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Overview 

•  Probability distributions 
•  Bayes theorem 
•  Parameter estimation and model 

selection 
•  Practical aspects 

– Gaussians 
– MCMC 



Probability distribution(s) 
•  Space of Results Ω (e.g. coin: Ω = {,}) 
•  Random variable X : Ω -> R  (e.g. coin: X()=1) 
•  Probability density function (pdf): P(x) = prob(X=x) 

-> P(x)>0, Σx P(x) = 1 
•  Cumulative distribution function (cdf):                   

F(x)=prob(X≤x)  ->  F(x)=Σu≤x P(x) 
•  Joint distribution: P(x,y)=prob(X=x AND Y=y) 
•  Marginal distribution: P(x) = prob(X=x) = Σy P(x,y) 

(and the same for y) 
•  Conditional distribution: P(x|y) = prob(X=x IF Y=y) 
•  Theorem: P(x,y) = P(x|y) P(y) = P(y|x) P(x) 
•  Expectation value: E[g(X)] = Σx g(x) P(x) 



mean, variance, etc 

•  Mean: µ=E[X]=Σx x P(x)  -> E[cX] = c E[x] 
•  Variance σ2=E[X2]-E[X]2=Σx (x-µ)2 P(x)              

-> σ2[cX] = c2 σ2[X] 
•  Covariance Cov(X,Y) = Σx,y (x-µx)(y-µy) P(x,y) 
•  Cov(X,Y) = E[XY] – µxµy  

•  X,Y independent <-> P(x,y) = P(x) P(y) 
 -> P(x|y) = P(x,y)/P(y) = P(x) 
 and Cov(X,Y) = 0 

•  σ2[X±Y] = σ2[X] + σ2[Y] ± Cov(X,Y) 



Normal (Gaussian) pdf  
•  Normal distribution: 

•  mean: µ, variance: σ2 

•  Z = (X-µ)/σ reduced variable, P(z) = N(0,1) 

•  Generic limiting case (central limit theorem) 

•  If X1, X2, …, Xn indep. N(0,1): χ2= Σi Xi
2 has the 

so-called chi-squared distribution with n degrees 
of freedom 

•  For χ2: mean n, variance 2n 



•  Gaussian pdf is also ‘least informative’ (maximum 
entropy) choice if only mean and variance known 

•  In reality, often exponential decrease at high x/σ 
is too steep, ‘heavy tails’ 

•  Generalisation for vector of random variables   
X=(X1,X2,…,Xn): multivariate Gaussian 

–  given by mean vector µ and covariance matrix C 
(symmetric, positive -> eigenvalues are real & positive) 

–  if Xi independent: C=diag(σ1
2,…,σn

2) and 
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Statistics 
•  Typical case: Data D={(xi,yi,σi)}  [σ: error on y] 
•  Assumption: P(yi|xi,y(x),σi)= N(y(xi),σi

2) indep. 
•  In general y(x) is a function of parameters θ,                   

e.g. y(x) = a*x+b -> θ={a,b} 

⇒   define  

χ2 has chi-square distribution with ν= (# data points) -               
(# parameters) degrees of freedom 

•  best fit at            (‘maximum likelihood’, ML) 
•  can check ‘goodness of fit’ of minimal χ2 
•  Taylor expansion of at χ2 ML ->    

 -> Cov(θj,θk)=(H-1)jk 



Bayesian statistics 

•  In general we want to know the underlying 
parameters θ, i.e. P(θ|D), not P(D|θ) 

•  P(θ|D) has no probabilistic interpretation in a 
frequentist sense: the parameters θ are not 
random variables 

•  Bayesian interpretation: ‘limited knowledge’ 
•  Formally just application of Bayes theorem: 

•  Mathematical proofs exist that construction is at 
least self-consistent 



Parameter estimation 

•  P(D|θ) : likelihood L(θ)  -> ‘given’ by experiment 
•  P(θ|D) : posterior         -> that’s what we want 
•  P(θ) : prior                  [P(D) : left for later] 
•  Prior: necessary, measure on parameter space, 

typical choices:  
–  P(θ) constant -> ‘flat prior’, P(D|θ) ~ L(θ) 
–  P(θ) ~ 1/θ -> prior flat in log(θ) -> no scale for θ 
(there is a whole literature on how to choose priors) 

•  What to estimate? 

–  Mean & error: µθ = Σθ θ P(θ|D), C(θi,θj) [as before] 
–  Maximum: maxθ P(θ|D)  -> max. likelihood for flat prior 
–  ‘credible regions’, e.g. 95% parameter volume  



Explicit example 
Very simple example: 
•  D = {xi, i=1,…,n} drawn indep. from N(µ,σ2) 
•  Estimate µ and ln σ 
1.  Priors: P(µ)=const, P(ln σ) = const 
2.  Likelihood: product of P(xi|µ,σ2) over all points 

3.  Posterior: P(µ, ln σ|D) ~ P(D|µ,ln σ) 

µ 

σ 

(MacKay) 



Explicit example II 
1.  Maximum of posterior = maximum of likelihood, 

it is at                    (compute dL/dθ=0) 
2.  Assume σ known -> want P(µ|D,σ) 

3.  Assume both µ and σ unknown, what is P(σ|D)? 

 Gaussian integral for P(µ)=const,                   
can be done, now maximum at  

(MacKay) 

σ 



Explicit example III 

4.  Both µ and σ unknown (as 3), what is P(µ|D)? 

 can be solved e.g. by setting u = A/σ2 

 (normalisation e.g. from                  ) 
-> Student’s t distribution [notice heavy tails!] 
(here resulting from superposing Normal 

distributions with different widths) 
-> this is the pdf to use when variance unknown! 



Model selection 

•  So far we always assumed model to be known. 
•  If not, then we can add overall dependence on M  

•  we want to know P(M|D) 
•  Bayes again: P(M|D) = P(D|M) P(M) / P(D) 
•  And 

•  Since  

Bayes	
  factor	
  
(absolute	
  value	
  
of	
  P(D|M)	
  not	
  so	
  
instruc:ve)	
  

(likelihood used as f(θ) 
but normalised wrt D!) 



goodness of  fit vs model selection 
250 coin tosses: 140 heads, 110 tails  (<- D) 
Random or not?  

Likelihood: binomial 

coin unbiased: p=1/2 => P(nh≥140|p=1/2) ~ 0.033 
-> looks bad! 

Bayes: M0: p=1/2,  M1: p free parameter, P(p) uniform in [0,1] 

-> bad absolute goodness of fit should make you suspicious, but 
still need to find a better model! 



model selection 
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but even for M2: p=0.56 
P(D|M2)/P(D|M0) ~ 6.1 

(normally want B >> 10 
for a ‘strong’ result) 



Practical aspects 

Often 10+ parameters (sometimes much more!) 

Grid with 5 points on each side: 510 ~ 107 points 

-> how to deal with high-dimensional spaces? 

•  Analytical approximation: Gaussians 

•  Numerical methods: MCMC 



Gaussians 
Often likelihood / posterior is also approximately 

Gaussian in parameters -> Taylor expansion: 

Here peak   and a bit loosely                       at peak 

This is just proportional to a Gaussian / Normal 
multivariate pdf for the parameters θ: 

(In general a Gaussian pdf for the data [-> χ2] does not imply a Gaussian pdf for 
the parameters, only if the model y(x;θ) is linear! But: central limit theorem!) 



Gaussians 
Big advantage: 
•  Products of Gaussians are Gaussians 

•  We can evaluate Gaussian integrals 
–  Simple explicit marginalisation:  

  marginal distribution is again Gaussian 
   

–  Compute model probabilities, etc 
–  (Fisher matrix formalism) 

and     is just the [q+1,n] submatrix of C 



Errors for Gaussians 
•  Errors given by covariance matrix C = H-1 

•  Inverse of sub-matrix of H: conditional errors 
•  sub-matrix of inverse of H: marginal errors 
•  Constant χ2 boundaries:                           

Gaussian approximation! 

(numerical recipes) 



Markov-Chain Monte Carlo 

Aim: create ensemble of parameter samples {θ(i)} 
that are drawn from posterior pdf, i.e.  
   P(θ|D) ~ 1/N Σi δ(θ-θ(i)) 

-> expectation values: <g(θ)> ~ 1/N Σi g(θ(i)) 
-> marginalisation becomes projection, just drop 

the parameters that you want to marginalise 
-> credible region: find volume enclosing x% of 

points (marginalise first for less dimensions) 

Most popular algorithm: Metropolis-Hastings 



Metropolis-Hastings 
0. init: choose random point x in parameter space 
1. step: choose new point y from proposal distribution q(y|x) 
2. test: accept new point with probability min[1,P(y)/P(x)] (*) 
3. if accepted set x=y 
4. store x (even if not changed!), go to 1 and repeat 

(*) this condition assumes symmetric proposal distribution,    
q(y|x) = q(x|y) otherwise acceptance prob. slightly more 
complicated, min[1,{P(y)q(y|x)}/{P(x)q(x|y)}]. 

•  Burn-in: initial period, should be discarded 
•  Convergence: need to collect samples until we have a fair 

sample of target distribution, this can be difficult to judge 
(impossible in general). Diverse criteria exist. 



Metropolis-Hastings II 

In theory the algorithm converges independently of 
the choice of proposal distribution q(x|y), in 
reality this tends to be the most important choice.  

Usual choice is 2.3*Gaussian centered on x with 
parameter covariance matrix (-> rotated 
ellipsoid).  

Of course to do this one needs to know the answer   
-> re-compute covariance matrix on the fly, but in 
principle need to fix it for samples used in 
analysis. 



Practical model selection 
The integration over (Likelihood)x(prior) is normally 

hard, MCMC chains are not good enough. 

•  Numerical methods: thermodynamic integration, 
nested sampling 

•  Use Gaussian approximation (possibly with 
several Gaussians) 

•  For nested models (the simpler model is same as 
general model with some parameters fixed) 
Savage-Dickey: Bayes factor is just posterior/
prior of general model at nested point, 
marginalised over all common parameters. 



Savage-Dickey example 
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M0: p = ½ 
M1: p free 
M2: p = 140/250 

M0 and M2 nested in M1 

Savage-Dickey: 

->  B01 = 2.1 
 B21 = 12.7 
 B20 = B21/B01 = 6.1 



Summary 
•  Bayes: P(θ|D) ~ P(D|θ) P(θ) 

•  Prior is an integral part of method (but posterior 
not very sensitive to it if data is any good) 

•  Bayesian statistics allows for (relatively) 
straightforward manipulation of probabilities 

•  Non-trivial examples tend to need MCMC or 
Gaussian approximations 

•  Model selection: P(M|D) 

•  Bayes factor B01=P(D|M0)/P(D|M1) (‘betting odds’) 

•  want |ln(B)| > 2-3 for strong results 

•  Model selection is much more sensitive to prior  


