Measurements of $W^+W^-+ \ge 1$ jet cross sections at $\sqrt{s} = 13$ TeV with the ATLAS detector

Jack C. MacDonald on behalf of the ATLAS WW analysis team

LHC EW WG MB, 28th May 2021

Introduction

- WW measurements provide precision tests of Standard Model (SM)
 - Sensitive to properties of gauge boson self-interactions
 - Test of perturbative quantum chromodynamics (pQCD) and electroweak (EW) theory
- Important background for H → WW measurements and BSM searches
- Previous WW measurements at the LHC:

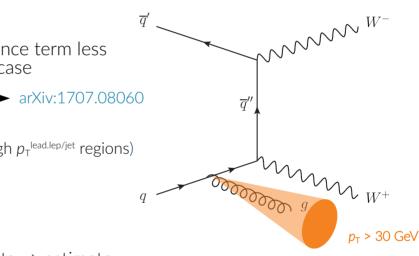
•
$$\sqrt{s}$$
 = 7 TeV arXiv:1210.2979 arXiv:1306.1126 2013
 \sqrt{s} = 8 TeV arXiv:1603.01702 arXiv:1507.03268 arXiv:1608.03086
 \sqrt{s} = 13 TeV arXiv:1702.04519 arXiv:1905.04242 arXiv:2009.00119 2020

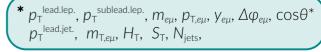
• All limit number of hadronic jets to reduce backgrounds

Most recent ATLAS measurement inclusive over jets → focus of this talk

2021

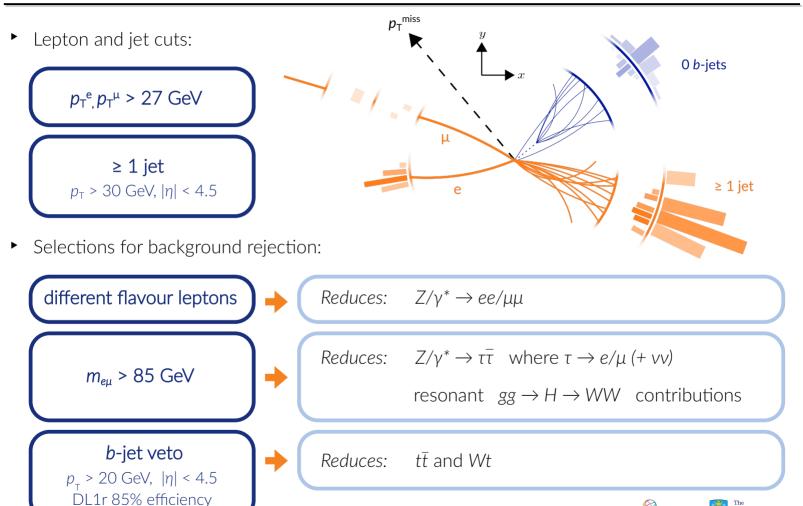
analysis in a nutshell

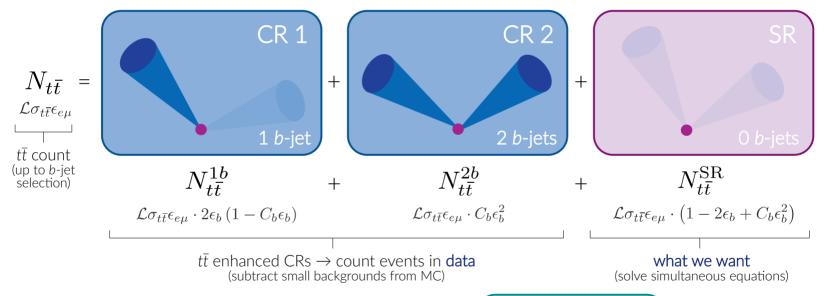

Pre-print: arXiv:2103.10319


<u>Motivation</u>

- Jet-inclusive differential measurements made for first time at LHC
- ► Improved precision in fully inclusive measurement (when combined with jet veto measurement)
- Improved sensitivity to BSM physics
 - Effective field theory (EFT) interference term less helicity suppressed than in jet veto case

Analysis strategy

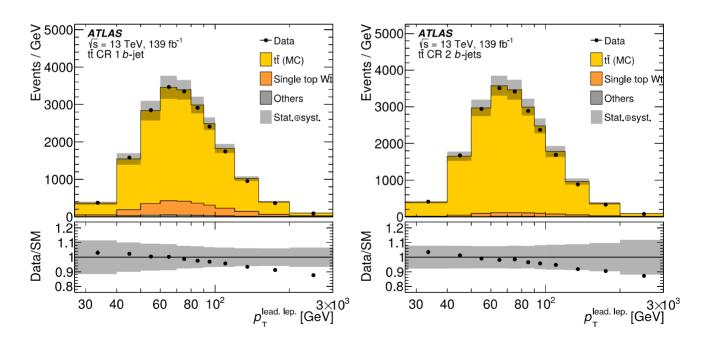

- ► Count $pp \rightarrow ev\mu v$ (+ jets) events in SR (+ high $p_T^{\text{lead.lep/jet}}$ regions)
 - Data binned in 12 observables*
- Estimate backgrounds
 - Dominant contribution from $t\bar{t}$ events \rightarrow estimate with data-driven method
 - Fake leptons (data-driven), Z+jets, diboson, Vy
- Unfolded result = detector -1 (data backgrounds)


Event selection

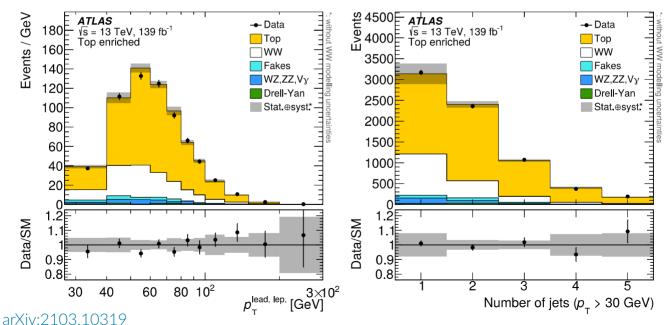
4/27

Top estimate $(t\bar{t} + Wt)$

- ► Top events account for ~60% of events in signal region (SR) \rightarrow dominated by $t\bar{t}$ events
 - Use data-driven 'b-tag counting' method inspired by $t\bar{t}$ cross-section measurement
 - Two control regions (CRs) with different numbers of tagged b-jets
 □ → arXiv:1910.08819



- $t\bar{t}$ modelling only enters in C_b
- Repeated in each bin for differential measurements (b-jet $p_T > 20$ GeV so CR 2 also defined for 1 jet bin)


control regions

- Detector-level distributions in two CRs
 - Excess of events predicted at high $p_T^{\text{lead.lep.}}$ corrected for by data-driven $t\bar{t}$ estimate
- Single top (Wt) contribution from MC

validation

- Estimate strongly reduces systematic uncertainties: 15% (pure MC) \rightarrow 2.8%
 - Anti-correlation between some $t\bar{t}$ and Wt systematics reduces total uncertainty
- Extensive closure tests performed
- Check estimate in top enriched validation region (VR): m_{li} < 140 GeV, $\Delta \varphi_{eu}$ < $\pi/2$ (+ SR)

Fake lepton estimate

Fake = jet misidentified as lepton / lepton from heavy flavour (HF) decay (3%), mainly W+jets

0.9 0.8₽

fake count

in SR

30

40

arXiv:2103.10319

60

- **Poorly modelled** → estimate contribution with data-driven fake factor (FF) method
- Use two auxiliary regions: dijet and ID+anti-ID e/μ selection in SR = ID orthogonal selection = anti-ID **Dijet region** (lepton candidate balanced by jet) lepton 200 - *ATLAS* 180 - Same-sign VR candidate Events / GeV Extract (p_{T} , η , flavour-dependent) fake factors here selection $ext{FF} = rac{N_{ ext{ID}} - N_{ ext{ID,MC}}^{ ext{prompt}}}{N_{ ext{anti-ID}} - N_{ ext{anti-ID,MC}}^{ ext{prompt}}} = rac{ ext{ID}}{ ext{anti-ID}}$ 160 140 120 100 80 **ID+anti-ID region** (SR selection with one ID \rightarrow anti-ID) 60 40 Apply fake factors here 20 $N_{\mathrm{ID+ID}}^{\mathrm{non-prompt}} = \mathrm{FF} \times \left(N_{\mathrm{ID+anti-ID}} - N_{\mathrm{ID+anti-ID,MC}}^{\mathrm{prompt}} \right)$ Data/SM

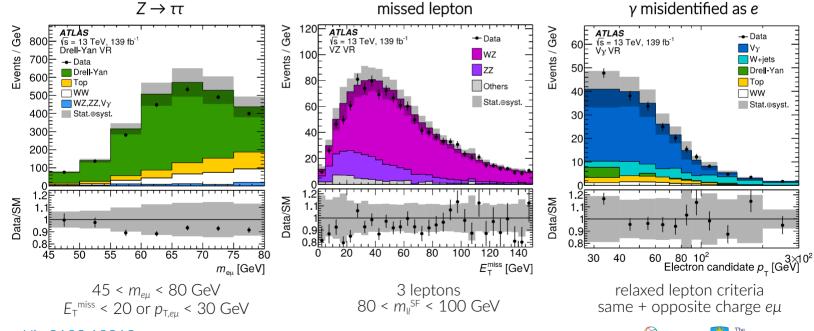
 $=\frac{ID}{anti-ID} \times (ID+anti-ID) = (ID+ID)$

- FF estimate validated in same sign region
- Total uncertainty of 40%

Data

Fakes

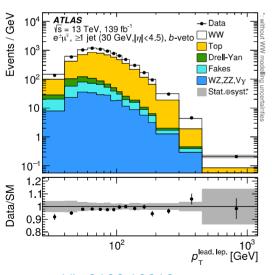
 WZ,ZZ,V_{χ}

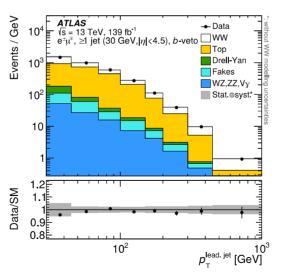

Stat. #svst.

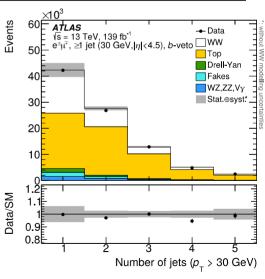
10² 2×10² p_x [GeV]

Other backgrounds

- All remaining backgrounds estimated from simulation and validated in dedicated VRs
 - Account for ~3% of events in SR

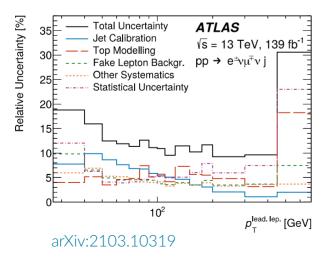

- → Sherpa 2.2.X
- Z+jets (Drell-Yan), VZ, $V\gamma \rightarrow$ triboson negligible (< 0.1% of selected events)
- Systematic uncertainties from alternative signal models

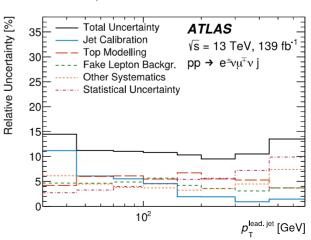



detector-level distributions

- Comparison of data with detector-level predictions
 - Very good agreement seen
 - Slight over-prediction at low $p_T^{\text{lead.lep.}}$ with nominal Sherpa prediction (covered by signal modelling uncertainties)

	Signal region		$p_{\mathrm{T}}^{\mathrm{lead.jet}} > 20$		
Data	89 239		5825	5825	
Total SM	91600 ± 2500		5980 ± 150		
\overline{WW}	28100 ± 1200	31%	2480 ± 60	42%	
Total bkg.	63500 ± 1800	69%	3500 ± 140	58%	
Тор	55800 ± 1500	61%	3030 ± 110	51%	
Drell-Yan	2200 ± 700	2%	66 ± 9	1%	
Fake leptons	2700 ± 1100	3%	140 ± 70	2%	
$WZ, ZZ, V\gamma$	2800 ± 500	3%	270 ± 70	4%	

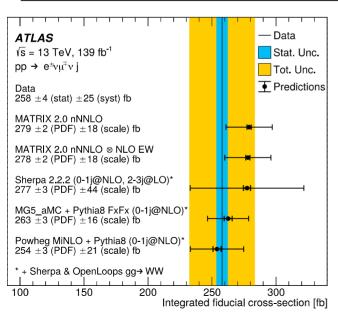



fiducial-level cross sections

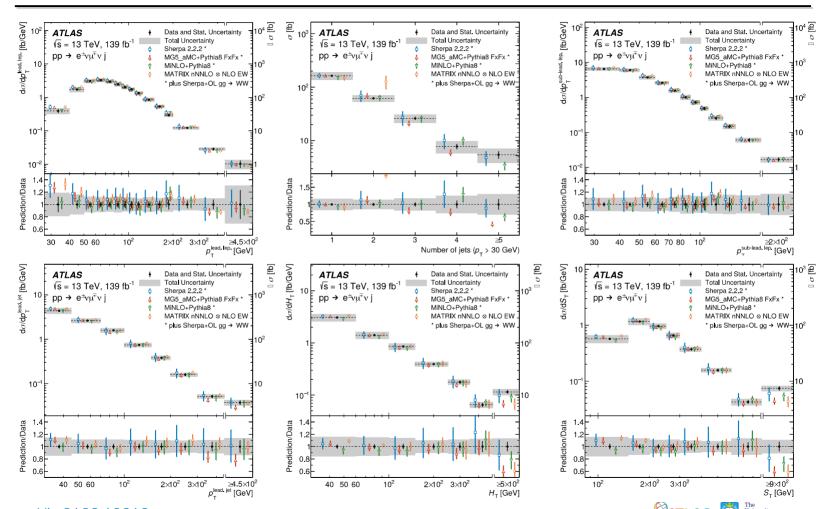
- Fiducial phase space chosen as close to measurement phase space as possible
 - No $\tau \rightarrow lvv$ on fiducial level (correction of ~9%)
 - Nominal fiducial region inclusive over jet flavour, but additional b-veto selection available on HEPData

Fiducial selection requirements				
p_{T}^{ℓ}	>	27 GeV		
$ \eta^{\ell} $	<	2.5		
$m_{e\mu}$	>	85 GeV		
p_{T}^{j}	>	30 GeV 4.5		
$ y^j $	<	4.5		

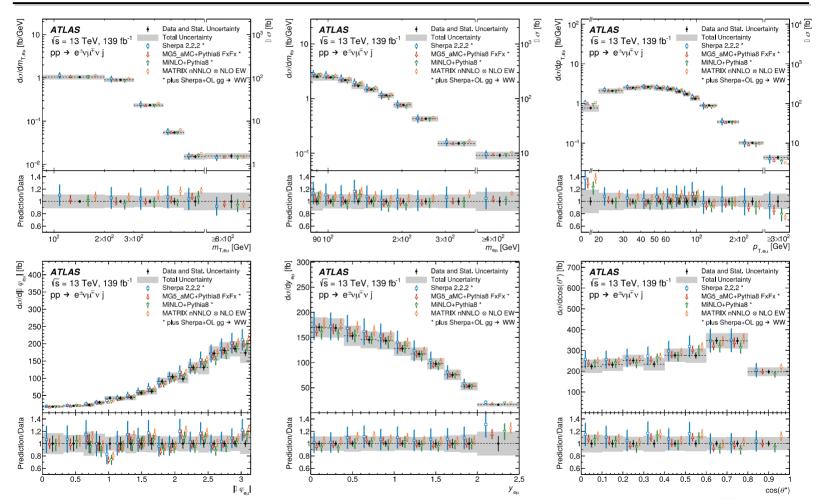
- Correct for detector effects using iterative Bayesian unfolding method
 - Systematic uncertainties from varying unfolding inputs, statistical from toys → total uncertainty ~10% dominated by jet calibration, top and fake contributions



fiducial-level cross sections


Unfolded results compared to variety of fixed order and NLO+PS predictions

Process	Generator	Parton shower	PDF	Matrix element $O(\alpha_S)$	
$q\bar{q} \to WW$	MATRIX 2.0	_	NNPDF3.1	NNLO	_ L [\]\\ corrections
$gg \to WW$	MATRIX 2.0	_	NNPDF3.1	NLO	+ EW corrections for $qq \rightarrow WWi$
$q\bar{q} \to WW$	Sherpa 2.2.2	Sherpa	NNPDF3.0	NLO (0–1 jet), LO (2–3 jets)	101 99 7 7 7 7 7
$q\bar{q} \to WW$	Powheg MiNLO	Рутніа 8	NNPDF3.0	NLO (0–1 jet)	
$q\bar{q} \to WW$	MadGraph 2.3.3	Рутніа 8	NNPDF3.0	NLO (0–1 jet)	
$gg \to WW$	Sherpa 2.2.2 + OpenLoops	Sherpa	NNPDF3.0	LO (0–1 jet)	



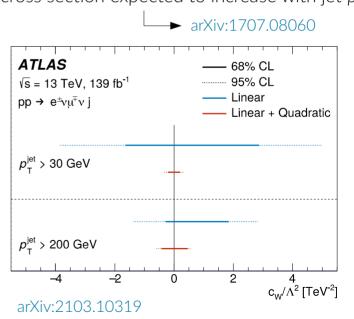
- Integrated fiducial cross section shows excellent agreement with theoretical predictions
 - Relatively large scale uncertainty for Sherpa due to LO matrix elements with up to 3 jets
- Differential distributions (following slides) in general show very good agreement
 - χ^2 /n.d.f. values for nominal Sherpa 2.2.2 prediction all <1 (excluding $m_{e\mu}$ in high jet p_T region = 1.4) \rightarrow similar for other predictions

fiducial-level cross sections

fiducial-level cross sections

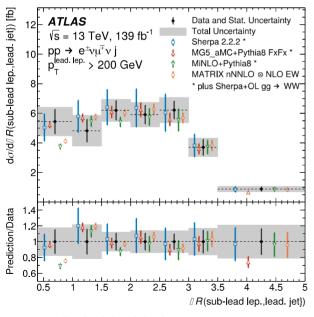
EFT interpretation

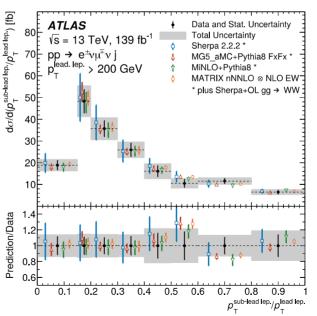
SM can be considered as EFT with additional dim. > 4 operators suppressed by some high energy scale Λ


$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i,d>4} \frac{c_i^{(d)}}{\Lambda^{d-4}} Q_i^{(d)}$$

- Small scale EFT study: focus on one dim. 6 operator
 - Analysis sensitive to Q_w affecting gauge boson self-couplings → arXiv:1008.4884
 - Importance of SM+BSM interference term in cross section expected to increase with jet p_T

$$\sigma = \sigma_{\rm SM} + \frac{c_W}{\Lambda^2} \sigma_{\rm int} + \frac{c_W^2}{\Lambda^4} \sigma_{\rm BSM}$$
 purely SM SM+BSM purely BSM


Fitting and results

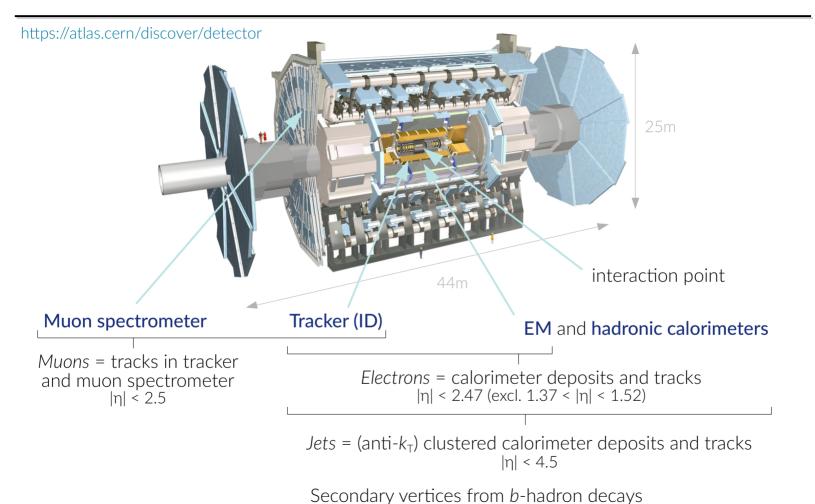

- Perform likelihood fits in dedicated
 p_T lead,jet > 200 GeV region using (unfolded) m_{eμ} distribution
- ► Impact of quadratic term seen to reduce compared to $p_T^{lead,jet}$ > 30 GeV (nominal SR) fit

High lepton p_T region

- Additional differential cross sections in $p_T^{\text{lead.lep.}} > 200 \text{ GeV region}$
 - Targets W+jets event topologies with a soft W emission from a jet
 - Affected by 'giant K-factors' corresponding to large higher order EW and QCD corrections
- Unfolded distributions show good agreement with theoretical predictions

	$p_{\rm T}^{\rm lead. lep.} > 200 {\rm GeV}$	V
Data Total SM	3873 3960 ± 120	
WW Total bkg.	1740 ± 50 44% 2210 ± 110 56%	
Top Drell–Yan Fake leptons WZ, ZZ, Vy	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	10 10

Summary


- ► First WW jet-inclusive differential measurements performed at LHC
- **Reduction of uncertainties in dominant top background** using powerful data-driven $t\bar{t}$ estimate
- Fiducial and differential cross sections agree with theoretical predictions up to highest measured p_T and for up to 5 jets
- Improved sensitivity to EFT interference term in high jet p_T region

Analysis team proceeding to look at WW + 0 jets

In near future combine results for high precision fully inclusive measurement

Backup

ATLAS detector and reconstruction

allow for *b*-jet identification (DL1r)

Detailed event selection

Selection	Criteria	
Lepton $p_{\rm T}$	> 27 GeV	
Lepton η	$ \eta < 2.47$ and not 1.37 $< \eta < 1.52$ (electron)	
	$ \eta < 2.5 \text{ (muon)}$	
Lepton identification	TightLH (electron), Medium (muon)	
Lepton isolation	<pre>Gradient (electron), Tight_FixedRad (muon)</pre>	
Lepton impact parameter	$ d_0/\sigma_{d_0} < 5,3$ (electron, muon)	
	$ z_0 \cdot \sin \theta < 0.5 \mathrm{mm}$	
Jet selection	$p_{\rm T} > 30 {\rm GeV}, \eta < 4.5$	
<i>b</i> -jet selection	$p_{\rm T} > 20 \text{GeV}, \eta < 2.5, \text{DL1r} (85\% \text{eff. WP})$	
Lepton selection	1 electron and 1 muon of opposite charge,	
	no additional lepton with $p_T > 10 \text{GeV}$, Loose isolation,	
	and LooseLH (electron) / Loose (muon) identification	
Number of jets	≥ 1	
Number of <i>b</i> -jets	0	
$m_{e\mu}$	> 85 GeV	
High $p_{\rm T}^{\rm lead.jet}$ selection	$p_{\mathrm{T}}^{\mathrm{lead.jet}} > 200\mathrm{GeV}$	

MC samples

Process	Generator	Parton shower	Matrix element $O(\alpha_S)$	Normalization
$q\bar{q} \to WW$	Sherpa 2.2.2	Sherpa	NLO (0–1 jet), LO (2–3 jets)	Generator [†]
$gg \to WW$	Sherpa 2.2.2	Sherpa	LO (0–1 jet)	Generator
$t \bar{t}$	Powheg-Box v2	Рутніа 8	NLO	NNLO+NNLL
Wt	Powheg-Box v2	Pythia 8	NLO	NLO+NNLL
Z+jets	Sherpa 2.2.1	Sherpa	NLO (0–2 jets), LO (3–4 jets)	NNLO
WZ, ZZ	Sherpa 2.2.2	Sherpa	NLO (0–1 jet), LO (2–3 jets)	Generator [†]
$W\gamma, Z\gamma$	Sherpa 2.2.8	Sherpa	NLO (0–1 jet), LO (2–3 jets)	Generator [†]
VVV	Sherpa 2.2.2	Sherpa	NLO (0–1 jet), LO (2–3 jets)	Generator [†]

^{†:} The cross-section calculated by Sherpa is found to be in good agreement with the NNLO result .

Top estimate $(t\bar{t} + Wt)$

calculation details

ullet Number of tar t events passing $e\mu$ selection: $N_{tar t}=\mathcal{L}\sigma_{tar t}\epsilon_{e\mu}$ ullet e μ selection efficiency

$$N_{tar{t}}=\mathcal{L}\sigma_{tar{t}}\epsilon_{e\mu}$$
 $ightharpoonup$ e μ selection efficiency $tar{t}$ (+iets) cross-section

► Number of tt̄ events in CRs obtained from data (backgrounds estimated with MC)

$$N_{t\bar{t}}^{2b} = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} \cdot C_b\epsilon_b^2$$

$$N_{t\bar{t}}^{1b} = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} \cdot 2\epsilon_b (1 - C_b\epsilon_b)$$

$$\epsilon_b$$
 = efficiency to find and tag a b -jet ϵ_{bb} = efficiency to find and tag two b -jets $C_b=\epsilon_{bb}/\epsilon_b^2$ = correlation factor

Solve for
$$\epsilon_b = \frac{2N_{t\bar{t}}^{2b}}{C_b\left(N_{t\bar{t}}^{1b} + 2N_{t\bar{t}}^{2b}\right)}$$
 $\mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} = \frac{C_b}{4}\frac{\left(N_{t\bar{t}}^{1b} + 2N_{t\bar{t}}^{2b}\right)^2}{N_{t\bar{t}}^{2b}}$

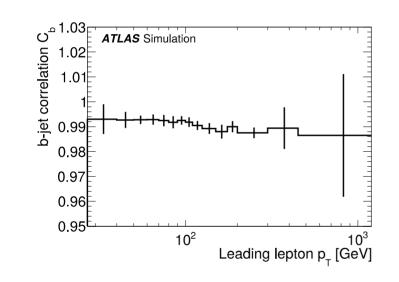
Obtain estimate in SR

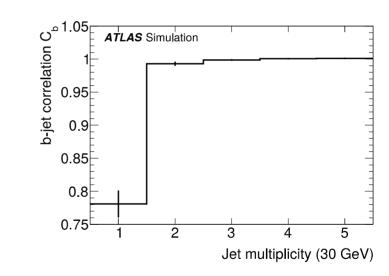
$$N_{t\bar{t}}^{SR} = N_{t\bar{t}} - N_{t\bar{t}}^{1b} - N_{t\bar{t}}^{2b}$$
$$= \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} \cdot \left(1 - 2\epsilon_b + C_b\epsilon_b^2\right)$$

$$N_{t\bar{t}}^{SR} = \frac{C_b}{4} \frac{\left(N_{t\bar{t}}^{1b} + 2N_{t\bar{t}}^{2b}\right)^2}{N_{t\bar{t}}^{2b}} - N_{t\bar{t}}^{1b} - N_{t\bar{t}}^{2b}$$

$$N_{t\bar{t}}^{ib} = N_{\text{data}}^{ib} - N_{\text{bkg,MC}}^{ib}$$

$$C_b = \frac{4N_{t\bar{t},\text{MC}}^{0+1+2b}N_{t\bar{t},\text{MC}}^{2b}}{\left(N_{t\bar{t},\text{MC}}^{1b} + 2N_{t\bar{t},\text{MC}}^{2b}\right)^2}$$

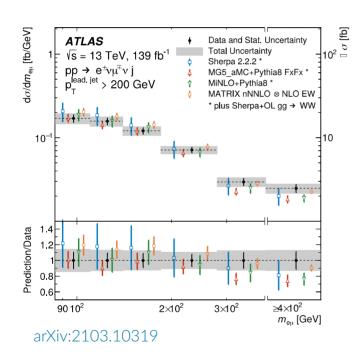

only use of $t\bar{t}$ modelling

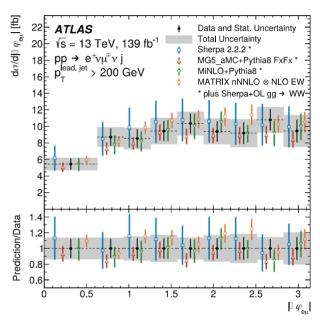

Top estimate $(t\bar{t} + Wt)$

b-jet correlation factor, C_b

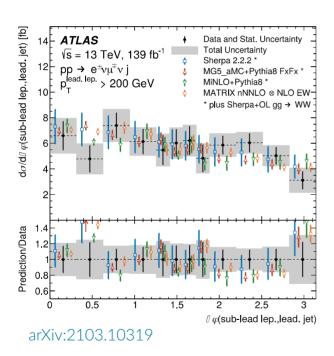
► Inclusive value: $C_b = 0.991 \pm 0.002$

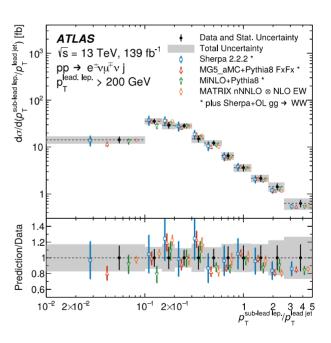
Example differential distributions:




Background estimates

Region	Observed	Predicted ± Error	Purity
tī CR 1b	260 971	268000 ± 19000	87%
tī CR 2b	257 777	267000 ± 21000	96%
Top enriched	7167	7000 ± 1000	72%
Same-sign VR	5095	5000 ± 600	25%
Drell-Yan VR	11824	13000 ± 1600	74%
VZ VR	14770	14000 ± 1900	94%
$V\gamma$ VR (OS)	2720	2670 ± 240	63%
$V\gamma \text{ VR (SS)}$	2401	2250 ± 240	76%


uncertainty breakdown


Uncertainty source	Relative effect	
Total uncertainty	10%	
Signal region statistical uncertainty Data-driven background and MC statistics	1.1% 1.2%	
Jet calibration Top modelling Fake-lepton background Signal modelling Other background Flavour tagging	6.3% 4.5% 4.3% 2.7% 2.3% 2.3%	
Luminosity Other systematic uncertainties	$1.9\% \\ 0.6\%$	

high lepton p_T region

