Part II:

Cosmological Perturbations, Matter Power Spectrum

CHIPP PhD Winter School 2011, Leukerbad Julien Lesgourgues (CERN & EPFL)

Homogeneous evolution

- Answer to Cosmo Quizz:
 - 1. Adding a stage of inflation to sCDM implies that the universe expands quicker in the early universe
 - 2. Adding a stage of inflation to sCDM implies that our observable universe was larger than expected at early times
 - 3. In case of everlasting Λ domination, future observers in the MW will ultimately see no other comoving objects (galaxies, ...) because they will all be out of causal contact

- Answer to Cosmo Quizz !!!
 - 1. Adding a stage of inflation to sCDM implies that the universe expands quicker in the early universe

Answer to Cosmo Quizz !!!

2. Adding a stage of inflation to sCDM implies that our observable universe was larger than expected at early times

Answer to Cosmo Quizz !!!

... but what is more relevant is that it is SMALLER IN UNITS OF COMOVING HUBBLE RADIUS ... (actually, r_{obs} must be smaller than r_H at t_i)

Answer to Cosmo Quizz !!!

3. In case of everlasting Λ domination, future observers in the MW will ultimately see no other comoving objects (galaxies, ...) because they will all be out of causal contact

Cosmological Perturbations

Matter Power Spectrum

- $k = comoving wavenumber, \lambda(t) = 2\pi a(t)/k$
- Power spectra: < | perturbation(k) | ²>
 - theorists : <...> = average over many realization of theory (many universes)
 - observers : <...> = average over many independent modes/directions
 - in practise, for calculations: forget <...> and normalize initially all perturbations to +- 1 r.m.s for each k

- gauge ambiguity:
 - GR allows many possible time slicings of a spacetime manifold
 - FLRW model is perfectly homogeneous: unique time slicing compatible with homogeneity

- gauge ambiguity:
 - GR allows many possible time slicings of a spacetime manifold
 - FLRW model is perfectly homogeneous: unique time slicing compatible with homogeneity
 - actual universe not quite homogeneous: time slicing not quite unique either...

- gauge ambiguity :
 - one choice of time-slicing = one way to define spatial averages = one way to define perturbations

- gauge ambiguity:
 - one choice of time-slicing = one way to define spatial averages = one way to define perturbations
 - existence of gauge-invariant quantities
 - all observables quantities are automatically gaugeinvariant

- what are adiabatic initial conditions?
 - assume we are only interested in large (super-Hubble scales)
 - N fluids; N gauge-invariant density contrasts $\delta_i(t,k)$ (their sum induces metric perturbations: curvature perturbation R, gravitational potential ϕ)
 - for each **k** with $|\mathbf{k}|$ > aH, initial conditions = 2N numbers $\{\delta_i(t,\mathbf{k}), \delta_i'(t,\mathbf{k})\}$
 - one special case : homogenous universe + initial time shift

- In this case, all gauge-invariant pertrubations are proportional to single function $\delta t(x)$
- Generic when perturbations originate from single d.o.f. (e.g. growing mode of inflaton fluctuations)
- Called adiabatic : $\delta p_{tot} = c_s^2 \delta \rho_{tot}$
- Out of 2N i.c., 2 match this condition (one growing, one decaying)
- Other cases require mechanism with several d.o.f; still, thermal equilibrium usually enforces adiabatic conditions

$$\Delta_{i}(x,t)=\Delta_{i}(t+\delta t(x))$$

1/11/11 19:05

CHIPP Winter School 2011

CHIPP Winter School 2011

20

1/11/11 19:05

Accoustic oscillations:

Tightly-coupled baryons, electrons, photon fluid

- sound speed $c_s^2 = \delta p / \delta \rho = 1/3$ during RD
- sound horizon:

$$d_s = a(t) \int_0^t \frac{c_s(t') dt'}{a(t')} \simeq \frac{d_H(t)}{\sqrt{3}}$$

if computed starting from RD, close to R_H(t)

- Poisson equation:
 - Einstein equation in small-scale limit:

$$\frac{\Delta\phi}{a^2} = 4\pi G \ \delta\rho$$

- comoving Fourier space:

$$-k^2\phi = 4\pi G \ a^2 \ \delta\rho$$

• Case $\Omega_{\rm cdm}$ >> $\Omega_{\rm b}$

Including baryons

• Parameter effects:

- 1. primordial spectrum: trivial multiplicative effect
- 2. $\Omega_{\Lambda}/\Omega_{DE}$:
 global amplitude today
 growth factor
- 3. $\omega_m = \Omega_m h^2$ (time of R/M eq.): $k_{eq} = a_{eq} H_{eq}$, scale of maximum
- 4. ω_b/ω_{cdm} : slope for k>k_{eq} and oscillations

• non-linear corrections: $P(k) = \langle |\delta_m|^2 \rangle$

- N-body
- Perturbation theory, renormalization...

 $P(k) = \langle |\delta_m|^2 \rangle$

observations:

galaxy/cluster redhsift surveys

weak lensing surveys (cosmic shear)

- Lyman- α forests in quasar spectra

- CMB lensing

- 21cm in the future?

