



# Lessons learned on preprocessing in FastCaloGAN

Michele Faucci Giannelli

03-06-2021

## FastCaloGAN in one slide

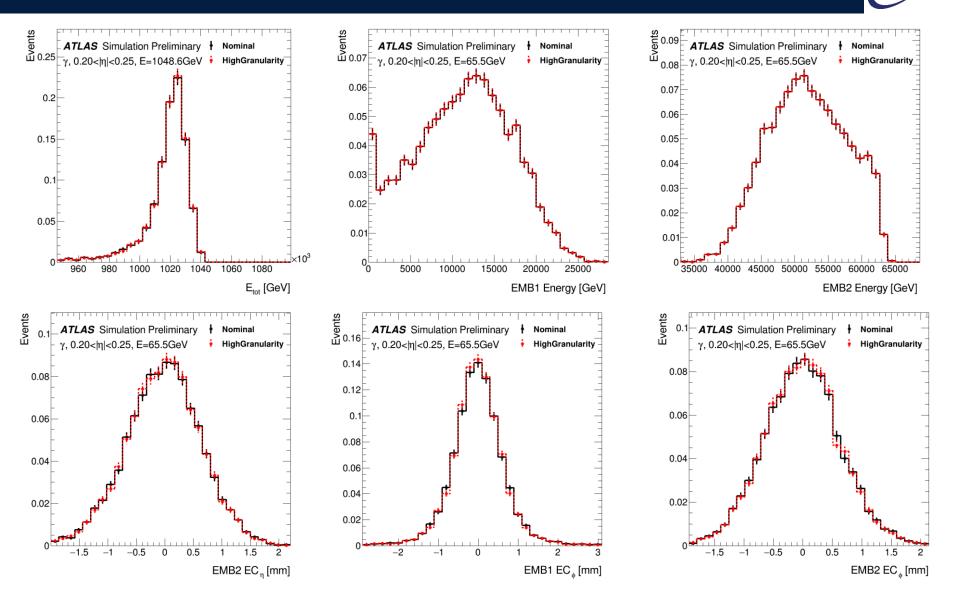


- Use the 4500 single-particle samples produced by ATLAS as part of the effort to create a new Fast Calorimeter Simulation (FCSV2)
  - 3 particles, 100  $\eta$  slices, 15 energy points per slice
  - Energies from 256 MeV to 4 TeV (in powers of two)
- Define a GAN for each particle in each  $\eta$  slice  $\rightarrow$  300 GANs
- Train the GANs on voxelised hits (see backup for hit definition)
  - Because cell structure is not homogeneous and would require different GAN architectures, voxelisation allow to reduce the differences
- Select best epoch based on total energy distribution of each sample
- Convert the selected generator into LWTNN
- Simulate hits in Athena inverting voxelisation
- Compare with Geant4 using high-level observables for single-particle and di-jet samples after reconstruction
- More information:
  - Pub note: <u>ATL-SOFT-PUB-2020-006</u>
  - Presentations at <u>IML</u>

## The training sample

INFN

- The single-particle samples have:
  - detailed hits (i.e. with a step << cell size) to better map ATLAS cells, the position is stored
  - without z-vertex spread
  - without noise
  - without parts of the electronic cross talk
- Events generated by momentum
  - But used the Ekin for the simulation
- The statistics in the high energy region is lower than at low energies
  - 10k events up to 256 GeV
  - Drop to 1k events for 4 TeV samples


#### Voxelisation



- Hits are transformed from ATLAS (x,y,z) coordinates to cylindrical (r, α, R) coordinates R is not use, as hits are grouped in layers
- GAN cannot be trained on hits, so they are grouped in areas in the (r, α) plane in each layer
  each volume in the (r, α, layer) space is called a voxel
- We store the energy in each voxel in csv files
   Simple to read with *nd read* (sv())

- Simple to read with *pd.read\_csv()* 

#### Validation





### Lesson learned: speed



- Processing 4500 samples takes time and is very I/O intensive
  - Compiling code and not running on EOS speed things up by about a factor 10
- Running the voxelisation for the whole detector takes several days on HTCondor
  - Another good reason to keep the GAN separate by slice, it's much faster to assess the performance of different voxelisations
- Optimisation of voxelisation is absolutely not trivial, many iterations are needed
  - Unfortunately some effect only visible after training, simulation and reconstruction, which takes a lot of time
  - More pre-training validation is needed

#### Lesson: abstract the voxelisation

- INFN
- We have several scripts (training, validation, plotting, TF2LWTNN conversion, simulation, ...)
- At the beginning we had the voxelisation hardcoded but it was a nightmare to change it
- We settled on a XML in which we define the bins in r and alpha in each layer for each particle in different detector regions
  - Used everywhere, from voxelisation to simulation in Athena

| <bin etamax="130" etamin="0" pid="22"></bin> |             |        |                                                                          |                    |
|----------------------------------------------|-------------|--------|--------------------------------------------------------------------------|--------------------|
| <                                            | Layer id='  | "0" r_ | edges="0,5,10,30,50,100,200,400,600"                                     | n_bin_alpha="1" /> |
| <                                            | Layer id='  | "1" r_ | edges="0,2,4,6,8,10,12,15,20,30,40,50,70,90,120,150,200"                 | n_bin_alpha="10"/> |
| <                                            | Layer id='  | "2" r_ | edges="0,2,5,10,15,20,25,30,40,50,60,80,100,130,160,200,250,300,350,400" | n_bin_alpha="10"/> |
| <                                            | 'Layer id=' | "3" r_ | edges="0,50,100,200,400,600"                                             | n_bin_alpha="1" /> |



- Before feeding the csv information to the GANs, two normalisations are applied
- The energy in the voxels is normalised to the sample true energy
  - This allow to focus on the shape rather than the absolute value of the energy
- The conditional parameter (momentum of particle) is normalised to the highest energy (4TeV) to that the labels are in the range (0,1]