

University of Zurich^{UZH}

LF(U)V tests in tau decays and EW precision observables in view of FCC-ee

Fostering Swiss collaboration towards a future circular collider Zurich, 26 August 2022

Nudžeim Selimović **University of Zurich**

Absence of Beyond the SM physics signals in data

- The problems of the SM : Flavour? Neutrino masses?
 - Dark matter?
 - Higgs hierarchy?

Nudžeim Selimović

reasons to believe there is more!

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Indirect measurements are essential!

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{S}}$

Example (a) the Z-

 $c_i^{FCC-ee} \sim 10^-$

$$\Lambda^{FCC-ee} \sim 10^{4}$$

(Neglecting theory and systematic errors)

Nudžeim Selimović

SNEFT

Model independent parametrisation of the New Physics effects:

$$_{\mathrm{SM}}+rac{c_i}{\Lambda^2}\mathcal{O}_i+O(\Lambda^{-4})$$

pole:
$$N_Z^{FCC-ee} = 10^5 N_Z^{LEP}$$
:

$$c_i^{-5/2} c_i^{LEP} \sim 0.003 \times c_i^{LEP}$$

or

 $5/4 \Lambda^{LEP} \sim 18 \times \Lambda^{LEP}$

LFUT tests & EWPO @ FCC-ee

$$\begin{split} h &\rightarrow V f f \\ \mathcal{O}_{Hq}^{(1)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{q} \gamma^{\mu} q) \\ \mathcal{O}_{Hq}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{a} H)(\bar{q} \gamma^{\mu} \sigma_{a} q) \\ \mathcal{O}_{Hq}^{(1)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{\ell} \gamma^{\mu} \ell) \\ \mathcal{O}_{H\ell}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{a} H)(\bar{\ell} \gamma^{\mu} \sigma_{a} \ell) \\ \mathcal{O}_{Hu} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{\ell} \gamma^{\mu} u) \\ \mathcal{O}_{Hu} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{d} \gamma^{\mu} d) \\ \mathcal{O}_{He} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{e} \gamma^{\mu} e) \end{split}$$

$$\begin{aligned} h \to VV \\ \mathcal{O}_{H\Box} &= (H^{\dagger}H) \Box (H \oplus G) \\ \mathcal{O}_{HG} &= (H^{\dagger}H) G_{\mu\nu} G \\ \mathcal{O}_{HW} &= (H^{\dagger}H) W_{\mu\nu} W \\ \mathcal{O}_{HB} &= (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{HB} &= (H^{\dagger}\sigma_{a}H) W_{\mu\nu}^{a} \\ \mathcal{O}_{HD} &= |H^{\dagger}i D_{\mu}H|^{2} \end{aligned}$$

Nudžeim Selimović

Operators that can be tested at FCC-ee:

 $(H^{\dagger}H)$ $h \to ff$ μν
$$\begin{split} \mathcal{O}_{H\Box} &= (H^{\dagger}H) \Box (H^{\dagger}H) \\ \mathcal{O}_{eH} &= (H^{\dagger}H)(\bar{\ell}_{L}He_{R}) \\ \mathcal{O}_{uH} &= (H^{\dagger}H)(\bar{q}_{L}\tilde{H}u_{R}) \\ \mathcal{O}_{dH} &= (H^{\dagger}H)(\bar{q}_{L}Hd_{R}) \end{split}$$
 $V^{\mu
u}$ $\mathcal{O}_{3W} = \epsilon_{abc} W^{a\nu}_{\mu}$ $\mu
u$ $a_{\mu\nu}B^{\mu\nu}$

LFUT tests & EWPO @ FCC-ee

VV prod.

Operators that can be tested at FCC-ee:

$$\begin{split} h &\to V f f \\ \mathcal{O}_{Hq}^{(1)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{q} \gamma^{\mu} q) \\ \mathcal{O}_{Hq}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{a} H)(\bar{q} \gamma^{\mu} \sigma_{a} q) \\ \mathcal{O}_{Hq}^{(1)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{\ell} \gamma^{\mu} \ell) \\ \mathcal{O}_{H\ell}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{a} H)(\bar{\ell} \gamma^{\mu} \sigma_{a} \ell) \\ \mathcal{O}_{Hu} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{u} \gamma^{\mu} u) \\ \mathcal{O}_{Hd} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{d} \gamma^{\mu} d) \\ \mathcal{O}_{He} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{e} \gamma^{\mu} e) \end{split}$$

$$\begin{pmatrix} h \to VV \\ \mathcal{O}_{H\Box} = (H^{\dagger}H) \Box (H \oplus H) \\ \mathcal{O}_{HG} = (H^{\dagger}H) \mathcal{O}_{\mu\nu} \mathcal{G} \\ \mathcal{O}_{HW} = (H^{\dagger}H) \mathcal{W}_{\mu\nu} \mathcal{W} \\ \mathcal{O}_{HB} = (H^{\dagger}H) \mathcal{W}_{\mu\nu} \mathcal{B}^{\mu\nu} \\ \mathcal{O}_{HB} = (H^{\dagger}\sigma_{a}H) \mathcal{W}_{\mu\nu} \mathcal{G} \\ \mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2}$$

Impact τ -physics and EW precision observables

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

τ - physics (a) FCC-ee

-	Observable	Present	FCC-ee	FCC-ee
		value $\pm \text{ error}$	stat.	syst.
[BESIII]	$m_{\tau} \; ({ m MeV})$	1776.86 ± 0.12	0.004	0.1
[LEP]	$\mathcal{B}(\tau \to \mathrm{e}\bar{\nu}\nu)~(\%)$	17.82 ± 0.05	0.0001	0.003
[LEP]	$\mathcal{B}(\tau \to \mu \bar{\nu} \nu) \ (\%)$	17.39 ± 0.05	0.0001	0.003
[Belle]	$ au_{ au}$ (fs)	290.3 ± 0.5	0.001	0.04
		[Tau-lepton Physic	es at the FCC-ee	Mogens Daml

Nudžeim Selimović

$N_Z = 10^{12}$ implies $1.3 \times 10^{11} Z \rightarrow \tau^+ \tau^-$ decays

Tau-tepton r hysics at the r CC-ee, Mogens Dam

1. Tests of lepton flavour universality in τ - decays 2. Tests of charged lepton flavour violation in τ - decays

LFUT tests & EWPO @ FCC-ee

1. Tests of LFU in τ - decays

	[Precision Tau Physics, Antonio Pich]	
		$\Gamma_{\tau \to \mu} / \Gamma_{\tau \to e}$
[LEP]	$ g_{\mu}/g_{e} $	1.0018 (14)
		$\Gamma_{\tau \to e} / \Gamma_{\mu \to e}$
[LEP]	$ g_ au/g_\mu $	1.0011 (15)
		$\Gamma_{\tau \to \mu} / \Gamma_{\mu \to e}$
[LEP]	$ g_{ au}/g_{e} $	1.0030 (15)

FCC-ee expected to go below 10^{-4} ! QED corrections known to $\mathcal{O}(\alpha^2) \lesssim 10^{-5}$

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Example: B-anomalies \leftrightarrow LFUV in τ decays

• τ / μ and $\tau / e \sim 3\sigma$ deviation in $b \rightarrow c\tau\nu$ charged current

Tree level in SM \bullet

Combined explanation ingredients

1. Approximate $U(2)^5$ flavour symmetry

[R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D. M. Straub, arXiv:1105.2296]

Nudžeim Selimović

A quick review:

 $\mu / e \sim 4\sigma$ deviation in $b \rightarrow s\ell\ell$ neutral current

Loop level in SM

2. $U_1 \sim (3,1)_{2/3}$ vector leptoquark

[D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, arXiv:1706.07808]

LFUT tests & EWPO @ FCC-ee

Example: B-anomalies \leftrightarrow LFUV in τ decays

$$[O_{\ell q}^{(1)}]_{\alpha\beta ij} = (\bar{\ell}$$
$$[O_{\ell q}^{(3)}]_{\alpha\beta ij} = (\bar{\ell}$$

Nudžeim Selimović

 $ar{\ell}^{lpha}_L \gamma_\mu \ell^eta_L) (ar{q}^i_L \gamma^\mu q^j_L) \, ,$ $\bar{\ell}^{\alpha}_{L}\sigma^{I}\gamma_{\mu}\ell^{\beta}_{L})(\bar{q}^{i}_{L}\sigma^{I}\gamma^{\mu}q^{j}_{L})$

[F. Feruglio, P. Paradisi, A. Pattori arXiv: 1606.00524]

LFUT tests & EWPO @ FCC-ee

EFT for τ decays

In the SM:

Deviation parametrised by:

$$R_{\beta\alpha} \equiv \frac{\Gamma(\ell_{\beta} \to \ell_{\alpha} \nu \bar{\nu})}{\Gamma_{\rm SM}(\ell_{\beta} \to \ell_{\alpha} \nu \bar{\nu})} \equiv$$

Nudžeim Selimović

$$L]^{\alpha\beta\gamma\delta} \left(\bar{\nu}_L^{\alpha} \gamma_\mu \nu_L^{\beta} \right) \left(\bar{e}_L^{\gamma} \gamma^\mu e_L^{\delta} \right)$$

$$\left[L_{\nu e}^{V,LL}\right]_{SM}^{\alpha\beta\beta\alpha} = 1$$

$$1 + \delta R_{\beta\alpha} \approx 1 + 2 \operatorname{Re}[L_{\nu e}^{V,LL}]_{\alpha\beta\beta\alpha}^{\mathrm{NP}}$$

LFUT tests & EWPO @ FCC-ee

EFT for τ decays

LEFT

 $m_{ au,b}$

$$\mathcal{L}_{\text{SMEFT}} = -\frac{2}{v^2} \left[C_{\ell q}^{(3)} \right]^2$$

$$\left[O_{H\ell}^{(3)}\right]_{\alpha\beta} = (\bar{\ell}^{\alpha}\gamma_{\mu}\sigma^{I}\ell^{\beta})(H^{\dagger}i\overleftarrow{D^{\mu}}\sigma^{I}H)$$

Nudžeim Selimović

LEFT - SMEFT matching (tree-level):

$$\gamma\gamma (m_t) = -\frac{y_t^2 N_c}{8\pi^2} \log \frac{\Lambda_{\rm NP}^2}{m_t^2} \sum_{\gamma=\alpha,\beta} [C_{\ell q}^{(3)}]_{\gamma\gamma 33}$$

LFUT tests & EWPO @ FCC-ee

$$|g_{\tau}^{W}/g_{\mu}^{W}|^{2} \equiv \frac{\Gamma(\tau \to e\nu\bar{\nu})}{\Gamma(\mu \to e\nu\bar{\nu})} \begin{bmatrix} \frac{\Gamma_{\rm SM}(\tau \to e\nu\bar{\nu})}{\Gamma_{\rm SM}(\mu \to e\nu\bar{\nu})} \end{bmatrix}$$

Nudžeim Selimović

Lukas Allwicher, Gino Isidori, NS]

LFUT tests & EWPO @ FCC-ee

$$|g_{\tau}^{W}/g_{\mu}^{W}|^{2} \equiv rac{\Gamma(au o e
u ar{
u})}{\Gamma(\mu o e
u ar{
u})} \left[rac{\Gamma_{
m SM}(au o e
u ar{
u})}{\Gamma_{
m SM}(\mu o e
u ar{
u})}
ight]$$

Full model computations are important!

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

 $SU(4)_3 \times SU(3)_{1+2} \times SU(2)_L \times U(1)'$ g_4 g_3

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
$\Psi_L = (q_I^{'3} \ \ell$	$(2^{'3}_{I})^T$ 4	1	2	0
$\Psi_R^+ = (u_R^3 \nu)$	$(\frac{3}{R})^T$ 4	1	1	1/2
$\psi_R^- = (d_R^3 e_R^3)$	$({}^{3}_{R})^{T}$ 4	1	1	-1/2

Nudžeim Selimović

[L. Di Luzio, A. Greljo and M. Nardecchia, arXiv: 1708.08450] [L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia, S. Renner, arXiv: 1808.00942] [M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv: 1712.01368, 1805.09328] [H. Georgi, Y. Nakai, arXiv: 1606.05865] [J. Fuentes-Martin, P. Stangl, arXiv: 2004.11376] [D. Guadagnoli, M. Reboud, P. Stangl, arXiv: 2005.10117] ...

 $SU(4)_3 \times SU(3)_{1+2} \times SU(2)_L \times U(1)'$ g_4 g_3

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
$\Psi_{L} = (q_{L}^{'3} \ \ell_{L}^{'3})^{T}$ $\Psi_{R}^{+} = (u_{R}^{3} \ \nu_{R}^{3})^{T}$ $\Psi_{R}^{-} = (d_{R}^{3} \ e_{R}^{3})^{T}$	4	1	2	0
	4	1	1	1/2
	4	1	1	-1/2
$q_L^{\prime i} \ u_R^i \ d_R^i \ \ell_L^{\prime i}$	1	3	2	1/6
	1	3	1	2/3
	1	3	1	-1/3
	1	1	2	-1/2
e_R^i	1	1	1	-1

i = 1,2 $U(2)^5$: 1st ingredient

Nudžeim Selimović

[L. Di Luzio, A. Greljo and M. Nardecchia, arXiv: 1708.08450] [L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia, S. Renner, arXiv: 1808.00942] [M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv: 1712.01368, 1805.09328] [H. Georgi, Y. Nakai, arXiv: 1606.05865] [J. Fuentes-Martin, P. Stangl, arXiv: 2004.11376] [D. Guadagnoli, M. Reboud, P. Stangl, arXiv: 2005.10117] ...

$$SU(4)_{3} \times SU(3)_{1+2} \times SU(2)_{L} \times U(1)'$$

$$< \Omega_{1} > < \Omega_{3} > \int \longrightarrow U_{\mu} (+ G'_{\mu}, Z'_{\mu})$$

$$U_{1} LQ: 2nd ingredient$$

$$SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$$

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
$\Psi_L = (q_I^{\prime 3} \ \ell_I)$	$(3)^{T}$ 4	1	2	0
$\Psi_{R}^{+} = (u_{R}^{3} \nu_{R}^{3})^{3}$	\int_{0}^{T} 4	1	1	1/2
$\psi_R^- = (d_R^3 e_R^3)$	$\mathbf{)}^T$ 4	1	1	-1/2
$q_I^{\prime i}$	1	3	2	1/6
u_R^i	1	3	1	2/3
d_R^{i}	1	3	1	-1/3
$\mathcal{C}_{I}^{\prime i}$	1	1	2	-1/2
e_R^i	1	1	1	-1
			$U(2)^5 : 1st i$	i = 1,2 ingredient
Ω_3	4	3	0	1/6
Ω_1	Ā	1	0	-1/2

Nudžeim Selimović

[L. Di Luzio, A. Greljo and M. Nardecchia, arXiv: 1708.08450] [L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia, S. Renner, arXiv: 1808.00942] [M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv: 1712.01368, 1805.09328] [H. Georgi, Y. Nakai, arXiv: 1606.05865] [J. Fuentes-Martin, P. Stangl, arXiv: 2004.11376] [D. Guadagnoli, M. Reboud, P. Stangl, arXiv: 2005.10117] ...

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
$\Psi_L = (q_I^{'3} \ \ell_I^{'3})$	$\mathbf{)}^T$ 4	1	2	0
$\Psi_R^+ = (u_R^3 \nu_R^3)$	т 4	1	1	1/2
$\psi_R^{-} = (d_R^3 e_R^3)$	T 4	1	1	-1/2
$q_I^{\prime i}$	1	3	2	1/6
u_R^i	1	3	1	2/3
d_R^i	1	3	1	-1/3
$\mathcal{C}_{I}^{\prime i}$	1	1	2	-1/2
e_R^i	1	1	1	-1
			U(2) ⁵ : 1st i	i = 1,2 ngredient
Ω_3	4	3	0	1/6
Ω_1	Ā	1	0	-1/2

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

[L. Di Luzio, A. Greljo and M. Nardecchia, arXiv: 1708.08450] [L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia, S. Renner, arXiv: 1808.00942] [M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv: 1712.01368, 1805.09328] [H. Georgi, Y. Nakai, arXiv: 1606.05865] [J. Fuentes-Martin, P. Stangl, arXiv: 2004.11376] [D. Guadagnoli, M. Reboud, P. Stangl, arXiv: 2005.10117] ...

+ Vector-like fermions: $U(2)^5$ breaking Field SU(4)SU(3)' $SU(2)_L$ $U(1)_{X}$ $\chi_L = (Q'_L \ L'_L)^T$ $\chi_R = (Q_R \ L_R)^T$ $\langle \Omega_1 \rangle$ $_{\infty}$ $\langle \Omega_{3} \rangle$ $_{\infty}$ $\langle \Omega_{3} \rangle$

4321 - SMEFT matching @ 1-loop

Contribution to $C_{H\ell}^{(3)}$: $\langle \ell^b_\beta(0) \bar{\ell}^a_\alpha(0) H^c(q) H^{\dagger d}(-q) \rangle$

$$\left[O_{H\ell}^{(3)}\right]^{\alpha\beta} = \left(\bar{\ell}^{\alpha}\gamma_{\mu}\sigma^{I}\ell^{\beta}\right)\left(H^{\dagger}i\overleftarrow{D^{\mu}}\sigma^{I}H\right)$$

Nudžeim Selimović

$$\left[O_{\ell q}^{(3)}\right]^{\alpha\beta ij} = \left(\bar{\ell}^{\alpha}\gamma_{\mu}\sigma^{I}\ell^{\beta}\right)\left(\bar{q}^{i}\gamma^{\mu}\sigma^{I}q^{j}\right)$$

 $\psi_{A,B} = q, Q$

LFUT tests & EWPO @ FCC-ee

$$|g_{ au}^W/g_{\mu}^W|^2 \equiv rac{\Gamma(au o e
u ar{
u})}{\Gamma(\mu o e
u ar{
u})} \left[rac{\Gamma_{
m SM}(au o e
u ar{
u})}{\Gamma_{
m SM}(\mu o e
u ar{
u})}
ight]$$

Nudžeim Selimović

[LFU violations in leptonic τ decays and B-physics anomalies, Lukas Allwicher, Gino Isidori, NS]

LFUT tests & EWPO @ FCC-ee

Decay	Present bound	FCC-ee sensitivity
$ au o \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$ au ightarrow 3 \mu$	2.1×10^{-8}	10^{-10}

Example: Type-I seesaw (symmetry protected)

Nudžeim Selimović

2. Tests of cLFV in τ - decays

LFUT tests & EWPO @ FCC-ee

Decay	Present bound	FCC-ee sensitivity
$ au o \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$ au ightarrow 3 \mu$	2.1×10^{-8}	10^{-10}

Example: Type-I seesaw (symmetry protected) Andreas Crivellin, Fiona Kirk, Claudio Andrea Manzari]

Nudžeim Selimović

2. Tests of cLFV in τ - decays

LFUT tests & EWPO @ FCC-ee

Z LFV couplings

Decay	Present k
$Z \rightarrow \mu e$	0.75 imes 1
$\mathrm{Z} ightarrow au \mu$	12×10
$\mathrm{Z} \rightarrow \tau \mathrm{e}$	9.8 imes 1

Example: Type-I seesaw (symmetry protected)

Nudžeim Selimović

[Comprehensive Analysis of Charged Lepton Flavour Violation in the Symmetry Protected Type-I Seesaw, Andreas Crivellin, Fiona Kirk, Claudio Andrea Manzari]

LFUT tests & EWPO (a) FCC-ee

Decay	Present b
$Z \rightarrow \mu e$	0.75×1
$\mathrm{Z} ightarrow au \mu$	12×10
$\mathbf{Z} \to \tau \mathbf{e}$	9.8×1

Example: Type-I seesaw (symmetry protected)

Nudžeim Selimović

2. Tests of cLFV in τ - decays

LFUT tests & EWPO (a) FCC-ee

Electroweak physics @ FCC-ee

[Future Circular Collider Conceptual Design Report Volume 1]

Observable	Present value \pm error
$m_Z (keV/c^2)$	$91,186,700 \pm 2200$
Γ _Z (keV)	$2,495,200 \pm 2300$
$\mathbf{R}^{\mathrm{Z}}_{\ell}$ (×10 ³)	$20,767 \pm 25$
$\alpha_{\rm s} \ ({\rm m_Z}) \ (\times 10^4) \ {\rm R_b} \ (\times 10^6)$	1196 ± 30 $216,290 \pm 660$
$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	$41,541\pm37$
$N_{\nu} (\times 10^3)$	2991 ± 7
$\sin^2 \theta_{\rm W}^{\rm eff}$ (×10 ⁶)	$231,480 \pm 160$
$1/\alpha_{QED} (m_Z) (\times 10^3) A_{FB}^{b,0} (\times 10^4)$	$128,952 \pm 14$ 992 ± 16
$A_{FB}^{pol,\tau}~(\times 10^4)$	1498 ± 49
$m_W (MeV/c^2)$	$80,350 \pm 15$
Γ _W (MeV)	2085 ± 42
$lpha_{ m s}~({ m m_W})~(imes 10^4) \ { m N_{ u}}~(imes 10^3)$	1170 ± 420 2920 ± 50
m _{top} (MeV/c ²)	$172,740\pm500$
Γ_{top} (MeV)	1410 ± 190
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3
ttZ couplings	$\pm 30\%$

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

FCC-ee stat.	FCC-ee syst.	Comment and dominant exp. error
5	100	From Z line shape scan Beam energy calibration
8	100	From Z line shape scan beam energy calibration
0.06	0.2–1	Ratio of hadrons to leptons acceptance for leptons
0.1	0.4–1.6	From R_{ℓ}^{Z} above
0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD
0.1	4	Peak hadronic cross-section luminosity measurement
0.005	1	Z peak cross sections Luminosity measurement
3	2–5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
4	Small	From $A_{FB}^{\mu\mu}$ off peak
0.02	1–3	b-quark asymmetry at Z pole from jet charge
0.15	< 2	τ Polarisation and charge asymmetry τ decay physics
0.5	0.3	From WW threshold scan Beam energy calibration
1.2	0.3	From WW threshold scan beam energy calibration
3	Small	From R_{ℓ}^{W}
0.8	Small	Ratio of invis. to leptonic in radiative Z returns
17	Small	From tt threshold scan QCD errors dominate
45	Small	From tt threshold scan QCD errors dominate
0.1	Small	From tt threshold scan QCD errors dominate
0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$

Electroweak physics @ FCC-ee

[Future Circular Collider Conceptual Design Report Volume 1]

Observable	Present value \pm error
$m_Z (keV/c^2)$	$91,186,700 \pm 2200$
Γ _Z (keV)	$2,495,200 \pm 2300$
$\mathbf{R}^{\mathrm{Z}}_{\ell}$ (×10 ³)	$20,767 \pm 25$
$\alpha_{\rm s} \ ({\rm m_Z}) \ (\times 10^4) \ {\rm R_b} \ (\times 10^6)$	1196 ± 30 $216,290 \pm 660$
$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	$41,541\pm37$
$N_{\nu} (\times 10^3)$	2991 ± 7
$\sin^2 \theta_{\rm W}^{\rm eff}$ (×10 ⁶)	$231,480 \pm 160$
$1/\alpha_{QED} (m_Z) (\times 10^3) A_{FB}^{b,0} (\times 10^4)$	$128,952 \pm 14$ 992 ± 16
$A_{FB}^{pol,\tau}~(\times 10^4)$	1498 ± 49
$m_W (MeV/c^2)$	$80,350 \pm 15$
Γ _W (MeV)	2085 ± 42
$lpha_{ m s}~({ m m_W})~(imes 10^4) \ { m N_{ u}}~(imes 10^3)$	1170 ± 420 2920 ± 50
m _{top} (MeV/c ²)	$172,740\pm500$
Γ_{top} (MeV)	1410 ± 190
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3
ttZ couplings	$\pm 30\%$

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

FCC-ee sta	t. FCC-ee syst.	Comment and dominant exp. error
5	100	From Z line shape scan Beam energy calibration
8	100	From Z line shape scan beam energy calibration
0.06	0.2–1	Ratio of hadrons to leptons acceptance for leptons
0.1	0.4–1.6	From $\mathbf{R}^{\mathbf{Z}}_{\ell}$ above
0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD
0.1	4	Peak hadronic cross-section luminosity measurement
0.005	1	Z peak cross sections Luminosity measurement
3	2–5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
4	Small	From $A_{FB}^{\mu\mu}$ off peak
0.02	1–3	b-quark asymmetry at Z pole from jet charge
0.15	< 2	τ Polarisation and charge asymmetry τ decay physics
0.5	0.3	From WW threshold scan Beam energy calibration
1.2	0.3	From WW threshold scan beam energy calibration
3	Small	From R^W_ℓ
0.8	Small	Ratio of invis. to leptonic in radiative Z returns
17	Small	From tt threshold scan QCD errors dominate
45	Small	From tt threshold scan QCD errors dominate
0.1	Small	From tt threshold scan QCD errors dominate
0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$

Electroweak physics @ FCC-ee

[Future Circular Collider Conceptual	Observable	Present value \pm error	FCC-ee stat.	FCC-ee syst.	Comment and dominant exp. error
Design Report Volume 1]	$m_Z (keV/c^2)$	91,186,700 ± 2200	5	100	From Z line shape scan Beam energy calibration
	$\Gamma_{\rm Z}$ (keV)	$2,495,200 \pm 2300$	8	100	From Z line shape scan beam energy calibration
	$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	$20,767\pm25$	0.06	0.2–1	Ratio of hadrons to leptons acceptance for leptons
	$\alpha_{\rm s} ({\rm m_Z}) (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	From $\mathbf{R}^{\mathbf{Z}}_{\ell}$ above
	$R_{b} (\times 10^{6})$	$216,290\pm 660$	0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD
	$\sigma_{\rm had}^0$ (×10 ³) (nb)	$41,541 \pm 37$	0.1	4	Peak hadronic cross-section

Great theory effort needed to match the experimental precision!

ttZ couplings	$\pm 30\%$	0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small	From tt threshold scan QCD errors dominate
Γ_{top} (MeV)	1410 ± 190	45	Small	From tt threshold scan QCD errors dominate
m _{top} (MeV/c ²)	$172,740 \pm 500$	17	Small	From tt threshold scan QCD errors dominate
N_{ν} (×10 ³)	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
$\alpha_{\rm s}~({\rm m_W})~(\times 10^4)$	1170 ± 420	3	Small	From R_{ℓ}^{W}
$\Gamma_{\rm W}$ (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan beam energy calibration
$m_W (MeV/c^2)$	$80,350 \pm 15$	0.5	0.3	From WW threshold scan Beam energy calibration

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Example: Z width

Observable	Present		FCC-ee	FCC-ee	Source and
	value	\pm error	(statistical)	(systematic)	dominant experimental error
$\Gamma_{\rm Z} \ ({\rm keV})$	2 495 200	± 2300	<mark>8</mark> 0	100 .1 MeV	Z line shape scan Beam energy calibration

[Complete electroweak two-loop corrections to Z boson production and decay, I. Dubovyk et al., Phys. Lett. B783 (2018) 86]

 $\mathcal{O}(N_{\rm f}\alpha^2)$

 $\mathcal{O}(\alpha_{\rm bos}^2)$

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

[Standard Model Theory for the FCC-ee Tera-Z stage, Report on the Mini Workshop: Precision EW and QCD Calculations for the FCC Studies: Methods and Tools]

Current status:

V)	$\Gamma_{\mathbf{Z}}$
	60.22
	9.11
$, \alpha_{t}\alpha_{s}^{3}, \alpha_{t}^{2}\alpha_{s}, \alpha_{t}^{3})$	1.20
²)	5.13
(2)	3.04
	0.51

Example: Z width

Observable	Present			FCC-ee	FCC-ee	Source and
	value	\pm	error	(statistical)	(systematic)	dominant experimental error
$\Gamma_{\rm Z} \ ({\rm keV})$	2 495 200	\pm	2300	8	100	Z line shape scan
				C).1 MeV	Beam energy calibration

- $\mathcal{O}(\alpha)$
- $\mathcal{O}(\alpha \alpha_{\rm s})$
- $\mathcal{O}(\alpha_{\rm t}\alpha_{\rm s}^2)$
- $\mathcal{O}(N_{\rm f}^2 \alpha^2)$
- $\mathcal{O}(N_{\rm f}\alpha^2)$

 - $\mathcal{O}(\alpha_{\rm bos}^2)$

Compar

[Complete electroweak two-loop corrections to Z boson production and decay, I. Dubovyk et al., Phys. Lett. B783 (2018) 86]

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

[Standard Model Theory for the FCC-ee Tera-Z stage, Report on the Mini Workshop: Precision EW and QCD Calculations for the FCC Studies: Methods and Tools]

Current status:

/)	$\Gamma_{\rm Z}$
	60.22
	9.11
, $\alpha_{\rm t}\alpha_{\rm s}^3$, $\alpha_{\rm t}^2\alpha_{\rm s}$, $\alpha_{\rm t}^3$)	1.20
$^{2})$	5.13
?)	3.04
	0.51
e with $\delta \Gamma_Z = 2$.	3 MeV

Example: Z width			Report	on the Mini Works	hop: Precision EW a	and QCD Calculations for the FCC Studies
Observable	Present			FCC-ee	FCC-ee	Source and
	value	±	error	(statistical)	(systematic)	dominant experimental error
$\Gamma_{\rm Z} \ ({\rm keV})$	2 495 200	\pm	2300	8	100	Z line shape scan
				(0.1 MeV	Beam energy calibration

Theory error estimates:

δ_1	δ_2	δ_3	δ_4	δ_5
${\cal O}(lpha^3)$	$\mathcal{O}(lpha^2 lpha_{ m s})$	$\mathcal{O}(\alpha \alpha_{\rm s}^2)$	$\mathcal{O}(lpha lpha_{ m s}^3)$	$\mathcal{O}(lpha_{ m bos}^2)$
TH1 (estimated	d error limit	ts from geor	netric serie	es of pert
0.26	0.3	0.23	0.035	0.1
TH1-new (estin	mated error	limits from	geometric	series of
0.2	0.21	0.23	0.035	$< 10^{-4}$
δ_1'	δ_2'	δ'_3	δ_4	
$\mathcal{O}(N_{\rm f}^{\leq 1} \alpha^3)$	$\mathcal{O}(lpha^3 lpha_{ m s})$	$\mathcal{O}(\alpha^2 \alpha_{ m s}^2)$	$\mathcal{O}(lpha lpha_{ m s}^3)$	
TH2 (extrapola	ation throug	h prefactor	scaling)	
0.04	0.1	0.1	0.035	10^{-4}

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

[Standard Model Theory for the FCC-ee Tera-Z stage,

Missing 3-loop contributions

Missing 4-loop contributions

0.15

Electroweak physics (a) FCC-ee

10 operators modifying EWPOs:

$$\begin{split} \mathcal{O}_{Hq}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) \\ \mathcal{O}_{Hq}^{(3)} &= (\phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}H)(\bar{q}\gamma^{\mu}\sigma_{a}q) \\ \mathcal{O}_{H\ell}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{\ell}\gamma^{\mu}\ell) \\ \mathcal{O}_{H\ell}^{(3)} &= (\phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}H)(\bar{\ell}\gamma^{\mu}\sigma_{a}\ell) \\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \\ \mathcal{O}_{Hd} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \\ \mathcal{O}_{He} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) \\ \mathcal{O}_{HWB} &= (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \\ \mathcal{O}_{HD} &= |H^{\dagger}iD_{\mu}H|^{2} \\ \mathcal{O}_{\ell\ell} &= (\bar{\ell}_{L}\gamma_{\mu}\ell_{L})(\bar{\ell}_{L}\gamma^{\mu}\ell_{L}) \end{split}$$

 $\mathcal{L}_Z = -rac{e}{s_W c_W} (1 + rac{\delta g_Z}{s_W c_W}).$

Nudžeim Selimović

Neutral current couplings modifications:

$Z_{\mu} \left\{ \begin{array}{c} z \\ \psi \end{array} \right\}$	$\sum_{=q,\ell} \bar{\psi}^{i} \gamma^{\mu} \left(g_{L}^{\psi} \delta_{ij} + \frac{\delta g_{Lij}^{\psi}}{\delta _{ij}} \right) \mathcal{P}_{L} \psi^{j} + \sum_{\psi=u,d,e} \bar{\psi}^{i} \gamma^{\mu} \left(g_{R}^{\psi} \delta_{ij} \right)$	$+ \delta g^{\psi}_{Rij} \Big)$
δg_L^{Zu}	$\left -\frac{v^2}{2\Lambda^2} \left(\mathcal{C}_{Hq}^{(1)} - \mathcal{C}_{Hq}^{(3)} \right) + \frac{1}{2} \delta g_Z + \frac{2}{3} \left(\delta s_W^2 - s_W^2 \delta g_Z \right) \right $	
δg_L^{Zd}	$\left -\frac{v^2}{2\Lambda^2} \left(\mathcal{C}_{Hq}^{(1)} + \mathcal{C}_{Hq}^{(3)} \right) - \frac{1}{2} \delta g_Z - \frac{1}{3} \left(\delta s_W^2 - s_W^2 \delta g_Z \right) \right $	
$\delta g_L^{Z\nu}$	$-\frac{v^2}{2\Lambda^2} \left(\mathcal{C}_{Hl}^{(1)} - \mathcal{C}_{Hl}^{(3)} \right) + \frac{1}{2} \delta g_Z$	
δg_L^{Ze}	$-\frac{v^2}{2\Lambda^2} \left(\mathcal{C}_{Hl}^{(1)} + \mathcal{C}_{Hl}^{(3)} \right) - \frac{1}{2} \delta g_Z - \left(\delta s_W^2 - s_W^2 \delta g_Z \right)$	
δg_R^{Zu}	$-\frac{v^2}{2\Lambda^2}\mathcal{C}_{Hu} + \frac{2}{3}\left(\delta s_W^2 - s_W^2\delta g_Z\right)$	
δg_R^{Zd}	$-\frac{v^2}{2\Lambda^2}\mathcal{C}_{Hd} - \frac{1}{3}\left(\delta s_W^2 - s_W^2\delta g_Z\right)$	
δg_R^{Ze}	$-\frac{v^2}{2\Lambda^2}\mathcal{C}_{He} - \left(\delta s_W^2 - s_W^2\delta g_Z\right)$	
δg_Z	$-\frac{v^2}{\Lambda^2} \left(\delta v + \frac{1}{4} \mathcal{C}_{HD} \right)$	
δv	$\mathcal{C}_{Hl}^{(3)} - \tfrac{1}{2}\mathcal{C}_{ll}$	
δs_W^2	$-\frac{v^2}{\Lambda^2}\frac{s_W c_W}{c_W^2 - s_W^2} \left[2s_W c_W \left(\delta v + \frac{1}{4}\mathcal{C}_{HD}\right) + \mathcal{C}_{HWB}\right]$	

LFUT tests & EWPO @ FCC-ee

Leptonic Z-coupling modifications:

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

[11th FCC-ee workshop: Theory and Experiments CERN, Jan 9, 2019, Jorge de Blas]

Nudžeim Selimović

Up-type Z-coupling modifications:

[11th FCC-ee workshop: Theory and Experiments CERN, Jan 9, 2019, Jorge de Blas]

LFUT tests & EWPO @ FCC-ee

Down-type Z-coupling modifications:

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

[11th FCC-ee workshop: Theory and Experiments CERN, Jan 9, 2019, Jorge de Blas]

Example: B-anomalies $\leftrightarrow Z \rightarrow \text{invisibles}$

$$[O_{\ell q}^{(1)}]_{\alpha\beta ij} = (\bar{\ell}$$
$$[O_{\ell q}^{(3)}]_{\alpha\beta ij} = (\bar{\ell}$$

Nudžeim Selimović

 $ar{\ell}^{lpha}_L \gamma_\mu \ell^{eta}_L) (ar{q}^i_L \gamma^\mu q^j_L)$ $\bar{\ell}^{\alpha}_{L}\sigma^{I}\gamma_{\mu}\ell^{\beta}_{L})(\bar{q}^{i}_{L}\sigma^{I}\gamma^{\mu}q^{j}_{L})$

Changing the effective number of LH neutrinos: N_{ν}^{eff}

[F. Feruglio, P. Paradisi, A. Pattori arXiv: 1606.00524]

Example: B-anomalies $\leftrightarrow Z \rightarrow invisibles$

$$[C_{H\ell}^{(1,3)}]_{\alpha\beta} = \mp \frac{y_t^2 N_c}{16\pi^2} \log \frac{\Lambda_{\rm NP}^2}{m_t^2} [C_{\ell q}^{(1,3)}]_{\alpha\beta33}$$

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

[LFU violations in leptonic τ decays and B-physics anomalies, Lukas Allwicher, Gino Isidori, NS]

Example: Inverse seesaw mechanism

$SU(4)_3 \times SU(3)_{1+2} \times SU(2)_L \times U(1)'$

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
$\overline{\psi_L} = (q_I^{'3} t)$	$(\mathcal{P}_{I}^{'3})^{T}$ 4	1	2	0
$\Psi_R^+ = (u_R^3 \nu$	$(3)^{T}$ 4	1	1	1/2
$\psi_R^- = (d_R^3 e)$	$\binom{3}{R}^{T}$ 4	1	1	-1/2

$$\mathscr{L} = -Y_H \bar{\Psi}_L \tilde{H} \Psi_R^+$$

predicting $m_t \simeq m_{\nu_\tau}$

Inverse seesaw mechanism:

$$\begin{aligned} \mathscr{L} &= -\lambda_R \, \bar{S}_R^c \, \Omega_1^T \, \Psi_R^+ + \frac{1}{2} \, \mu \, \bar{S}_R^c \, S_R \\ &\to m_R \sim \lambda_R \langle \Omega_1 \rangle \, \pm \, \mu \\ &\to m_{\nu_\tau} \sim \, Y_H^{\nu} \langle H \rangle \mu \, / \, m_R \end{aligned}$$

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

Example: Inverse seesaw mechanism

$SU(4)_3 \times SU(3)_{1+2} \times SU(2)_L \times U(1)'$

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
$\overline{\psi_L} = (q_I^{'3} t)$	$(\mathcal{P}_{I}^{'3})^{T}$ 4	1	2	0
$\Psi_R^+ = (u_R^3 \nu$	$(\frac{3}{R})^T$ 4	1	1	1/2
$\psi_R^- = (d_R^3 e)$	$\binom{3}{R}^{T}$ 4	1	1	-1/2

$$\mathscr{L} = -Y_H \bar{\Psi}_L \tilde{H} \Psi_R^+$$

predicting $m_t \simeq m_{\nu_\tau}$

Inverse seesaw mechanism:

$$\begin{aligned} \mathscr{L} &= -\lambda_R \, \bar{S}_R^c \, \Omega_1^T \, \Psi_R^+ + \frac{1}{2} \, \mu \, \bar{S}_R^c \, S_R \\ &\to m_R \sim \lambda_R \langle \Omega_1 \rangle \, \pm \, \mu \\ &\to m_{\nu_\tau} \sim \, Y_H^{\nu} \langle H \rangle \mu \, / \, m_R \end{aligned}$$

[WIP, Lukas Allwicher, Gino Isidori, Javier Lizana, Ben Stefanek, NS]

Nudžeim Selimović

LFUT tests & EWPO @ FCC-ee

	u	d	q	H	$oldsymbol{U}$	D	Q_1	Q_5	Q_7	T_1	T_2
$SU(3)_C$	3	3	3	1	3	3	3	3	3	3	3
$SU(2)_L$	1	1	2	2	1	1	2	2	2	3	3
$U(1)_Y$	2/3	$-\frac{1}{3}$	$^{1}/_{6}$	$^{1/_{2}}$	2/3	$-\frac{1}{3}$	$^{1}/_{6}$	$-\frac{5}{6}$	7/6	$-1/_{3}$	2/3

	U	D	Q_1	Q_5	Q_7	T_1	T_2
δg_L^{Zu}		X	X	X	X		
δg_L^{Zd}	X		×	×	X		
δg_R^{Zu}	X	X		X		X	X
δg_R^{Zd}	×	X			X	×	×
δg_L^{Wq}			X	×	X		

Nudžeim Selimović

Example: Vector-like Quarks

[Large t \rightarrow cZ as a sign of vectorlike quarks in light of the W mass, Andreas Crivellin, Matthew Kirk, Teppei Kitahara, Federico Mescia]

LFUT tests & EWPO @ FCC-ee

- FCC-ee will provide unrivalled test of the SM: 1 LEP / min
- 1-2 orders of magnitude improvement in precision across multitude of observables
- Theory effort needed to match great statistics:
 - computing higher order corrections
 looking for new "clean" observables - doing NP sensitivity studies

Nudžeim Selimović

