm{~m}^{3} \mathrm{H}_{2} \mathrm{O}$ in theKamioka mine (Japan) Depth $2670 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}$ eq.

The signal solar origin is demonstrated by the angular correlation between the directions of the detected electron and the incident neutrino

Super-Kamiokande detector

50,000 ton Water Cherenkov Detector

$$
11,200 \quad 20^{\circ} \text { PMTs }
$$

Cylinder, height=41.4 m, diam. $=39.3 \mathrm{~m}$ 50000 tons of pure water
Outer volume (veto) ~2.7 m thick Inner volume: ~ 32000 tons (fiducial mass 22500 tons)
11200 photomultipliers, diam. $=50 \mathrm{~cm}$ Light collection efficiency ~40\%

Inner volume while filling

Recoil electron kinetic energy distribution from v_{e} - e elastic scattering of mono-energetic neutrinos is almost flat between 0 and $2 \mathrm{E}_{\mathrm{v}} /\left(2+\mathrm{m}_{\mathrm{e}} / \mathrm{E}_{\mathrm{v}}\right)$
\longrightarrow convolute with predicted spectrum to obtain

SSM prediction for electron energy distribution

Results from 22400 events (1496 days of data taking)
Measured neutrino flux (assuming all v_{e}): $\Phi\left(v_{\mathrm{e}}\right)=(2.35 \pm 0.02 \pm 0.08) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
SSM prediction: $\Phi\left(v_{\mathrm{e}}\right)=(5.05)^{+1.01} \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
-0.81
Data $/$ SSM $=0.465 \pm \underset{\text { (stat) }-0.074}{0.005}$ (including theoretical error) $\longleftrightarrow V_{\mathrm{e}}$ DEFICIT

Comparison of Homestake and Kamioka results with SSM predictions

Homestake and Kamioka results were known since the late 1980's.
However, the solar neutrino deficit was not taken seriously at that time. Why?

The two main solar v_{e} sources in the Homestake and water experiments:
$\mathbf{H e}^{3}+\mathbf{H e}^{4} \rightarrow \gamma+\mathrm{Be}^{7}$ $\mathbf{e}^{-}+\mathbf{B e}^{7} \rightarrow v_{\mathrm{e}}+\mathbf{L i}^{7}$ (Homestake)
$\mathbf{p}+\mathbf{B e}^{7} \rightarrow \gamma+\mathbf{B}^{8}$
$\mathbf{B}^{\mathbf{8}} \rightarrow \mathbf{B e}^{\mathbf{8}}+\mathbf{e}^{+}+\boldsymbol{v}_{\mathbf{e}} \quad$ (Homestake, Kamiokande, Super-K)

Fusion reactions strongly suppressed by Coulomb repulsion

$\mathrm{E}_{\mathrm{c}}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{2} e^{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{e^{2}}{\hbar c} \frac{\hbar c \mathrm{Z}_{1} \mathrm{Z}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \approx \frac{197 \mathrm{MeV} \mathrm{fm}}{137} \frac{\mathrm{Z}_{1} \mathrm{Z}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2} \mathrm{fm}} \mathrm{MeV}$
$E_{c} \approx 1.4 \mathrm{MeV}$ for $Z_{1} Z_{2}=4, R_{1}+R_{2}=4 \mathrm{fm}$
Average thermal energy in the Sun core $\langle\mathrm{E}\rangle=1.5 \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{c}} \approx 0.002 \mathrm{MeV}\left(\mathrm{T}_{\mathrm{c}}=15.6 \mathrm{MK}\right)$ $\mathrm{k}_{\mathrm{B}}($ Boltzmann constant $)=8.6 \times 10^{-5} \mathrm{eV} /$ deg. K

Nuclear fusion in the Sun core occurs by tunnel effect and depends strongly on T_{c}

Nuclear fusion cross-section at very low energies

Predicted dependence of the v_{e} fluxes on T_{c} :
From $\mathbf{e}^{-}+\mathbf{B e}^{7} \rightarrow v_{\mathrm{e}}+\mathbf{L i}^{7}: \quad \Phi\left(v_{\mathrm{e}}\right) \propto \mathrm{T}_{\mathrm{c}}{ }^{8}$
From $\mathbf{B}^{\mathbf{8}} \rightarrow \mathbf{B e}^{\mathbf{8}}+\mathbf{e}^{+}+v_{\mathrm{e}}: \quad \Phi\left(v_{\mathrm{e}}\right) \propto \mathbf{T}_{\mathbf{c}}{ }^{18}$
$\Phi \propto \mathrm{T}_{\mathbf{C}}{ }^{\mathbf{N}} \longrightarrow \Delta \Phi / \Phi=\mathbf{N} \Delta \mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{C}}$
How precisely do we know the temperature T of the Sun core?

Search for v_{e} from $p+p \rightarrow \mathbf{e}^{+}+v_{e}+\mathbf{d}$ (the main component of the solar neutrino spectrum, constrained by the Sun luminosity)
very little theoretical uncertainties

Gallium experiments: radiochemical experiments to search for

$$
v_{\mathbf{e}}+\mathrm{Ga}^{71} \rightarrow \mathbf{e}^{-}+\mathrm{Ge}^{71}
$$

Energy threshold $\mathrm{E}\left(v_{\mathrm{e}}\right)>0.233 \mathrm{MeV} \longrightarrow$ reaction sensitive to solar neutrinos from $\mathbf{p}+\mathbf{p} \rightarrow \mathbf{e}^{+}+\mathbf{v}_{\mathrm{e}}+\mathbf{d}$ (the dominant component)
Three experiments:

- GALLEX (Gallium Experiment, 1991 - 1997)
- GNO (Gallium Neutrino Observatory, 1998 -) $\} \begin{aligned} & 150 \mathrm{~km} \text { east of Ron } \\ & \text { Depth } 3740 \mathrm{~m} \text { w.e. }\end{aligned}$
- SAGE (Soviet-American Gallium Experiment)

In the Baksan Lab (Russia) under the Caucasus. Depth 4640 m w.e.
Target: 30.3 tons of Gallium in HCl solution (GALLEX, GNO)
50 tons of metallic Gallium (liquid at $40^{\circ} \mathrm{C}$) (SAGE)
Experimental method: every few weeks extract Ge^{71} in the form of GeCl_{4} (a highly volatile substance), convert chemically to gas GeH_{4}, inject gas into a proportional counter, detect radioactive decay of $G e^{71}: \quad \mathrm{e}^{-}+G e^{71} \rightarrow v_{\mathrm{e}}+G a^{71}$ (half-life $\tau_{1 / 2}=11.43 \mathrm{~d}$) (Final state excited Ga^{71} atom emits X -rays: detect K and L atomic transitions)

Check of detection efficiency:

- Introduce a known quantity of $A s^{71}$ in the tank (decaying to $G e^{71}: \mathbf{e}^{-}+A s^{71} \rightarrow v_{\mathrm{e}}+G e^{71}$)
- Install an intense radioactive source producing mono-energetic v_{e} near the tank: $\mathrm{e}^{-}+\mathrm{Cr}^{51} \rightarrow \nu_{\mathrm{e}}+V^{51}$ (prepared in a nuclear reactor, initial activity 1.5 MCurie equivalent to 5 times the solar neutrino flux), $\mathrm{E}\left(v_{\mathrm{e}}\right)=0.750 \mathrm{MeV}$, half-life $\tau_{1 / 2}=28 \mathrm{~d}$

GALLEX

Data/SSM $=0.56 \pm 0.05$

Theory $\square \begin{aligned} & { }^{7} \mathrm{Be} \\ & \square{ }^{\text {明 }} \quad \square \\ & \mathrm{P}-\mathrm{P}, \mathrm{Pep} \\ & \mathrm{CNO}\end{aligned}$

Experiments
Uncertainties

SNO

Concluding evidence for solar neutrino oscillations

 (Sudbury Neutrino Observatory, Sudbury, Ontario, Canada)

SNO: detector of Čerenkov light produced in 1000 tons of ultra-pure heavy water $\mathrm{D}_{2} \mathrm{O}$ contained in an acrylic sphere (diam. 12 m), surrounded by 7800 tons of ultra-pure water $\mathbf{H}_{\mathbf{2}} \mathbf{O}$

Light collection: 9456 photomultipler tubes, diam. 20 cm , on a spherical surface of 9.5 m radius

Depth: $2070 \mathrm{~m}\left(6010 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}\right.$ eq.) in a Nickel mine
Detection energy threshold: 5.5 MeV (reduced to 3.5 MeV in a recent analysis)

Reconstruct the event position from the measurement of the photomultiplier signal relative timings

Solar neutrino detection in the SNO experiment

(ES) Neutrino - electron elastic scattering: $v+\mathbf{e}^{-} \rightarrow v+\mathbf{e}^{-}$ Directional, $\sigma\left(\nu_{\mathrm{e}}\right) \approx 6 \sigma\left(\nu_{\mu}\right) \approx 6 \sigma\left(\nu_{\tau}\right)$ (as in Super-K)
(CC) $v_{\mathrm{e}}+\mathbf{d} \rightarrow \mathrm{e}^{-}+\mathrm{p}+\mathrm{p}$

Electron angular distribution $\propto 1-\frac{1}{3} \cos \left(\theta_{\text {sun }}\right)$
Measurement of the v_{e} energy (most of the v_{e} energy is transferred to the electron)
(NC) $v+d \rightarrow v+p+n$
Identical cross-section for all three neutrino flavours
\Rightarrow measurement of the total neutrino flux from $\mathbf{B}^{8} \rightarrow \mathbf{B e}^{8}+\mathbf{e}^{+}+v$ independent of oscillations

$$
\text { DETECTION OF } v+d \rightarrow v+p+\mathbf{n}
$$

Detect neutron capture after "thermalization"

- Phase I (November 1999 - May 2001):

$$
\mathrm{n}+\mathrm{d} \rightarrow \mathrm{H}^{3}+\gamma \quad\left(\mathrm{E}_{\gamma}=6.25 \mathrm{MeV}, \sigma=5 \times 10^{-4} \mathrm{~b}\right) ; \gamma \rightarrow \text { Compton electron, } \mathrm{e}^{+} \mathrm{e}^{-} \text {pair }
$$

- Phase II (July 2001 - September 2003): add 2 tons of ultra-pure NaCl to $\mathrm{D}_{2} \mathrm{O}$ $\mathrm{n}+\mathrm{Cl}^{35} \rightarrow \mathrm{Cl}^{36}+$ several γ 's $\left(\left\langle\mathrm{N}_{\gamma}\right\rangle \approx 2.5, \Sigma \mathrm{E}_{\gamma} \approx 8.6 \mathrm{MeV}, \sigma=44 \mathrm{~b}\right)$
- Phase III (November 2004 - November 2006: insert in the $\mathrm{D}_{2} \mathrm{O}$ volume an array of cylindrical proportional counters (diameter 5 cm) filled with He^{3} $\mathrm{n}+\mathrm{He}^{\mathbf{3}} \rightarrow \mathrm{p}+\mathrm{H}^{3}$ (0.764 MeV mono-energetic signal, $\left.\sigma=5330 \mathrm{~b}\right)$

Neutron detection efficiency in Phase I and II

Efficiency measurement using a Cf ${ }^{252}$ neutron source (spontaneous fission, $\tau_{1 / 2}=2.6$ years) Average over a spherical volume of radius $R=550 \mathrm{~cm}$ (50 cm from the edge of the $\mathrm{D}_{2} \mathrm{O}$ sphere)

Detection efficiency for neutrons from $v+\mathbf{d} \rightarrow v+\mathbf{p}+\mathbf{n}=0.407 \pm 0.005_{-0.008}^{+0.009}$ Efficiency without $\mathrm{NaCl} \approx 0.14$

An additional advantage of Phase II with respect to Phase I

$\mathrm{n}+\mathrm{Cl}^{35} \rightarrow \mathrm{Cl}^{36}+$ several γ^{\prime} s (on average, $\mathrm{N}_{\gamma}=2.5$)
The Čerenkov light is more isotropic with respect to the CC and ES reactions which have only one electron in the final state

To measure the isotropy of the light emitted in each event define an an "isotropy parameter" β_{14} using the space distribution of photomultiplier hits
${ }^{252}$ Cf: neutron source (neutron energy: few MeV)
${ }^{16} \mathrm{~N}: ~ \gamma-$ ray source $(6.13 \mathrm{MeV}) \rightarrow$ Compton electron, collinear $\mathrm{e}^{+} \mathrm{e}^{-}$pair

Direct measurement of the electron angular resolution using the ${ }^{16} \mathbf{N} \quad \gamma$ - ray source

Use four independent variables to separate the three reactions

(Hatched histograms correspond to Phase II)

$T_{\text {eff }}$

Energy distribution (from signal amplitude)
$\operatorname{Cos} \theta_{\text {sun }}$ Directionality
β_{14}
Isotropy parameter

$$
\rho=\left(R / R_{0}\right)^{3}
$$

Event radial position

$$
\mathrm{R}_{0}=600.5 \mathrm{~cm}
$$

radius of the $\mathrm{D}_{2} \mathrm{O}$ sphere

Event position: distribution of distance from center $\rho=\left(\mathbf{R} / \mathbf{R}_{0}\right)^{3}$
 $\mathrm{R}_{0}=600.5 \mathrm{~cm}$ radius of $\mathrm{D}_{2} \mathrm{O}$ sphere

Energy distribution (from signal amplitude)

Extract all components (ES, CC, NC, background) by maximum likelihood method

Number of events:
CC: 2176 ± 78
ES: 279 ± 26
NC: 2010 ± 85
Background from external neutrons: 128 ± 42

Solar neutrino fluxes, as measured from the three signals:

$$
\Phi_{\mathrm{CC}}=(1.72 \pm 0.05 \pm 0.11) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

$$
\text { Note: } \Phi_{\mathrm{CC}} \equiv \Phi\left(v_{\mathrm{e}}\right)
$$

$\Phi_{\mathrm{ES}}=\left(2.34 \pm 0.23_{-0.14}^{+0.15}\right) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \longleftarrow$| Calculated assuming that |
| :--- |
| all incident neutrinos are v_{e} |

$$
\Phi_{\mathrm{NC}}=\left(4.81 \pm 0.19_{-0.27}^{+0.28}\right) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad \Longleftrightarrow \Phi_{\mathrm{SSM}}(v)=5.05_{-0.81}^{+1.01} \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

$$
\frac{\Phi_{\mathrm{CC}}}{\Phi_{\mathrm{NC}}}=0.358 \pm 0.021_{-0.029}^{+0.028}
$$

differs from 1

by 10 standard deviations

- The TOTAL solar neutrino flux agrees with SSM predictions (determination of the solar core temperature to $\sim 0.5 \%$ precision)
- Composition of solar neutrino flux on Earth:
$\sim 36 \% v_{\mathrm{e}} ; \sim 64 \% v_{\mu}+v_{\tau}$ (ratio v_{μ} / v_{τ} unkown) OSCILLATIONS

Difference between the measured values of Φ_{cc} and Φ_{ES}

$$
\begin{aligned}
& \Phi_{C C}=\Phi\left(v_{e}\right) \equiv \Phi_{e} \\
& \Phi_{N C}=\Phi\left(v_{e}\right)+\Phi\left(v_{\mu}\right)+\Phi\left(v_{\tau}\right) \equiv \Phi_{e}+\Phi_{\mu \tau} \\
& \Phi_{E S}=\Phi\left(v_{e}\right)+\frac{\sigma_{E S}\left(v_{\mu, \tau}\right)}{\sigma_{E S}\left(v_{e}\right)}\left[\Phi\left(v_{\mu}\right)+\Phi\left(v_{\tau}\right)\right] \approx \Phi_{e}+\frac{1}{6} \Phi_{\mu \tau}
\end{aligned}
$$

SNO phase III
B. Aharmim et al., Phys. Rev. Lett. 101, 111301 (2008)

Insert 40 cylindrical proportional counters
filled with He 3 (NCD)
vertically in the $\mathrm{D}_{2} \mathrm{O}$ volume (no salt)
36 Tubes filled with $85 \% \mathrm{He} 3,15 \% \mathrm{CF}_{4}$;
4 tubes filled with 85\% He4, 15\% CF_{4}
Pressure 2.5 bar
Ultra-pure Nickel tubes, diam. 5.08 cm
Tube wall thickness $370 \mu \mathrm{~m}$
Variable length

Detect neutrons from NC process $v+d \rightarrow v+p+n$ from capture by He^{3} after thermalization
$\mathrm{n}+\mathrm{He}^{3} \rightarrow \mathrm{p}+\mathrm{H}^{3}+764 \mathrm{KeV}$

- mono-energetic signal
($\sim 20,000$ electron - ion pairs in gas)
- detection efficiency ~18\% measured using Na^{24} sources ($\gamma, 2.754 \mathrm{MeV}$) inserted in the $\mathrm{D}_{2} \mathrm{O}$ volume:

$$
\gamma+d \rightarrow p+n
$$

(neutron detection efficiency from $\mathrm{n}+\mathrm{d} \rightarrow \mathrm{H}^{3}+\gamma \approx 4.9 \%$)

NCD energy distribution during Phase III data - taking (November 2004 - november 2006)

Number of solar neutrino events:

Neutrons: 983 ± 77 (NCD); $267 \pm 23\left(\mathrm{n}+\mathrm{d} \rightarrow \mathrm{H}^{3}+\gamma\right)$
Electrons from CC events : 1867 ${ }_{-101}^{+91}$; electrons from ES events: 171 ± 24
Background neutrons: 185 ± 24 (NCD); $77 \pm 12\left(\mathrm{n}+\mathrm{d} \rightarrow \mathrm{H}^{3}+\gamma\right)$

$$
\frac{\Phi_{\mathrm{CC}}}{\Phi_{\mathrm{NC}}}=0.301 \pm 0.033
$$

Measurement of the solar v_{e} deficit using an independent method with different systematic effects

Solar v_{e} disappearance: interpretation

Hypothesis: two - neutrino mixing
Vacuum oscillations
v_{e} energy spectrum measured on Earth $\Phi\left(v_{\mathrm{e}}\right)=\mathcal{P}_{\mathrm{ee}} \Phi_{0}\left(v_{\mathrm{e}}\right)$
$\left(\Phi_{0}\left(v_{\mathrm{e}}\right) \equiv v_{\mathrm{e}}\right.$ energy spectrum at production)

Probability to detect v_{e} on Earth :

$$
\mathscr{P}_{\text {ee }}=1-\sin ^{2}(2 \theta) \sin ^{2}\left(1.267 \Delta m^{2} \frac{L}{E}\right) \approx 0.33 \quad\left(\begin{array}{l}
L[\mathrm{~m}] \\
E[\mathrm{MeV}] \\
\Delta m^{2}\left[\mathrm{eV}^{2}\right]
\end{array}\right)
$$

Solar neutrino energy in SNO, Super-K experiments $E=5$ - 15 MeV Variation of Sun - Earth distance during data taking (the Earth orbit is an ellipse) $\Delta L=5.01 \times 10^{9} \mathrm{~m}$ ($\langle L\rangle=149.67 \times 10^{9} \mathrm{~m}$)

Check dependence of $\mathscr{P}_{\text {ee }}$ on E and L

Spectral distortions

v_{e} deficit independent of energy within measurement errors (no spectral distortions)

Seasonal modulation

$\mathscr{P}_{\mathrm{ee}}=1-\sin ^{2}(2 \theta) \sin ^{2}\left(1.267 \Delta m^{2} \frac{L}{E}\right)=1-\sin ^{2}(2 \theta) \sin ^{2}\left(\pi \frac{L}{\lambda}\right) \approx 0.33\left(\begin{array}{l}L[\mathrm{~m}] \\ E[\mathrm{MeV}] \\ \Delta m^{2}\left[\mathrm{eV}^{2}\right]\end{array}\right)$
For oscillation lengths $\lambda \ll \nu$ source dimension ($\left.\sim 0.15 R_{\mathrm{O}} \approx 1 \times 10^{8} \mathrm{~m}\right)$;
<< Earth diameter ($\sim 1.3 \times 10^{7} \mathrm{~m}$)
$\mathcal{P}_{\text {ee }}$ is independent of E and L :

$$
\mathscr{P}_{\text {ee }}=1-\sin ^{2}(2 \theta)\left\langle\sin ^{2}\left(\pi \frac{L}{\lambda}\right)\right\rangle=1-\frac{1}{2} \sin ^{2}(2 \theta) \geq 0.5
$$

in disagreement with the experimental result ~ 0.33

Neutrino oscillations in vacuum do not describe
the observed solar v_{e} deficit

NEUTRINO OSCILLATIONS IN MATTER

Neutrino refractive index in matter (L. Wolfenstein, 1978)

$$
n=1+\varepsilon=1+\frac{2 \pi}{p^{2}} N f(0)
$$

p : neutrino momentum
N : density of scattering centers
$f(0)$: scattering amplitude at $\theta=0^{\circ}$
In vacuum: $\quad E=\sqrt{p^{2}+m^{2}}$
Plane wave in matter: $\Psi=\mathrm{e}^{\mathrm{i}\left(n \mathrm{p} \cdot \mathrm{r}-E^{\prime} t\right)}$

$$
E^{\prime}=\sqrt{(n p)^{2}+m^{2}} \approx E+\frac{p^{2}}{E} \varepsilon \quad(|\varepsilon| \ll 1)
$$

Energy conservation:

$$
E=E^{\prime}+V
$$

$\mathrm{V} \equiv$ neutrino potential energy in matter

$$
V=-\frac{p^{2}}{E} \varepsilon=-\frac{2 \pi}{E} N f(0)
$$

$V<0$: attractive potential ($n>1$)
$V>0$: repulsive potential $(n<1)$

Neutrino potential energy in matter

1. Z-boson exchange (the same for the three neutrino types)

$$
V_{z}(p)=-V_{Z}(e)=\frac{\sqrt{2}}{2} G_{F} N_{p}\left(1-4 \sin ^{2} \theta_{w}\right)
$$

$$
V_{Z}(n)=-\frac{\sqrt{2}}{2} G_{F} N_{n} \quad \begin{aligned}
& G_{F}: \text { Fermi constant } \\
& N_{p}\left(N_{n}\right): \text { proton (neutro } \\
& \theta_{w}: \text { weak mixing angle }
\end{aligned}
$$

2. W- boson exchange (only for v_{e} !)

NOTE: $V(v)=-V(\bar{v})$

Example: $v_{\mathrm{e}}-v_{\mu}$ mixing in a constant density medium (identical results for $v_{e}-v_{\tau}$ mixing)
In the "flavour" representation: $v=\binom{v_{e}}{v_{\mu}} \quad \begin{aligned} & \text { Evolution } \\ & \text { equation: }\end{aligned} H v=i \frac{\partial v}{\partial t}$
$H=\left(E+V_{Z}\right)\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|+\frac{1}{2 E}\left|\begin{array}{ll}M_{e e}{ }^{2} & M_{e \mu}{ }^{2} \\ M_{\mu e}{ }^{2} & M_{\mu \mu}{ }^{2}\end{array}\right|+V_{W}\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|$
(Remember: $\sqrt{p^{2}+M^{2}} \approx p+\frac{M^{2}}{2 p} \approx E+\frac{M^{2}}{2 E} \quad$ for $M \ll p$)
$M_{e e}{ }^{2}=\frac{1}{2}\left(\mu^{2}-\Delta m^{2} \cos 2 \theta\right)$

$$
\mu^{2}=m_{1}^{2}+m_{2}^{2}
$$

$M_{e \mu}{ }^{2}=M_{\mu e}{ }^{2}=\frac{1}{2} \Delta m^{2} \sin 2 \theta$

$$
\Delta m^{2}=m_{2}^{2}-m_{1}^{2}
$$

$M_{\mu \mu}{ }^{2}=\frac{1}{2}\left(\mu^{2}+\Delta m^{2} \cos 2 \theta\right)$
NOTE: m_{1}, m_{2}, θ are defined in vacuum

$$
\underset{\underline{\text { Eig matter }}}{\underline{\text { in mectors }}} \quad M^{2}=\frac{1}{2}\left(\mu^{2}+\xi\right) \pm \frac{1}{2} \sqrt{\left(\Delta m^{2} \cos 2 \theta-\xi\right)^{2}+\left(\Delta m^{2}\right)^{2} \sin ^{2} 2 \theta}
$$

$$
\xi \equiv 2 E V_{W} \approx 1.526 \times 10^{-7} \frac{Z}{A} \rho E \quad\left[\mathrm{eV}^{2}\right] \quad\left(\rho \text { in g/cm }{ }^{3}, E \text { in } \mathrm{MeV}\right)
$$

Mixing angle in matter:

$$
\tan 2 \theta_{m}=\frac{\Delta m^{2} \sin 2 \theta}{\Delta m^{2} \cos 2 \theta-\xi}
$$

$\xi=\Delta m^{2} \cos 2 \theta \equiv \xi_{\text {res }} \Rightarrow$ maximum mixing $\left(\theta_{\mathrm{m}}=45^{\circ}\right)$ even if the mixing angle in vacuum is very small: "MSW resonance " (discovered by Mikheyev and Smirnov in 1985)

$$
\begin{aligned}
& \left.H=\underbrace{\left(E+V_{Z}\right)\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|}_{\begin{array}{c}
\text { diagonal term: } \\
\text { no mixing }
\end{array}}+\underbrace{\frac{1}{2 E} \left\lvert\, \begin{array}{cc}
v_{e^{-}-v_{\mu}} \operatorname{mixing}
\end{array}{ }_{e e^{2}+2 E V_{W}}^{M_{\mu e}^{2}}\right.}_{\text {Term inducing }} \begin{array}{cc}
M_{e \mu}{ }^{2} \\
M_{\mu e} & M_{\mu \mu}^{2}
\end{array} \right\rvert\,, \\
& \rho=\text { constant } \longrightarrow H \text { is time - independent } \\
& H \text { diagonalization } \Rightarrow \text { eigenvalues and eigenvectors }
\end{aligned}
$$

Mass eigenvalues

as a function of ξ

$$
\xi \equiv 2 E V_{W} \approx 1.526 \times 10^{-7} \frac{Z}{A} \rho E
$$

$$
\xi_{r e s}=\Delta m^{2} \cos 2 \theta
$$

Oscillation length in matter:

$$
\begin{gathered}
\lambda_{m}=\lambda \frac{\Delta m^{2}}{\sqrt{\left(\Delta m^{2} \cos 2 \theta-\xi\right)^{2}+\left(\Delta m^{2}\right)^{2} \sin ^{2} 2 \theta}} \\
\quad(\lambda \equiv \text { oscillation length in vacuum }) \\
\text { For } \xi=\xi_{\text {res }}: \quad \lambda_{m}=\frac{\lambda}{\sin 2 \theta}
\end{gathered}
$$

NOTE: for v_{e} oscillations the MSW resonance exists only if $\Delta m^{2} \cos 2 \theta>0$

$$
\Delta m^{2}>0, \cos 2 \theta>0\left(\theta<45^{\circ}\right) \text { or } \Delta m^{2}<0, \cos 2 \theta<0\left(\theta>45^{\circ}\right)
$$

DEFINITION (to remove the ambiguity): $\Delta m^{2}=m_{2}{ }^{2}-m_{1}{ }^{2}>0$

Matter effects in solar neutrino oscillations

Solar neutrinos are produced in a high - density medium (the solar core).
Variable density along the neutrino path: $\rho=\rho(t)$ Oscillations in solar matter
Time evolution: $\mathrm{H} v=i \partial v / \partial t$
$H(2 \times 2$ matrix) depends on time via $\rho(t)$
$\longrightarrow H$ has no eigenvectors
Numerical solution of the evolution equation:

$$
\begin{aligned}
& v(0)=\binom{1}{0} \quad\left(\text { pure } v_{\mathrm{e}} \text { at production }\right) \\
& v(\delta)=v(0)+\left(\frac{\partial v}{\partial t}\right)_{t=0} \delta=v(0)-i H(0) v(0) \delta \quad(\delta=\text { very small time interval })
\end{aligned}
$$

$$
v(t+\delta)=v(t)+\left(\frac{\partial v}{\partial t}\right)_{t} \delta=v(t)-i H(t) v(t) \delta
$$

(until the neutrino emerges from the Sun)

"Adiabatic solutions"

(Negligible variation of matter density ρ over an oscillation length)

$$
v(t)=a_{1}(0) v_{1}(t)+a_{2}(0) v_{2}(t)
$$

$v_{1}(t), v_{1}(t)$: "local" mass eigenstates obtained by setting $\rho=$ constant = local density at time t in the evolution Hamiltonian

$$
a_{1}(0)=\cos \theta_{m}^{0} ; a_{2}(0)=\sin \theta_{m}^{0} \quad \text { constant along the whole path inside the Sun }
$$ $\theta_{m}^{0}=\theta_{m}(0) \quad$ mixing angle in matter at neutrino production point (in the Sun core)

Assumption: mixing angle in vacuum $\theta<45^{\circ} \rightarrow \cos \theta>\sin \theta ; \cos 2 \theta>0$ Mixing angle in matter:
$\tan 2 \theta_{m}=\frac{\Delta m^{2} \sin 2 \theta}{\Delta m^{2} \cos 2 \theta-\xi} \quad \xi \equiv 2 E V_{w} \approx 1.526 \times 10^{-7} \frac{Z}{A} \rho\left[\mathrm{~g} / \mathrm{cm}^{3}\right] E[\mathrm{MeV}]$

$$
\text { If } \xi>\xi_{r e s}=\Delta m^{2} \cos (2 \theta): \theta_{m}>45^{0} \Rightarrow a_{1}(0)=\cos \theta_{m}^{0}<\sin \theta_{m}^{0}=a_{2}(0)
$$

$$
\Longleftrightarrow \text { at production }\left|\left\langle v_{2} \mid v_{e}\right\rangle\right|>\left|\left\langle v_{1} \mid v_{e}\right\rangle\right|
$$

$$
\xi>\xi_{\text {res }} \rightarrow E[M e V]>\frac{\xi_{\text {res }}}{2 V_{W}} \approx \frac{6.6 \times 10^{6} \Delta m^{2} \cos 2 \theta}{(Z / A) \rho} \quad\binom{\Delta m^{2}\left[\mathrm{eV}^{2}\right]}{\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]}
$$

In case of "adiabatic" solutions, at exit from Sun ($t=t_{\mathrm{E}}$):

$$
\nu\left(t_{E}\right)=\cos \theta_{m}^{0} \nu_{1}\left(t_{E}\right)+\sin \theta_{m}^{0} \nu_{2}\left(t_{E}\right)
$$

$v_{1}\left(t_{\mathrm{E}}\right), \mathrm{v}_{2}\left(\mathrm{t}_{\mathrm{E}}\right):$ mass eigenstates in vacuum
For $\theta_{\mathrm{m}}^{0}>45^{0} \quad\left|\left\langle v_{\mu} \mid v\left(t_{E}\right)\right\rangle\right|>\left|\left\langle v_{e} \mid v\left(t_{E}\right)\right\rangle\right|$
because in vacuum $\left|\left\langle v_{\mu} \mid v_{2}\right\rangle\right|>\left|\left\langle v_{e} \mid v_{2}\right\rangle\right|$

In vacuum, at exit from Sun $\left(t=t_{\mathrm{E}}\right)$:
v_{e} DEFICIT

Day - night modulation (from matter effects on neutrino oscillations through Earth at night $\quad \Longrightarrow v_{\mathrm{e}}$ flux increase at night for some values of the oscillation parameters) Study v_{e} deficit as a function of path inside Earth (length and density) subdividing the night spectrum in bins of zenith angle (with respect to local vertical axis)

$$
A_{D N}=\frac{D-N}{0.5(D+N)}
$$

SNO: Day and Night spectra
(CC events)

Day - night difference

"Best fit" to SNO data

\star Best fit:

$$
\begin{aligned}
& \Delta m^{2}=4.57 \times 10^{-5} \mathrm{eV}^{2} \\
& \tan ^{2} \theta=0.447 \\
& \chi^{2} / N_{\text {dof }}=73.8 / 72
\end{aligned}
$$

NOTE: $\tan ^{2} \theta$ is used instead of $\sin ^{2} 2 \theta$ because $\sin ^{2} 2 \theta$ is symmetric around $\theta=45^{\circ}$

$$
\sin 2\left(45^{\circ}-\theta\right)=\sin \left(90^{\circ}-2 \theta\right)=\sin \left(90^{\circ}+2 \theta\right)=\sin 2\left(45^{\circ}+\theta\right)
$$

MSW solutions exist only if $\theta<45^{\circ}$

Best fit to all solar neutrino experiments

 including a recent re-analysis of SNO Phase I and II data with detection threshold reduced to 3.5 MeVB.Aharmim et al., Phys. Rev. C81, 055504 (2010)
\star Best fit:

$$
\begin{aligned}
& \Delta m^{2}=\left(5.89_{-2.16}^{+2.13}\right) \times 10^{-5} \mathrm{eV}^{2} \\
& \tan ^{2} \theta=0.457_{-0.041}^{+0.038} \\
& \theta=\left(32.82_{-1.24}^{+1.07}\right)^{\circ} \\
& \chi^{2} / N_{\text {dof }}=67.5 / 89
\end{aligned}
$$

KamLAND

Confirmation of solar v_{e} oscillations using antineutrinos from nuclear reactors
CPT invariance: $\mathscr{P}_{\text {osc }}\left(v_{\alpha}-v_{\beta}\right)=\mathcal{P}_{\text {osc }}\left(\bar{v}_{\beta}-\bar{v}_{\alpha}\right)$
\longrightarrow same disappearance probability for v_{e} and \bar{v}_{e}
Nuclear reactors: strong, isotropic $\overline{\mathrm{V}}_{\mathrm{e}}$ sources from β - decay of fission fragments Energy spectrum ($E \leq 10 \mathrm{MeV},\langle E\rangle \approx 3 \mathrm{MeV}$) known from experiments. \bar{v}_{e} production rate : $1.9 \times 10^{20} \mathbf{P}_{\mathrm{th}} \mathbf{S}^{-1} \quad \mathbf{P}_{\mathrm{th}}$: reactor thermal power (GW) Systematic uncertainty on \bar{V}_{e} flux : ± 2.7 \%

Detection:

$\overline{\mathrm{v}}_{\mathrm{e}}+\mathbf{p} \rightarrow \mathbf{e}^{+}+\mathbf{n}$ (on the free protons of hydrogen-rich liquid scintillator)

KamLAND (KAMioka Liquid scintillator Anti-Neutrino Detector) $\overline{\mathrm{V}}_{\mathrm{e}}$ source : nuclear reactors in Japan

Total thermal power 70 GW $>79 \%$ of the \bar{v}_{e} flux from 26 reactors, $138<L<214 \mathrm{~km}$ Distance weighted average: $<L>: 180 \mathrm{~km}$ (weight $=\bar{v}_{\mathrm{e}}$ flux)

Expected $\overline{\mathrm{V}}_{\mathrm{e}}$ flux $\approx 1.3 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (all reactors at full power, no oscillations)

Expected oscillation length for $\Delta m^{2}=5 \times 10^{-5} \mathrm{eV}^{2}$:
$<\lambda_{\text {osc }}>\approx 160 \mathrm{~km}$

KamLAND: detector

KamLAND: event selection

Prompt signal: $2.6<E<8.5 \mathrm{MeV}$, distance from center $<5.5 \mathrm{~m}$
Delayed signal: $0.5<\Delta t<660 \mu \mathrm{~s}, \Delta R<1.6 \mathrm{~m}$ with respect to the prompt signal

KamLAND: final results
S. Abe et al., Phys. Rev. Lett. 100, 221803 (2008)

Effect of scintillator contamination
from α radioactivity

Expected number of events for no oscillation : 2179 ± 89 (syst.)
Background: 276.1 ± 23.5 events
Number of observed events: 1609

KamLAND: $\overline{\mathrm{V}}_{\mathrm{e}}$ disappearance probability

$$
\mathscr{P}_{e e}=1-\sin ^{2}(2 \theta) \sin ^{2}\left(1.267 \Delta m^{2} \frac{L_{0}}{E}\right)
$$

Best fit

$$
\begin{gathered}
\Delta m^{2}=\left(7.58_{-0.13}^{+0.14} \pm 0.15\right) \times 10^{-5} \mathrm{eV}^{2} \\
\tan ^{2} \theta=0.56_{-0.07}^{+0.10}(\text { stat })_{-0.06}^{+0.10}(\text { syst })
\end{gathered}
$$

$\mathrm{L}_{0}=180 \mathrm{~km}$ source - detector average distance

Solar - KamLAND fit comparison

Best fit to all solar neutrino data + KamLAND

Combined best fit : $\Delta m^{2}=(7.59 \pm 0.21) \times 10^{-5} \mathrm{eV}^{2}$

$$
\begin{aligned}
& \tan ^{2} \theta=0.457_{-0.029}^{+0.040} \Rightarrow \theta=34.06_{-0.84^{\circ}}^{+1.16^{\circ}} \\
& \chi^{2} / N_{d o f}=81.4 / 106
\end{aligned}
$$

Solar v_{e} disappearance

Summary

\quad Oscillation length in vacuum $\quad \lambda(\mathrm{m})=2.48 \frac{\mathrm{E}(\mathrm{MeV})}{\Delta \mathrm{m}^{2}\left(\mathrm{eV}^{2}\right)}$
$=5.06 \times 10^{4} \mathrm{~m}$ for $\mathrm{E}_{\mathrm{v}}=1 \mathrm{MeV} ;$ $=5.06 \times 10^{5} \mathrm{~m}$ for $E_{v}=10 \mathrm{MeV}$.

Oscillation length in matter $\lambda_{m}<\frac{\lambda}{\sin 2 \theta} \approx 1.09 \lambda$

Adiabatic solutions:

Negligible variation of the solar density over an oscillation length

$$
\frac{1}{\rho} \frac{d \rho}{d R} \lambda_{m} \ll 1
$$

(R : distance from Sun center)

$$
\lambda_{m} \ll \frac{\rho}{(d \rho / d R)}
$$

Mixing angle in matter

$$
\tan 2 \theta_{m}=\frac{\Delta m^{2} \sin 2 \theta}{\Delta m^{2} \cos 2 \theta-\xi}
$$

$\xi \equiv 2 E V_{W} \approx 1.526 \times 10^{-7} \frac{Z}{A} \rho E \quad\left[\mathrm{eV}^{2}\right] \quad\left(\rho\right.$ in $\mathrm{g} / \mathrm{cm}^{3}, E$ in MeV$)$
$<\mathrm{Z} / \mathrm{A}>\approx 0.77$ in the Sun core:
$34 \% \mathrm{H}(\mathrm{Z} / \mathrm{A}=1), 66 \%$ nuclei with $\mathrm{Z} / \mathrm{A}=1 / 2$ (mainly He^{4})

Solar ν_{e} detection probability on Earth $\left(\mathscr{P}_{\text {ee }}\right)$
Assumption: $\nu_{\mathrm{e}}-\nu_{\mu}$ mixing $\Rightarrow \mathscr{P}_{\text {ee }}=1-\mathcal{P}_{\text {e }}$
At exit from Sun (adiabatic solution):

$$
v_{E}=\cos \left(\theta_{m}^{0}\right) v_{1}+\sin \left(\theta_{m}^{0}\right) v_{2}
$$

Neutrino propagation to a detector on Earth:

$$
\begin{aligned}
& v(t)=\cos \left(\theta_{m}^{0}\right) \nu_{1} e^{-i E_{1} t}+\sin \left(\theta_{m}^{0}\right) \nu_{2} e^{-i E_{2} t} \\
& \mathscr{P}_{e \mu}=\left|\left\langle v_{\mu} \mid v(t)\right\rangle\right|^{2}=\left|\left\langle-\sin (\theta) v_{1}+\cos (\theta) \nu_{2} \mid \cos \left(\theta_{m}^{0}\right) v_{1} e^{-i E_{1} t}+\sin \left(\theta_{m}^{0}\right) \nu_{2} e^{-i E_{2} t}\right\rangle\right|^{2}= \\
& =\left|-\sin (\theta) \cos \left(\theta_{m}^{0}\right)+\cos (\theta) \sin \left(\theta_{m}^{0}\right) e^{-i\left(E_{2}-E_{1}\right) t}\right|^{2}=\left|-\sin (\theta) \cos \left(\theta_{m}^{0}\right)+\cos (\theta) \sin \left(\theta_{m}^{0}\right) e^{-i \frac{m_{2}^{2}-m_{2}^{2}}{2 E} t}\right|^{2}= \\
& =\left(-\sin (\theta) \cos \left(\theta_{m}^{0}\right)+\cos (\theta) \sin \left(\theta_{m}^{0}\right) \cos \left(\frac{\Delta m^{2}}{2 E} t\right)\right)^{2}+\left(\cos (\theta) \sin \left(\theta_{m}^{0}\right) \sin \left(\frac{\Delta m^{2}}{2 E} t\right)\right)^{2}= \\
& =\sin ^{2}(\theta) \cos ^{2}\left(\theta_{m}^{0}\right)+\cos ^{2}(\theta) \sin ^{2}\left(\theta_{m}^{0}\right)-2 \sin \left(\theta_{m}^{0}\right) \cos \left(\theta_{m}^{0}\right) \sin (\theta) \cos (\theta) \cos \left(\frac{\Delta m^{2}}{2 E} t\right) \\
& \cos \left(\frac{\Delta m^{2}}{2 E} t\right)=\cos \left(2 \pi \frac{L}{\lambda_{\text {osc }}}\right) \quad \lambda_{\text {osc }} \ll \text { Earth diameter / variation of Sun-Earth distance } \\
& \longmapsto\left\langle\cos \left(2 \pi \frac{L}{\lambda_{\text {osc }}}\right)\right\rangle=0
\end{aligned}
$$

$$
P_{e e}=1-P_{e \mu}=1-\sin ^{2}(\theta) \cos ^{2}\left(\theta_{m}^{0}\right)-\cos ^{2}(\theta) \sin ^{2}\left(\theta_{m}^{0}\right)
$$

BOREXINO

An experiment at the Gran Sasso National Laboratories

Goal:

Detection of elastic scattering process $v+e \rightarrow v+e \quad\left(d o m i n a t e d\right.$ by $\left.v_{e}\right)$
in liquid scintillator
Scintillation light >> Čerenkov light \rightarrow detection threshold $\ll 1 \mathrm{MeV}$

Scintillator: pseudocumene (PC) + PPO; "buffer liquid": PC + DMP (no scintillation)

Real - time experiment
Scintillation light is ISOTROPIC \rightarrow no signal correlation with the Sun direction
The signal solar origin can be verified after few data-taking years by observing the seasonal modulation induced by the excentricity of the Earth orbit around the Sun

Results after ~ 200 data-taking days

α - radioactive contaminants in scintillator
Signal shape from α-particles differs from electron signal

After background subtraction: evidence for monoenergetic solar neutrinos from reaction
$\mathrm{e}^{-}+\mathrm{Be}^{7} \rightarrow \mathrm{v}_{\mathrm{e}}+\mathrm{Li}^{7}$
$\mathrm{E}\left(v_{\mathrm{e}}\right) \approx 0.87 \mathrm{MeV}$
Electron energy distribution from
$v_{\mathrm{e}}+\mathrm{e}^{-} \rightarrow \mathrm{v}_{\mathrm{e}}+\mathrm{e}^{-}$
practically flat up to $\sim 0.67 \mathrm{MeV}$

BOREXINO

Measured spectrum, E > 2 MeV
All events
After removal of cosmic rays (external anticoincidence)

Excluding events at <1m from detector edge

After subtracting background from radioactive contaminants

Measurement of the solar v_{e} deficit as a function of energy

$$
P_{e e}=\frac{N(\text { measured events })}{N(S S M \text { prediction })}
$$

Matter effects NEGLIGIBLE For $E\left(v_{e}\right)=0.87 \mathrm{MeV}$

$$
\mathrm{P}_{\mathrm{ee}}=1-\frac{1}{2} \sin ^{2}(2 \theta) \approx 0.57\left(\text { for } \theta=34^{\circ}\right)
$$

"Atmospheric" neutrinos

Main sources of atmospheric neutrinos:

$$
\begin{aligned}
\pi^{ \pm}, \mathbf{K}^{ \pm} \rightarrow & \mu^{ \pm}+v_{\mu}\left(\bar{v}_{\mu}\right) \\
& \longleftrightarrow \mathbf{e}^{ \pm}+v_{\mathbf{e}}\left(\bar{v}_{\mathbf{e}}\right)+v_{\mu}\left(\bar{v}_{\mu}\right)
\end{aligned}
$$

For energies $E<2 \mathrm{GeV}$ most pions and muons decay before reaching the Earth:

$$
\frac{v_{\mu}+\bar{v}_{\mu}}{v_{e}+\bar{v}_{e}} \approx 2
$$

At higher energies most muons reach the Earth before decaying:

$$
\frac{v_{\mu}+\bar{v}_{\mu}}{v_{e}+\bar{v}_{e}}>2
$$

(increasing with E)
Atmospheric neutrino energies: 0.1 - 100 GeV
Very low event rates: ~100/year for a 1000 ton detector
Typical uncertainty on the atmospheric neutrino fluxes: $\pm 30 \%$
(from uncertainties on the primary cosmic ray spectrum, on hadron production, etc.) Incertainty on the v_{μ} / v_{e} ratio $: \pm 5 \%$

Atmospheric neutrino detection

$\nu_{\mu}+$ Nucleon $\rightarrow \mu+$ hadrons: presence of a long, minimum - ionizing track (the muon)
$\mathbf{v}_{\mathrm{e}}+\mathbf{n} \rightarrow \mathbf{e}^{-}+\mathrm{p}, \overline{\mathrm{v}}_{\mathrm{e}}+\mathrm{p} \rightarrow \mathrm{e}^{+}+\mathrm{n}:$ presence of an electromagnetic shower
(v_{e} interactions with multiple hadron production cannot be easily distinguished
from Neutral Current interactions $v+\mathrm{N} \rightarrow v+$ hadrons)
Event identification in water Čerenkov detectors

Muon track:

$\mathrm{d} E / \mathrm{d} x$ consistent with ionization minimum; well defined edges of Čerenkov light ring
Electromagnetic shower:
high $\mathbf{d E} / \mathrm{dx}$ (many secondary electrons);
fuzzy edges of Čerenkov light ring
(from the shower angular aperture)

Direct measurement of the electron / muon separation by exposing a 1000 ton water Čerenkov detector (a small copy of Super-K) to electron and muon beams from a proton accelerator. Measured probability of wrong identification ~2\%

Measurement of the $\nu_{\mu} / \nu_{\mathrm{e}}$ ratio: first hints for a new phenomenon
Water Čerenkov detectors: Kamiokande (1988), IMB (1991), Super-K (1998)
Conventional calorimeters (iron plates + proportional tubes): Soudan2 (1997)

$$
\mathbf{R}=\frac{\left(\nu_{\mu} / \nu_{\mathbf{e}}\right)_{\text {measured }}}{\left(\nu_{\mu} / \nu_{\mathbf{e}}\right)_{\text {predicted }}}=0.65 \pm 0.08
$$

Atmospheric neutrino events in Super-K

Distance between interaction point and inner detector walls ≥ 1 meter

1489 days of contained event data (April 96 - July 01)

Contained event
(sub-GeV, multi-GeV sample)

Fully Contained (FC)

Partially Contained (PC)

All are assumed to be μ-like
$\mathrm{H}_{2} \mathrm{O}$ radiation length $\approx 36 \mathrm{~cm}$
\rightarrow energetic electrons are totally absorbed in $\sim 8 \mathrm{~m}$ of water

An additional event sample:

Up - going muons from v_{μ} interactions in the rock

Up through-going $\mu, 1678$ days, Obs. $1.7+-0.04+-0.02\left(\mathrm{xil}^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}\right)$
Exp. 1.97+-0.44
Up stopping μ, 1657days,
Obs. $0.41+-0.02+-0.02\left(\mathrm{x}^{-13} 0^{-13} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}\right)$
Exp. 0.73+-0.16
Note: down - going muons are mainly $\pi \rightarrow \mu$ decays in the atmosphere traversing the mountain rock and reaching the detector

Measurement of the zenith angle distribution

Definition of the zenith angle θ :

Polar axis along the local vertical axis, pointing downwards

$$
\text { Down-going : } \theta=0^{\circ}
$$

L (distance between neutrino production point and detector) depends on zenith angle

Earth atmosphere

Horizontal : $\theta=90^{\circ}$

Zenith angle distribution in Super-K

No oscillation ($\chi^{2}=456.5$ / 172 degrees of freedom)
$v_{\mu}-v_{\tau}$ oscillation (best fit): $\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta=1.0$ $\chi^{2}=163.2 / 170$ degrees of freedom

Zenith angle distributions in the Super-K experiment:

Evidence for v_{μ} disappearance over $\sim 1000-10000 \mathrm{~km}$ distance Not a $v_{\mu}-v_{e}$ oscillation:

- v_{e} disappearance from oscillations with $\Delta m^{2}>10^{-3} \mathrm{eV}^{2}$ excluded by the CHOOZ experiment (discussed later)
- For $v_{\mu}-v_{\mathrm{e}}$ oscillation expect a zenith angle distribution for "e-like" events with opposite asymmetry (excess of up-going "e-like" events) because $v_{\mu} / v_{\mathrm{e}} \geq 2$ at production

The most plausible interpretation: $\nu_{\mu}-\nu_{\tau}$ oscillation

cHOOZ

Search for \bar{v}_{e} disappearance over $\sim 1 \mathrm{~km}$ distance Sensitivity to $\Delta m^{2}>7 \times 10^{-4} \mathrm{eV}^{2}$
Two nuclear reactors at the CHOOZ (EDF) power plant Total thermal power 8.5 GW $L=998,1114 \mathrm{~m}$

Detector:

5 ton Gadolinium-enriched liquid scintillator
$\mathrm{n}+\mathrm{Gd} \rightarrow \gamma$ rays
Total energy 8.1 MeV
17 ton liquid scintillator without Gd (γ-ray containment)
90 ton liquid scintillator (cosmic ray veto)
Underground site: depth $300 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}$ eq. (negligible matter effects) Data - taking : 1997-98 Experiment completed in 1998

Event rate at max. power : 25 / day Background (reactors OFF): 1.2 / day

Positron energy spectrum (prompt signal from $\bar{v}_{\mathrm{e}}+\mathrm{p} \rightarrow \mathrm{n}+\mathrm{e}^{+}$) Comparison with predicted spectrum for no oscillation

Measured spectrum

Predicted spectrum (no oscillation)

Energy - integrated ratio
$=1.010 \pm 0.028 \pm 0.027$
\longmapsto no evidence for \bar{v}_{e} disappearance
$\frac{\text { Measured spectrum }}{\text { Predicted spectrum (no oscillation) }}$

CHOOZ Experiment

$\bar{v}_{\mathrm{e}}-\bar{v}_{\mu}\left(\bar{v}_{\mathrm{e}}-\bar{v}_{\tau}\right)$ oscillation: excluded region

Summary

- Solar v_{e} oscillation: $\Delta m^{2} \approx 7.6 \times 10^{-5} \mathrm{eV}^{2}, \theta \approx 34^{\circ}$
- Atmospheric v_{μ} oscillation: $\Delta m^{2} \approx 2.5 \times 10^{-3} \mathrm{eV}^{2}, \theta \approx 45^{\circ}$
- v_{e} oscillation with $\Delta m^{2} \approx 2.5 \times 10^{-3} \mathrm{eV}^{2}$ not observed: $\theta<11.5^{\circ}$

Searches for long baseline oscillations using neutrino beams from accelerators

Motivations:

- Conclusive demonstration that the atmosferic ν_{μ} deficit is due to neutrino oscillations using ν_{μ} beams from proton accelerators (directional beams with known energy spectra):
- Distortions of the ν_{μ} energy distribution \rightarrow measurement of $\Delta m^{2}, \sin ^{2} 2 \theta ;$
- v_{τ} appearance at long distance from source in a beam with no v_{τ} at production.
- Measurement of the Neutral Current event rate to distinguish $v_{\mu}-v_{\tau}$ from $v_{\mu}-v_{s}$ oscillations (v_{s} : a possible "sterile" neutrino) ;
- Search for $v_{\mu}-v_{e}$ oscillations driven by the Δm^{2} value associated with the atmospheric neutrino deficit.

Wide band neutrino beams from accelerators

Focusing of positively or negatively charged hadrons to produce an almost parallel beam with wide momentum distribution using "magnetic horns" (invented at CERN in 1963 by S. Van der Meer) The horns are followed by a long decay tunnel under vacuum

- Axially symmetric conductors
- Pulsed current
- Cylindrically symmetric magnetic field perpendicular to the hadrons produced in the target
 selects opposite charge hadron beams

Horm 2

$$
\pi^{+}\left(\rightarrow v_{\mu}\right) \longmapsto \pi^{-}\left(\rightarrow \bar{v}_{\mu}\right)
$$

"On - axis" neutrinos (emitted at decay angles $\theta=0^{\circ}$ with respect to the hadron beam) have a wide momentum distribution.
"Off -axis" beams have narrower energy distributions but lower fluxes

Project	Distance \mathbf{L}	$\left\langle\mathbf{E}_{\mathbf{v}}\right\rangle$	\boldsymbol{v} beam type	Status
K2K	250 km	1.3 GeV	on - axis	completed
MINOS	735 km	few GeV	on - axis	data - taking
CNGS	732 km	17 GeV	on - axis	data - taking
T2K	295 km	$\sim 0.6 \mathrm{GeV}$	off - axis	few events
NOvA	810 km	$\sim 1.6 \mathrm{GeV}$	off - axis	under construction

- Energy threshold for $v_{\tau}+\mathbf{N} \rightarrow \tau^{-}+\mathrm{X}: \mathrm{E}_{v}>3.5 \mathrm{GeV}$
- Event rate $\sim 1 \nu_{\mu} \rightarrow \mu^{-}$event / year for one ton detector mass
\longrightarrow need detector masses of several kiloton.
- Angular divergence of the v_{μ} beam from pion decay:

Neutrino beam lateral dimensions: $\mathbf{1 0 0} \mathbf{m} \mathbf{- 1} \mathbf{k m}$ for $L>100 \mathrm{~km}$
\longrightarrow no problem to hit the far detector
The neutrino flux decreases as L^{-2} at large distance L

$\underline{K 2 K}$

Neutrino beam:
$95 \% v_{\mu}$
$4 \% \bar{v}_{\mu}$
$1 \% v_{e}$

Near detector: measurement of ν_{μ} flux and ν_{μ} interaction rate in the absence of oscillation $\mathbf{1}$ kton water Čerenkov counter: similar to Super-K; fiducial mass 25 ton Muon chambers: measurement of muon energy spectrum from $\pi \rightarrow \mu$ decay Data - taking: from June 1999 to February 2004 (8.9×10^{19} protons on target) Events fully contained in the Super-K detector, $\mathrm{E}_{\text {vis }}>30 \mathrm{MeV}$: predicted ($\mathcal{P}_{\text {osc }}=0$): $151{ }_{-10}^{+12}$ events observed: 107 events

Contained events with only one muon: 57
Measurement of the ν_{μ} energy spectrum in Super-K from the 571μ events assuming quasi-elastic scattering $\nu_{\mu}+\mathbf{n} \rightarrow \mu^{-}+\mathbf{p}$ (precisely known)

Outgoing proton

(undetected because under Čerenkov threshold)

Quasi-elastic scattering kinematics assuming target neutron at rest $\Rightarrow \nu_{\mu}$ energy determination:

$$
\quad E_{v}=\frac{M E_{\mu}-0.5 m_{\mu}^{2}}{M-E_{\mu}+p_{\mu} \cos \theta}
$$

Best fit: $\Delta m^{2}=2.2 \times 10^{-3} \mathrm{eV}^{2}$ $\sin ^{2} 2 \theta=1$
(in agreement with atmospheric v_{μ} results)

Probability of no oscillation 5×10^{-5}
(equivalent to 4 standard deviations)

MINOS experiment

Neutrino beam from Fermilab to Soudan (an old iron mine in Minnesota): $L=735 \mathrm{~km}$
Near Detector: 980 tons

Accelerator:
Fermilab Main Injector (MI) 120 GeV proton synchrotron High beam intensity (0.4 MW): 4×10^{13} protons per cycle (1.9 s) 4×10^{20} protons / year Decay tunnel : 700 m

NUMI beam ("Neutrinos from Main Injector")

MINOS: Far detector

- Octagonal tracking calorimeter diameter 8 m
- Iron plates 2.54 cm thick
- Plastic scintillator 4 cm wide strips between adjacent iron plates
- 2 modules, each 15 m long
- total mass 5400 tons, fiducial mass 3300 tons.
- 484 scintillator planes (26000 m2)
- Magnetized iron plates: toroidal field, $\mathrm{B}=1.5 \mathrm{~T}$

MINOS: Near detector

- "Octagonal" tracking calorimeter, $3.8 \times 4.8 \mathrm{~m}$
- Construction similar to far detector
- 282 magnetized iron plates
- Total mass 980 tons, fiducial mass 100 tons
- Installed 250 m downstream of the decay tunnel end

Start - up of data - taking: 2005

MINOS: far detector

MINOS results (June 2008)

P. Adamson et al., Phys. Rev. Letters 101, 131802 (2008)

$$
3.36 \times 10^{20} \text { protons on target (May } 2005 \rightarrow \text { July 2007) }
$$

Two neutrino beams: low energy ($\left\langle\mathrm{E}_{v}\right\rangle \approx 5 \mathrm{GeV}$); high energy ($\left\langle\mathrm{E}_{\mathrm{v}}\right\rangle \approx 13 \mathrm{GeV}$) v beam typical composition: $93 \% v_{\mu}, 6 \% \overline{v_{\mu}}, 1.2 \% v_{e}, 0.1 \% \overline{v_{e}}$

Data

Prediction ($\left.\mathscr{P}_{\text {osc }}=0\right)$

Best fit :
$\Delta m^{2}=(2.43 \pm 0.13) \times 10^{-3} \mathrm{eV}^{2}$
$\sin ^{2}(2 \theta)>0.95$
(confidence level 68\%)

CNGS (CERN Neutrinos to Gran Sasso)

Search for v_{τ} appearance at $L=732 \mathrm{~km}$
Predicted number of $v_{\tau}+N \underset{E_{\max }}{\rightarrow} \tau^{-}+\mathbf{X} \quad\left(N_{\tau}\right)$ events:

$\nu_{\mu}-\nu_{\tau}$ oscillation probability $\left(\mathcal{P}_{\mu \tau}\right)$:

$$
\mathscr{P}_{\mu \tau}=\sin ^{2}(2 \theta) \sin ^{2}\left(1.27 \Delta m^{2} \frac{L}{E}\right) \approx 1.27^{2} \sin ^{2}(2 \theta)\left(\Delta m^{2}\right)^{2}\left(\frac{L}{E}\right)^{2}
$$

Good approximation for : $L=732 \mathrm{~km}, E>3.5 \mathrm{GeV}, \Delta m^{2}<4 \times 10^{-3} \mathrm{eV}^{2}$

Disadvantages:

- $L=732 \mathrm{~km}$: distance $\ll \nu_{\mu}-\nu_{\tau}$ oscillation length
$-N_{\tau}$ depends on $\left(\Delta m^{2}\right)^{2} \Rightarrow$ very low event rate at small Δm^{2} values
Advantages:
- Beam optimization independent of Δm^{2}

$$
\mathbf{v}_{\tau}+\mathbf{N} \rightarrow \tau^{-}+\mathbf{X}:
$$

suppression factor with respect to
$\nu_{\mu}+\mathbf{N} \rightarrow \mu^{-}+\mathbf{X}$
from τ mass effects

CNGS Works

CNGS:
 neutrino beam production

Beam energy spectra and interaction rates at Gran Sasso

Primary protons: 400 GeV ; $4 \times 2.3 \times 10^{13}$ / SPS cycle SPS cycle: 26.4 s
Running efficiency 75\% Data-taking 200 days/year Protons on target:
4.5×10^{19} / year

\section*{| $\Delta m^{2}\left(\mathrm{eV}^{2}\right)$ | Rates (events/kton/year) |
| :--- | :--- |}

$\nu_{\mu} \mathrm{CC}$	2450	0
$\bar{\nu}_{\mu} \mathrm{CC}$	49	$\stackrel{0}{0}$
$\nu_{\mathrm{e}} \mathrm{CC}$	20	$\stackrel{\bar{\omega}}{\bar{\omega}}$
$\bar{\nu}_{\mathrm{e}} \mathrm{CC}$	1.2	0.0
$\nu \mathrm{NC}$	823	0
$\bar{\nu} \mathrm{NC}$	17	

1×10^{-3}	2.4	
2.5×10^{-3}	15.1	1 Eั
3.5×10^{-3}	29.4	< \%
5×10^{-3}	58.6	\checkmark ¢
1×10^{-2}	209.0	=*

Search for v_{τ} appearance at Gran Sasso OPERA experiment

No near detector (negligible ν_{τ} production at the proton target)

OPERA experiment: detect τ^{-}by observing its decays to one charged particle($\sim 85 \%$)
Mean τ decay path $\approx 1 \mathrm{~mm} \Rightarrow$ need very high space resolution Photographic emulsion: space resolution $\sim 1 \mu \mathrm{~m}$

"Brick": 56 1mm thick Pb plates interleaved with 57 emulsion films and tightly packed

Brick internal structure

Each brick is followed by a Changeable Sheet (two emulsion films replaced quite often to reduce the scanning load)
"Bricks" arranged into "walls" : one "wall" = 2850 bricks
"Walls" arranged into two "super-modules" $\rightarrow \sim 150,000$ bricks ≈ 1.25 ktons in total Each super-module is followed by a magnetic spectrometer
Planes of orthogonal scintillating strips are inserted between walls to provide the trigger and to identify the brick where the neutrino interacted.
Immediate removal of the brick and Changeable Sheet, emulsion development and automatic measurement using computer - controlled microscopes

OPERA super-module

The OPERA detector

INNER TRACKERS

-990-ton dipole magnets
($B=1.55 \mathrm{~T}$) instrumented with 22 RPC planes

- $3050 \mathrm{~m}^{2}, \sim 1.3 \mathrm{~cm}$ resolution

Target area Muon spectrometer

OPERA: signal and backgrounds

Short decays

Expectations for 5 data - taking years with 4.5×10^{19} protons on target / year

τ decay channel	B.R. (\%)	Signal $\Delta \mathrm{m}^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}$	Background
$\tau \rightarrow \mu$	17.7	2.9	0.17
$\tau \rightarrow \mathbf{e}$	17.8	3.5	0.17
$\tau \rightarrow \mathbf{h}$	49.5	3.1	0.24
$\tau \rightarrow 3 \mathrm{~h}$	15.0	0.9	0.17
All	BR * eff $=10.6 \%$	10.4	0.75

The signal rate depends on $\left(\Delta \mathrm{m}^{2}\right)^{2}$

Main backgrounds:

- Production of charged "charmed" hadrons decaying to only one charged particle in events with unidentified primary lepton (negative muon, electron);
- Primary μ^{-}large angle elastic scattering near the neutrino interaction point;
- Charged hadron interacting close to the neutrino interaction point, with one or three outgoing charged particles and unidentified primary lepton.

OPERA after two years of data - taking (2008-09)

	2008 run	2009 run
total	1.782×10^{19} pot	3.522×10^{19} pot
On-time events	10122	21428
candidate in the target	1698	3693

Events with neutrino interaction vertex identified in a brick: 218 with no primary μ^{-};
1163 with identified primary μ^{-}.

Neutral "charmed" hadron decay to four charged particles; Decay vertex - primary vertex distance $313.1 \mu \mathrm{~m}$

The first OPERA event consistent with τ^{-}production
 N. Agafonova et al., Phys. Letters B 691 (2010) 138

Event interpretation: $\nu_{\tau}+\mathbf{N} \rightarrow \tau^{-}+$hadrons

$$
\xrightarrow{\rho^{-}+v_{\tau}} \pi^{-}+\pi^{0}{ }^{2 \gamma}
$$

Event projections orthogonal to the neutrino beam direction

Number of
$\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$events expected in the analysed event sample:
0.54 ± 0.13
Expected background ("charm" events with unidentified primary μ, NC events with Interacting hadron): 0.018 ± 0.007

ICARUS detector (proposed by C. Rubbia in 1977)

- 600 ton liquid Argon in two adjacent containers
- Container dimensions $3.6 \times 3.9 \times 19.9 \mathrm{~m}^{3}$
- Time Projection Chamber (TPC): electrons from primary ionization drift in the liquid and are collected by read-out wires
\rightarrow 3-dimensional event reconstruction
- Number of primary ionization electrons from a charged particle at minimum ionization ~ 6000 / mm of track length
- Electron drift without recombination over lengths of $\sim 1.8 \mathrm{~m}$ require ultra-pure Argon (concentration of electro-negative impurities $<10^{-10}$)
- Drift velocity ~ $1.5 \mathrm{~mm} / \mu \mathrm{s}$ for electric fields $\sim 0.5 \mathrm{kV} / \mathrm{cm}$
- Liquid Argon density $1.4 \mathrm{~g} / \mathrm{cm}^{3}$
- Radiation length 14 cm

> DETECTOR FILLED
> AT MID MAY 2010 PRESENTLY TAKING DATA AT THE GRAN SASSO NATIONAL LABORATORIES

ICARUS

UV scintillation light from liquid Argon is collected by photomultiplier tubes located behind the read-out wires
The scintillation signal is necessary to localize the event along the drift direction

ICARUS PHYSICS PROGRAMME

Search for $v_{\mu} \rightarrow \nu_{\tau}$ oscillations:
ν_{τ} appearance by detecting $\tau^{-} \rightarrow \mathrm{e}^{-} \nu \bar{v}$ decays
Event topology similar to v_{e} interactions ($\sim 1 \%$ in the CNGS beam) but with missing transverse momentum from undetected $v \bar{v}$
Liquid Argon total mass (600 tons) probably not large enough (~1 event for 5 data - taking years), but useful to demonstrate the detector potential for future, very high mass neutrino detectors

ICARUS tracks recorded during the first detector tests in 2001

Cosmic muon with δ rays (hard-scattered electrons)

Run 308
Event 332
Date 21/06/01
From the position of the shower maximum, we can estimate the electron energy $E_{e} \approx 20 \mathrm{GeV}$

Future projects

- Precise measurement of the neutrino mixing matrix
- Search for CP violation in neutrino oscillations

Assumption: only three neutrinos \Rightarrow two independent Δm^{2} values

Experimental information presently available:

- Solar neutrino experiments + KAMLAND
$\cdot \boldsymbol{m}_{2}{ }^{2}-\boldsymbol{m}_{1}^{2} \equiv \Delta_{12}=(7.59 \pm \mathbf{0 . 2 1}) \times 10^{-5} \mathbf{e V}^{2}\left(m_{2}>m_{1}\right.$ by definition $)$
- Large mixing angle: $\theta=34.1^{\circ} \pm 1.0^{\circ}$
- Atmospheric neutrino experiments+ $\mathrm{K} 2 \mathrm{~K}+\operatorname{MINOS}\left(\nu_{\mu}\right.$ disappearance) $\cdot\left|m_{3}{ }^{2}-m_{2}{ }^{2}\right| \equiv\left|\Delta_{23}\right|=(2.43 \pm 0.13) \times 10^{-3} \mathrm{eV}^{2}$ (MINOS)
- Large mixing angle: $\boldsymbol{\theta} \approx 45^{\circ}$ (consistent with maximum mixing)
- CHOOZ experiment: no evidence for \bar{v}_{e} disappearance associated with Δ_{23}

Neutrino masses: normal or inverted hierarchy?

Three - neutrino oscillations are described by three angles $\left(\theta_{12}, \theta_{13}, \theta_{23}\right)$ + a phase angle δ inducing violation of $\mathbf{C P}$ - symmetry

$$
\begin{aligned}
&\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{i \delta}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} \\
0 & 1 & 0 \\
-s_{13} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-i \delta}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)= \\
&=\left(\begin{array}{ccc}
c_{12} c_{13} & c_{13} s_{12} & s_{13} e^{-i \delta} \\
-c_{23} s_{12}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-c_{23} s_{12} s_{13} e^{i \delta} & c_{13} c_{23}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
& c_{\mathrm{ik}} \equiv \cos \theta_{\mathrm{ik}} ; s_{\mathrm{ik}} \equiv \sin \theta_{\mathrm{ik}}
\end{aligned}
$$

Unitarity condition:

$$
\begin{aligned}
& \sum_{i} \mathbf{U}_{\alpha i} \mathbf{V}_{i \beta}=\sum_{i} \mathbf{U}_{\alpha i} \mathbf{U}_{\beta i}^{*}=\delta_{\alpha \beta} \\
& \text { inverse matrix } \mathbf{V}=\mathbf{U}^{-\mathbf{1}}
\end{aligned}
$$

If $s_{13}=0$ all matrix elements containing the phase δ vanish

Impact of the CHOOZ experiment on the mixing matrix
Evolution of a neutrino produced as v_{e} at distance L from source:

$$
\nu(L)=U_{e 1} \nu_{1} e^{-i E_{1} L}+U_{e 2} \nu_{2} e^{-i E_{2} L}+U_{e 3} \nu_{3} e^{-i E_{3} L}
$$

v_{e} disappearance probability:

$$
\begin{gathered}
\mathcal{P}_{e e}=1-\left|\left\langle v_{\mu} \mid v(L)\right\rangle\right|^{2}-\left|\left\langle v_{\tau} \mid v(L)\right\rangle\right|^{2} \\
\left\langle v_{\mu} \mid v(L)\right\rangle=e^{-i E_{1} L}\left(U_{e 1} U_{\mu 1}+U_{e 2} U_{\mu 2} e^{-i\left(E_{2}-E_{1}\right) L}+U_{e 3} U_{\mu 3} e^{-i\left(E_{3}-E_{1}\right) L}\right) \\
\left\langle v_{\tau} \mid v(L)\right\rangle=e^{-i E_{1} L}\left(U_{e 1} U_{\tau 1}+U_{e 2} U_{\tau 2} e^{-i\left(E_{2}-E_{1}\right) L}+U_{e 3} U_{\tau 3} e^{-i\left(E_{3}-E_{1}\right) L}\right)
\end{gathered}
$$

Remember: for $E \gg m \quad E_{i}-E_{k} \approx \frac{m_{i}^{2}-m_{k}^{2}}{2 E}$
Ignoring the overall phase $\exp \left(-i E_{1} L\right)$:

$$
\begin{aligned}
& \left\langle v_{\mu} \mid v(L)\right\rangle=U_{e 1} U_{\mu 1}+U_{e 2} U_{\mu 2} e^{-i \frac{\Delta_{12} L}{2 E} L}+U_{e 3} U_{\mu 3} e^{-i \frac{\Delta_{13}}{2 E} L} \\
& \left\langle v_{\tau} \mid v(L)\right\rangle=U_{e 1} U_{\tau 1}+U_{e 2} U_{\tau 2} e^{-i \frac{\Delta_{12}}{2 E} L}+U_{e 3} U_{\tau 3} e^{-i \frac{\Delta_{13}}{2 E} L}
\end{aligned}
$$

In the CHOOZ experiment $\langle E>\approx 3 \mathrm{MeV}, L \approx 1000 \mathrm{~m}$
$\frac{\Delta_{12}}{2 E} L=2.534 \frac{\Delta_{12}\left(\mathrm{eV}^{2}\right)}{E(\mathrm{MeV})} L(\mathrm{~m}) \ll 1 \longrightarrow$ oscillation effects associated with Δ_{12} are negligible
Define: $\quad \alpha=\frac{\Delta_{12}}{\left|\Delta_{13}\right|} \approx 0.03$
Series expansion of three - flavour v_{e} (and \bar{v}_{e}) disappearance probability (E.K. Akhmedov et al., JHEP 04 (2004) 078):

$$
\mathscr{P}_{e e}=1-\left|\left\langle v_{\mu} \mid v(L)\right\rangle\right|^{2}-\left|\left\langle v_{\tau} \mid v(L)\right\rangle\right|^{2}=1-\alpha^{2} \sin ^{2} 2 \theta_{12}-4 \sin ^{2} \theta_{13} \sin ^{2}\left(1.267 \Delta_{13} \frac{L}{E}\right)
$$

CHOOZ limit: $\mathscr{P}_{\mathrm{ee}}<0.11$ for $\left|\Delta_{13}\right| \approx 2.5 \times 10^{-3} \mathrm{eV}^{2} \quad$ (90% conf. level)

$$
\theta_{13}<11.5^{\circ}
$$

Three - neutrino mixing matrix consistent with all measured oscillation parameters:

$$
\left[\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \left(34^{0}\right) & \sin \left(34^{\circ}\right) & 0 \\
-\sin \left(34^{\circ}\right) / \sqrt{2} & \cos \left(34^{\circ}\right) / \sqrt{2} & 1 / \sqrt{2} \\
\sin \left(34^{\circ}\right) / \sqrt{2} & -\cos \left(34^{\circ}\right) / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

CHOOZ limit

Solar V_{e} oscillations

$$
\text { assuming } U_{\mathrm{e} 3}=\sin \theta_{13}=0
$$

(consistent with the limit from the CHOOZ experiment)

$$
v(L)=U_{e 1} V_{1} e^{-i E_{1} L}+U_{e 2} V_{2} e^{-i E_{2} L}
$$

v_{e} disappearance probability :

$$
\begin{gathered}
\mathscr{P}_{e e}=1-\left|\left\langle v_{\mu} \mid v(L)\right\rangle\right|^{2}-\left|\left\langle v_{\tau} \mid v(L)\right\rangle\right|^{2} \\
\left\langle v_{\mu} \mid v(L)\right\rangle=U_{e 1} U_{\mu 1}+U_{e 2} U_{\mu 2} e^{-i \frac{\Lambda_{12}}{2 E} L} \\
\left\langle v_{\tau} \mid v(L)\right\rangle=U_{e 1} U_{\tau 1}+U_{e 2} U_{\tau 2} e^{-\frac{\Lambda_{12}}{2 E} L} \\
\theta_{23}=45^{\circ} \rightarrow \sin \left(\theta_{23}\right)=\cos \left(\theta_{23}\right) \Longrightarrow\left\langle v_{\mu} \mid v(L)\right\rangle=-\left\langle v_{\tau} \mid v(L)\right\rangle
\end{gathered}
$$

Violation of CP symmetry in three - neutrino mixing

CP violation : $\quad \mathscr{P}_{\text {osc }}\left(v_{\alpha}-v_{\beta}\right) \neq \mathscr{P}_{\text {osc }}\left(\bar{v}_{\alpha}-\bar{v}_{\beta}\right)$
CPT invariance: $\mathscr{P}_{\text {osc }}\left(v_{\alpha}-v_{\beta}\right)=\mathscr{P}_{\text {osc }}\left(\bar{v}_{\beta}-\bar{v}_{\alpha}\right)$
$\longrightarrow \mathcal{P}_{\text {osc }}\left(v_{\alpha}-v_{\alpha}\right)=\mathscr{P}_{\text {osc }}\left(\bar{v}_{\alpha}-\bar{v}_{\alpha}\right)$

$$
(\alpha, \beta=e, \mu, \tau)
$$

(CPT invariance)
CP violation in neutrino oscillations can only be detected in appearance experiments
CP violation in $v_{\mu}-v_{\mathrm{e}}$ oscillations:

$$
\text { Define: } \quad \mathscr{P}_{\mu \mathrm{e}}=\mathscr{\mathscr { O }}_{\text {osc }}\left(v_{\mu} \rightarrow V_{e}\right) ; \quad \overline{\mathcal{T}}_{\mu \mathrm{e}}=\mathscr{P}_{\text {osc }}\left(\bar{v}_{\mu} \rightarrow \bar{V}_{e}\right)
$$

Vacuum oscillations:

$$
\begin{aligned}
\mathscr{P}_{\mu e}= & A \sin ^{2}\left(1.27 \Delta_{23} \frac{L}{E}\right)+B \sin ^{2}\left(1.27 \Delta_{12} \frac{L}{E}\right)+C \cos \left(-\delta-1.27 \Delta_{23} \frac{L}{E}\right) \sin \left(1.27 \Delta_{23} \frac{L}{E}\right) \sin \left(1.27 \Delta_{12} \frac{L}{E}\right) \\
\overline{\mathscr{P}}_{e \mu} & =A \sin ^{2}\left(1.27 \Delta_{23} \frac{L}{E}\right)+B \sin ^{2}\left(1.27 \Delta_{12} \frac{L}{E}\right)+C \cos \left(\delta-1.27 \Delta_{23} \frac{L}{E}\right) \sin \left(1.27 \Delta_{23} \frac{L}{E}\right) \sin \left(1.27 \Delta_{12} \frac{L}{E}\right) \\
A & =\left(\sin \theta_{23} \sin 2 \theta_{13}\right)^{2}
\end{aligned}
$$

$$
B=\left(\cos \theta_{23} \sin 2 \theta_{12}\right)^{2}
$$

$$
C=\cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23}
$$

CP violation in $v_{\mu}-v_{e}$ oscillations
can only be measured if $\theta_{13} \neq 0$
AND the experiment is simultaneously sensitive
to Δ_{12} and Δ_{23}

The most urgent problem: to measure precisely θ_{13}

need new oscillation experiments
(v_{e} disappearance $/ \nu_{\mu}-v_{\mathrm{e}}$ appearance)
more sensitive to θ_{13} than the CHOOZ experiment

\bar{v}_{e} disappearance experiments in preparation

 (with near detector to measure directly the \bar{v}_{e} flux)1. RENO: two identical underground detectors consisting of 15 ton Gd - doped liquid scintillator (similar to CHOOZ) at the Yonggwang power plant (South-Korea); 6 reactors, total thermal power 16 GW

Start-up of data - taking : 2011
Expected sensitivity after 3 years: $\sin ^{2} 2 \theta_{13}<0.02$ (CHOOZ limit : $\sin ^{2} 2 \theta_{13}<0.15$)
2. DOUBLE - CHOOZ (with near detector identical to far detector)

Start-up of data - taking : end 2011
3. Daya Bay (on the East coast of China, 55 km North-East of Hong Kong)

Two nuclear power plants 1100 m apart:
Daya Bay (two reactors, $2 \times 2.9 \mathrm{GW}$)
Ling Ao (two reactors, 2×2.9 GW + 2 under construction)
Total thermal power 17.4 GW after 2011
8 identical liquid scintillator detectors (similar to CHOOZ) in 8 different sites
(4 near the reactors, 4 at $\sim 2 \mathrm{~km}$ distance)
Start-up of data - taking: 2012

High - sensitivity searches for $v_{\mu}-v_{e}$ oscillations: detector distance $L \approx \frac{1}{2} \lambda_{23}$ \Rightarrow require low energy neutrino beams ($1-2 \mathrm{GeV}$) for the existing detectors

K2K: neutrino flux too low despite the very large detector mass (Super-K)
CNGS: physics programme optimized for v_{τ} appearance
(beam energy >> τ production threshold, too high for $\nu_{\mu}-v_{e}$ oscillations, no near detector to measure the intrinsic v_{e} contamination in the beam)

MINOS: preliminary results (April 2010)

Distance $L=735 \mathrm{~km}$: the neutrino beam traverses the Earth crust $\left(<\rho>\approx 3 \mathrm{~g} / \mathrm{cm}^{3}\right.$, $\mathrm{Z} / \mathrm{A} \approx 1 / 2) \longrightarrow$ matter effects cannot be neglected

$$
\begin{aligned}
\tan 2\left(\theta_{13}\right)_{\text {matter }}= & \frac{\Delta m_{13}^{2} \sin 2 \theta_{13}}{\Delta m_{13}^{2} \cos 2 \theta_{13}-\xi} \quad \xi \equiv \\
& 2 E V_{W} \approx 1.526 \times 10^{-4} \frac{Z}{A} \rho E\left(\mathrm{eV}^{2}\right) \\
& \left(\rho \text { in } \mathrm{g} / \mathrm{cm}^{3}, E \text { in } \mathrm{GeV}\right)
\end{aligned}
$$

Matter effects depend on the sign of $\Delta m^{2}{ }_{23}$
At the first peak of the $v_{\mu}-v_{e}$ oscillation:

$$
E \approx 1.4 \mathrm{GeV} ; \quad \xi \approx 3.3 \times 10^{-4} \mathrm{eV}^{2} ; \Delta m_{13}^{2} \cos 2 \theta_{13} \approx \pm 2.4 \times 10^{-3} \mathrm{eV}^{2}
$$

$\nu_{\mu}-v_{e}$ oscillations:

Series expansions for three-flavor neutrino oscillation probabilities in matter
E.K. Akhmedov et al., JHEP 04 (2004) 078

$$
\mathcal{P}\left(v_{\mu}-v_{e}\right)=\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \frac{\sin ^{2}(A-1) \omega}{(A-1)^{2}}
$$

$$
-2 \alpha \sin \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \frac{\sin A \omega}{A \omega} \frac{\sin (A-1) \omega}{A-1} \sin \omega
$$

$$
+2 \alpha \sin \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \cos \delta \frac{\sin A \omega}{A \omega} \frac{\sin (A-1) \omega}{A-1} \cos \omega
$$

$$
A=\frac{2 E V_{W}}{\Delta_{13}}=\frac{1.526 \times 10^{-4}(Z / A) \rho E}{\Delta_{13}} \quad \omega=1.267 \Delta_{13} \frac{L}{E} \quad \alpha=\frac{\Delta_{12}}{\Delta_{13}} \approx \pm 0.03
$$

$$
\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right) ; E(\mathrm{GeV}) ; L(\mathrm{~km}) ; \Delta_{i k}\left(\mathrm{eV}^{2}\right)
$$

Note the weak dependence on the CP-violating phase δ coming from terms to first order in $\Delta_{12}(\alpha \approx \pm 0.03)$

MINOS: search for $v_{\mu}-v_{e}$ oscillations

Preliminary results (April 2010)
7×10^{20} protons on target (May 2005 - August 2009)

Experimental method:

- Select $v_{e} \rightarrow$ electron events from event topology (no muon, presence of an electromagnetic shower consistent with an electron)
- Measure backgrounds in the near detector (no oscillation)
- Predict backgrounds for the far detector
- Compare far detector data with predictions

MINOS

Far detector predictions
for no $\nu_{\mu}-v_{e}$ oscillation

	Total	Stat. Err.	Syst. Err.	NC	CCNuMu	Beam NuE	CcNuTau
N. of events	49.1	7.0	2.7	35.8	6.3	5.0	2.0

Expected number of events for no $v_{\mu}-v_{e}$ oscillation: 49.1 ± 7.0 (stat.) ± 2.7 (sist.) Observed: 54
No evidence for $v_{\mu}-v_{e}$ oscillation
$v_{e} \rightarrow$ electron selected events: Energy distribution in the far detector

Excluded regions in the plane $\delta, \sin ^{2} 2 \theta_{13}$ for $\left|\Delta_{23}\right|=2.43 \times 10^{-3} \mathrm{eV}^{2}$

Limits (C.L. 90\%) for $\delta=0$:

- $\Delta_{23}>0$ (normal hierarchy): $\sin ^{2} 2 \theta_{13}<0.12 ; \theta_{13}<10.1^{\circ}$
- $\Delta_{23}<0$ (inverted hierarchy): $\sin ^{2} 2 \theta_{13}<0.20 ; \theta_{13}<13.3^{\circ}$

High sensitivity $v_{\mu}-v_{\mathrm{e}}$ oscillation searches $\left(\mathcal{P}_{\text {osc }} \propto \sin ^{2} 2 \theta_{13}\right)$
J-PARC (Japan Proton Accelerator Research Complex): 50 GeV high intensity proton synchrotron at JAERI (Tokai) in operation since 2009
T2K (Tokai to Kamioka): experiment to measure θ_{13} using a 2.5° off-axis neutrino beam of $\sim \mathbf{0 . 6} \mathrm{GeV}$ aimed at the Super-K detector ($L=295 \mathrm{~km}$) T2K includes a near detector

NOvA: esperiment approved in 2008 to use the Fermilab NUMI beam at a distance of 810 km . The detector is located on the surface, 12 km from the beam axis (14.8 mr off - axis). Neutrino beam energy $\sim 1.6 \mathrm{GeV}$

Detector: 15,000 ton liquid scintillator in plastic rectangular tubes 15.5 m long, section $3.9 \mathrm{~cm} \times 6 \mathrm{~cm}$

Search for $\nu_{\mu} \rightarrow \nu_{\mathrm{e}}$ oscillations in the T2K experiment: expectations (from simulations)

Energy distribution of $v_{e} \rightarrow e$ events
8.3×10^{21} protons on target at 30 GeV
$(5$ years of data - taking)

Sensitivity : limit obtained if $N\left(v_{\mathrm{e}}\right.$ events $)=\mathrm{N}($ background $)$

NOTE:

$v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation probability proportional to $\sin ^{2}\left(2 \theta_{\mu e}\right)=\sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\theta_{23}\right)=\frac{1}{2} \sin ^{2}\left(2 \theta_{13}\right)$ ($\theta_{23}=45^{\circ}$)

January - June 2010 run:

3.3×10^{19} protons on target
22 fully contained events observed in the Super-K detector

Measurement of CP violation (phase angle δ in the mixing matrix)

First - order approximation for $v_{\mu}-v_{e}$ and $\bar{v}_{\mu}-\bar{v}_{\mathrm{e}}$ oscillation probabilities:

$$
\begin{aligned}
\mathscr{P}\binom{v_{\mu}-v_{e}}{\bar{V}_{\mu}-\bar{\nu}_{e}}= & \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \frac{\sin ^{2}(A-1) \omega}{(A-1)^{2}} \\
& \mp 2 \alpha \sin \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \frac{\sin A \omega}{A \omega} \frac{\sin (A-1) \omega}{A-1} \sin \omega \\
& +2 \alpha \sin \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \cos \delta \frac{\sin A \omega}{A \omega} \frac{\sin (A-1) \omega}{A-1} \cos \omega
\end{aligned}
$$

Two possible methods:

- Data - taking with v and \bar{v} beams;
- Data - taking with v beams only, measurement of the $v_{\mu}-v_{e}$ oscillation probability at the first and second oscillation maximum ($\omega \approx \pi / 2,3 \pi / 2$).

Neutrino energy at the $1^{\text {st }}$ and $2^{\text {nd }} \nu_{\mu}-v_{e}$ oscillation maximum

Experiment	L (km)	$1^{\text {st }}$ maximum	2nd maximum
T2K	295 km	0.58 GeV	0.19 GeV
NOvA	810 km	1.6 GeV	0.53 GeV

For T2K E_{v} at $2^{\text {nd }}$ maximum is too low to separate electrons from muons need longer baseline distances

PROPOSAL FOR AN ICARUS-LIKE LIQUID ARGON DETECTOR WITH A 100 KTON MASS IN THE OKINOSHIMA ISLANDS OR IN KOREA

Proposal for a new water Čerenkov detector with 500 kton mass for the new underground laboratory under construction at Homestake (U.S.A.) .

Neutrino beam from the 28 GeV proton synchrotron (AGS) at the Brookhaven National Laboratory (L.I., N.Y., U.S.A.)
$\mathrm{L}=2540 \mathrm{~km}$
M.V. Diwan, et al., Phys. Rev. D 68 (2003) 012002

The new Homestake underground laboratory ("DUSEL") is expected to be operational in 2018

A NEW CONCEPT:
 NEUTRINO FACTORY

Muon storage ring with long straight sections pointing to neutrino detectors at large distance. $\mathrm{N}(\mu): \geq 10^{21} /$ year

Components of a Neutrino Factory:

- High - intensity proton accelerator (up to 10^{15} protons/s, energy few GeV) ;
- High - aperture solenoidal magnetic channel following the proton target to capture $\pi^{ \pm}$and $\mu^{ \pm}$from $\pi^{ \pm}$decay;
- Muon "cooling" to reduce the muon beam angular spread and momentum interval;
- Two or more muon accelerators in series;
- A muon magnetic storage ring with long straight sections.
μ^{+}storage \Rightarrow pure $\bar{v}_{\mu}, v_{\mathrm{e}}$ beams;
μ^{-}storage \Rightarrow pure $\nu_{\mu}, \bar{v}_{\mathrm{e}}$ beams;
Neutrino fluxes and energy distributions precisely predicted from μ decay kinematics
Search for $v_{e}-v_{\mu}$ oscillations: detection of "wrong sign" muons (electric charge opposite to charge of stored muons) \Rightarrow MAGNETIC DETECTOR

A possible scheme of Neutrino Factory

Muon storage ing

An alternative Neutrino Factory design

Muon cooling

In the transverse plane: successive stages of acceleration / deceleration by ionization

Reducing the muon beam momentum spread: Accelerating cavity with modulated electric field: weak field for early, fast muons; high field for late, slow muons

$$
\begin{gathered}
\text { Predicted fluxes } \\
\text { (neutrinos / (year } \times 0.25 \mathrm{GeV} \text {) } \\
\text { Detector diameter } 10 \mathrm{~m} \\
\text { Distance } L=732 \mathrm{~km} ; \\
\mu^{+}, \mathrm{E}_{\mu}=10,20,50 \mathrm{GeV}
\end{gathered}
$$

Measurement of CP violation at a Neutrino Factory
The sensitivity to the phase angle δ decreases rapidly with θ_{13}
\rightarrow no measureable effect for $\theta_{13}<1^{\circ}$
Optimum distance to measure the phase angle $\delta: L \approx 2000-4000 \mathrm{~km}$:
The neutrino beam traverses the Earth crust
\rightarrow matter effects of opposite sign for neutrinos and antineutrinos
\rightarrow apparent violation of CP symmetry
Matter effects and direct $C P$ violation have different E and L dependences
\longrightarrow require two detectors at different distances and study CP violation as a function of the neutrino energy E

Number of events / year expected in a 40 kton detector
for $2.5 \times 10^{20} \mu^{+}$decays in the straight section of a 50 GeV Neutrino Factory

$\boldsymbol{L}(\mathbf{k m})$	$\overline{\boldsymbol{v}}_{\boldsymbol{\mu}} \mathbf{N} \rightarrow \boldsymbol{\mu}^{+} \mathbf{X}$	$\mathbf{v}_{\mathbf{e}} \mathbf{N} \rightarrow \mathbf{e}^{-} \mathbf{X}$	$\boldsymbol{v} \mathbf{N} \rightarrow \mathbf{v} \mathbf{X}$
$\mathbf{7 3 0}$	8.8×10^{6}	1.5×10^{7}	8×10^{6}
$\mathbf{3 5 0 0}$	3×10^{5}	6×10^{5}	3×10^{5}
$\mathbf{7 0 0 0}$	3×10^{4}	1.3×10^{5}	5×10^{4}

"Beta" beams

An alternative idea for a Neutrino Factory (P. Zucchelli, 2001)

- Produce intense beams of radioactive isotopes undergoing β decay
- Acceleration and injection into a storage ring with long straight sections

$$
\begin{array}{ll}
\mathrm{He}^{6} \rightarrow \mathrm{Li}^{6}+\mathbf{e}^{-}+\bar{v}_{\mathrm{e}}: & <\mathrm{E}\left(\bar{v}_{\mathrm{e}}\right)>=1.94 \mathrm{MeV} ; \tau_{1 / 2}=0.807 \mathrm{~s} \\
\mathrm{Ne}^{18} \rightarrow \mathrm{~F}^{18}+\mathbf{e}^{+}+\mathrm{v}_{\mathrm{e}}: & <\mathrm{E}\left(\mathrm{v}_{\mathrm{e}}\right)>=1.86 \mathrm{MeV} ; \tau_{1 / 2}=1.672 \mathrm{~s}
\end{array}
$$

Conceptual machine schemes studied so far:

1. Acceleration: $\gamma=60\left(\mathrm{He}^{6}\right)$, $=100\left(\mathrm{Ne}^{18}\right) . L=130 \mathrm{~km}$ (CERN - Tunnel Frejus)
2. Acceleration: $\gamma=350\left(\mathrm{He}^{6}\right),=580\left(\mathrm{Ne}^{18}\right) . L=732 \mathrm{~km}(\mathrm{CERN}-\mathrm{Gran}$ Sasso)
3. Acceleration: $\gamma=1500\left(\mathrm{He}^{6}\right),=2500\left(\mathrm{Ne}^{18}\right) . L=3000 \mathrm{~km}(\mathrm{CERN}$ - ?)

Typical event rate:
10 - 800 / year for a 1000 ton detector

CONCLUSIONS ON THREE - NEUTRINO MIXING

- Neutrinos mix and have non - zero masses;
- We do not know the neutrino mass absolute scale because oscillations provide information on Δm^{2}, and not m^{2}
(The present direct limit on the \bar{v}_{e} mass from $\mathrm{H}^{3} \beta$ - decay is $m<2 \mathrm{eV}$)
-The most urgent problem in the study of neutrino oscillations is to measure θ_{13} with much higher sensitivity than CHOOZ and MINOS ;
- Only if $\theta_{13}>1^{\circ}$ there is hope of observing CP violation in neutrino mixing;
- R\&D is in progress on new ideas to produce more intense, higher purity neutrino beams (Neutrino Factories, Beta Beams) .

However, there are hints from the LSND experiment at Los Alamos in the 1990s, and more recently from the MiniBooNE experiment at Fermilab, that there may be (at least) one more light neutrino:
LSND observes a signal from $\bar{v}_{\mu}-\bar{v}_{\mathrm{e}}$ oscillations with $\Delta m^{2} \approx 0.2-2 \mathrm{eV}^{2}$; MiniBooNE has a similar signal in $\bar{v}_{\mu}-\bar{v}_{e}$ oscillations, but not in $\nu_{\mu}-v_{e}$. The statistical significance is about 3 standard deviations in both experiments. These puzzling results need confirmation from two-detector experiments.

LSND and KARMEN experiments: search for $\bar{v}_{\mu}-\bar{v}_{\mathrm{e}}$ oscillations
Experimental method

Neutrino sources

Parameters of the LSND and KARMEN experiments

	LSND	KARMEN
Accelerator	Los Alamos Neutron Science Centre	Neutron Spallation Facility ISIS ar R.A.L. (U.K.)
Proton kin. energy	$\mathbf{8 0 0 ~ M e V}$	$\mathbf{8 0 0 ~ M e V}$
Proton current	$1000 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$
Detector	Single cylindrical tank filled with liquid scintillator Collect both scintillating and Čerenkov light	512 independent cells filled with liquid scintillator
Detector mass	167 tons	56 tons
Event localisation	PMT timing	cell size
Distance from v source	29 m	17 m
Angle θ between proton and v direction	11°	90°
Data taking period	$1993-98$	$1997-2001$
Protons on target	4.6×10^{23}	1.5×10^{23}

Neutrino energy spectra from $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ decay at rest

v_{e} detection: the "classical" way

$$
\overline{\mathbf{v}}_{\mathbf{e}}+\mathbf{p} \rightarrow \mathbf{e}^{+}+\mathbf{n}
$$

delayed signal from np $\rightarrow \gamma \mathbf{d}\left(\mathrm{E}_{\gamma}=2.2 \mathrm{MeV}\right)$ KARMEN has Gd-loaded paper between adjacent cells \rightarrow enhanced neutron capture, $\Sigma \mathrm{E}_{\gamma}=8.1 \mathrm{MeV}$

prompt signal

KARMEN beam time structure
Repetition rate 50 Hz
 Expect $\bar{v}_{\mu} \rightarrow \bar{v}_{\mathrm{e}}$ oscillation signal within $\sim 10 \mu$ s after beam pulse

LSND beam time structure
Repetition rate 120 Hz

LSND: evidence for $\bar{v}_{\mu}-\bar{v}_{\mathrm{e}}$ oscillations
Positrons with $20<E<60 \mathrm{MeV}$
$\mathrm{N}($ beam-on) $-\mathrm{N}($ beam-off) $=49.1 \pm 9.4$ events
Neutrino background $=16.9 \pm 2.3$

$$
\begin{array}{r}
\bar{v}_{\mathrm{e}} \text { signal }=32.2 \pm 9.4 \text { events } \\
\mathscr{P}_{\text {osc }}=(0.264 \pm 0.067 \pm 0.045) \times 10^{-2}
\end{array}
$$

KARMEN: no evidence for $\bar{v}_{\mu}-\bar{v}_{e}$ oscillations Positrons with $16<E<50 \mathrm{MeV}$: 15 events

Total background: 15.8 ± 0.5 events

$$
\left.\mathscr{P}_{\text {osc }}<0.085 \times 10^{-2} \text { (conf. level } 90 \%\right)
$$

Consistency of KARMEN and LSND results in a limited region of the oscillation parameters because of the different detector distance L :
L = 29 m (LSND);
$L=17 \mathrm{~m}$ (KARMEN)

The LSND $v_{\mu}-v_{e}$ oscillation signal with $\Delta m^{2} \approx 0.2-2 \mathrm{eV}^{2}$ requires the existence of a $4^{\text {th }}$ neutrino:

$$
\begin{aligned}
&\left(m_{2}^{2}-m_{1}^{2}\right)+\left(m_{3}^{2}-m_{2}^{2}\right)+\left(m_{1}^{2}-m_{3}^{2}\right)=0 \\
& m_{2}^{2}-m_{1}^{2} \approx 7.6 \times 10^{-5} \mathrm{eV}^{2} ;\left|m_{3}^{2}-m_{2}^{2}\right| \approx 2.4 \times 10^{-3} \mathrm{eV}^{2} \\
& \rightarrow\left|m_{1}^{2}-m_{3}^{2}\right|=\left|m_{3}{ }^{2}-m_{2}^{2}\right| \pm\left(m_{2}^{2}-m_{1}^{2}\right) \ll 0.2-2 \mathrm{eV}^{2}
\end{aligned}
$$

Measurement of the Z - boson width at LEP: number of neutrinos $N_{v}=2.984 \pm 0.008$ \Rightarrow the $4^{\text {th }}$ neutrino does not couple to W or $\mathrm{Z} \Rightarrow$ no interaction with matter: "sterile neutrino" - the mixing matrix dimensions are at least 4×4

$$
\begin{gathered}
v_{\alpha}=\sum_{k=1}^{4} U_{\alpha k} v_{k} \quad \alpha=e, \mu, \tau, s \\
P\left(v_{\mu}-v_{e}\right)=\left|\sum_{k=1}^{4} U_{e k} U_{\mu k} \exp \left(-i E_{k} t\right)\right|^{2}=\left|U_{e 1} U_{\mu 1}+\sum_{k=2}^{4} U_{e k} U_{\mu k} \exp \left(-i \frac{\Delta_{k 1}}{2 E} t\right)\right|^{2} \quad\left(\Delta_{k 1}=m_{k}^{2}-m_{1}^{2}\right)
\end{gathered}
$$

For the LSND experiment oscillation effects associated with Δ_{12} and Δ_{23} are negligible:

$$
\begin{aligned}
& P\left(v_{\mu}-v_{e}\right)=\left|\sum_{k=1}^{3} U_{e k} U_{\mu k}+U_{e 4} U_{\mu 4} \exp \left(-i \frac{\Delta_{41}}{2 E} t\right)\right|^{2}=4\left|U_{e 4} U_{\mu 4}\right|^{2} \sin ^{2}\left(1.267 \Delta_{41} \frac{L}{E}\right) \quad(L[m] ; E[M e V]) \\
& \left(\sum_{k=1}^{4} U_{e 4} U_{\mu 4}=0 \text { from unitarity }\right)
\end{aligned}
$$

MiniBooNE at Fermilab

An experiment to verify the LSND oscillation signal

MiniBooNE detector

Particle identification

 based on the different behaviour of electrons, muons, pions and on the Čerenkov light ring configuration- Spherical tank, diameter 12 m, filled with 807 ton mineral oil
- Collect both Čerenkov light (directional) and scintillation light.
- Fiducial mass 445 tons
- Optically isolated inner region (1280 photomultiplier tubes, diam. 20 cm)
- External shell used for anticoincidence (240 photomultiplier tubes)

MiniBooNE: search for $v_{\mu}-v_{e}$ oscillations 6.46×10^{20} protons on target
A.A.Aguilar-Arevalo et al., Phys. Rev. Lett. 102, 101802 (2009)
v_{e} energy distribution
for events consistent with $v_{e}+n \rightarrow e^{-}+p$

Event excess with $0.2<E_{v}<0.475 \mathrm{GeV}: 128.8 \pm 43.4$ events
The MiniBooNE detector does not distinguish electrons from photons
v_{e} energy distribution after background subtraction. Comparison with three different $\nu_{\mu}-v_{e}$ oscillations.

Best fit to $v_{\mu}-v_{e}$ oscillation for $0.2 \mathrm{GeV}<\mathrm{E}_{\nu}<2 \mathrm{GeV}$: $\sin ^{2} 2 \theta=0.0017 ; \Delta m^{2}=3.14 \mathrm{eV}^{2}$ Parameters excluded by KARMEN

- MiniBooNE $v_{\mu}-v_{e}$ results inconsistent with the oscillation parameters describing the LSND signal;
- Excess of events at low E_{v} unexplained

MiniBooNE: search for $\bar{v}_{\mu}-\bar{v}_{e}$ oscillations
5.66×10^{20} protons on target
A.A.Aguilar-Arevalo et al., arXiv:1007.1150v3

$E_{\nu}^{Q E}$ Range	Data	Background	Excess	

MINOS: search for $v_{\mu}-v_{s}$ oscillations as a possible mechanism for ν_{μ} disappearance in the far detector: measurement of the Neutral Current (NC) event rate $\mathrm{v}+\mathbf{N} \rightarrow \mathbf{v}+$ hadrons
NC events: no muon track \Rightarrow events contained in a limited number of consecutive detector planes (include $\nu_{\mathrm{e}}+\mathrm{N} \rightarrow \mathrm{e}^{-}+$hadron events)
$\nu_{\mu}-v_{\tau}$ oscillations: NC event rate unchanged (identical cross-section for the three neutrino types)
$\nu_{\mu}-v_{\mathrm{s}}$ oscillations:
v_{s} does not interact with matter
\Rightarrow deficit of NC events
Measured energy distribution consistent with no deficit
\Rightarrow no evidence of v_{s}
Results from a fit including a fraction $f\left(v_{\mathrm{s}}\right)$ of sterile v :

$f\left(v_{s}\right)=0.28 \pm 0.28 ; f\left(v_{s}\right)<0.68$ (confidence level 90\%)

