

Generative Models for Event Simulation

F. Ratnikov Yandex / HSE University LHCb Collaboration

ML4Sim Meeting, June 3, 2021

Detector Simulation Context

Two primary use cases

- detailed detector simulation
 GEANT
 - $\blacktriangleright \text{ GEN} \rightarrow \text{SIM}$
 - need following DIGI and RECO steps
 - most accurate, slow

ML generative models may help to speed up bottlenecks

- fast simulation
 - e.g. DELPHES
 - target individual simulation chain steps.

extreme - GEN \rightarrow RECO in single aggregated step

fast, can be less accurate (parametrized models)

ML generative models may improve aggregated detector response model

Library vs Generative Approach

Reference dataset is necessary to train generative model

Reference dataset may be used to sample objects directly

- approach accommodated by CMS, ATLAS, LHCb
- PRO library approach comparing to generative models aggregated distributions are guaranteed by construction
- PRO generative models comparing to library approach discreetness of events
 - partly compensated by energy scaling

speed

massive matrix operations vs massive object search

size

both transient and persistent

LHCb

E Barberio et al 2008 J. Phys.: Conf. Ser. 119 032008

From technical perspective, library-based and ML-based modules have very similar interfaces for both gathering train data and inferencing objects

Operation Scheme

To speed up G4 we need to intercept G4Track in front of the detector, generate detector response, fill DetHits structures

Is partly addressed by by GEANT4 FastSim interface

fedor.ratnikov@cern.ch

Generative Models for Event Simulation

Operation Scheme

Pipeline

Collect train data

- $\blacktriangleright run G4Track \xrightarrow{} GEANT4 DetectorHits$
- collect train dataset (G4Track, DetectorHits)

Train generative model (GAN)

- conditioned by track parameters
- (G4Track, DetectorHits) \rightarrow GAN

G4Track \longrightarrow DetectorHits GAN

Speedup simulation

• G4Track $\xrightarrow{}$ DetectorHits

Dimensionality Reduction

We can hardly build generative model for the full detector

many channels - high dimensional objects

Response of the impact particle is usually local

can limit generated object to local area of the response

30×30 matrix of 20.2 mm cells is a proxy to 40.4, 60.6, 121.2 mm cells in any combination

Global - Local Transformations

Need interface to convert global SIM geometry to local ML model geometry and back

G4Track: global \rightarrow local ML

DetectorHits: local ML \rightarrow global

Alternative Dimensionality Reduction Approach

Aggregate fine grain SIM information into RECO level observables

Accurate LHCb RICH simulation involves:

- tracing the particles through the radiators
- Cherenkov light generation
- photon propagation, reflection, refraction and scattering
- Hybrid Photon Detector (photo-cathode + silicon pixel) simulation

These require significant computing resources

Besides:

 quality of obtained simulated ID variables is not as good as we wish, when comparing to calibration data samples

Alternative Dimensionality Reduction Approach

Aggregate fine grain SIM information into RECO level observables

Accurate LHCb RICH simulation involves:

- tracing the particles through the radiators
- RICH is used for particle ID only

Let's use ML:

- train generative model to directly convert track kinematics into PID variables
 - ♦ $3 \rightarrow 5$ generative model

can train directly on calibration data samples

 quality of obtained simulated ID variables is not as good as we wish, when comparing to calibration data samples

Photon

Detectors

0

Magnetic Shield

Generative Models in LHCb

Direct simulation of calorimeter responses

Simulation of reconstruction output for RICH and Muon ID

A. Maevskiy et al., ML4PHYS@Neurips 2019

Work in both directions

- speed up G4 bottlenecks
- direct simulation of RECO observables

Generative Models in LHCb

Direct simulation of calorimeter responses

Simulation of reconstruction output for RICH and Muon

Work in both directions

- speed up G4 bottlenecks
- direct simulation of RECO observables

Generative Models Characteristics

Fast Sampling

- much faster than detailed MC
- models can get complicated
- current RICH simulation speed ~70 ms

Very Fast training

- retrain can be done very fast
- train process still should be periodically controlled
- ▶ current RICH model trains ~2 days using GPU

Good Precision

- complicated models can be quite precise
- precision is controlled by train sample statistics

current RICH precision is available in ROC AUC scores (0.52)

Fast Simulation for LHCb: Lamarr

Training Perspective

LHCb Future Developments

Calibration samples \rightarrow generative model Dockerized version can run anywhere

Inference Perspective

Monitoring Perspective

LHCb Future Developments

Monitor

- docker pipeline
- training procedures
- prompt basic distributions
- physics channels

Re-training

Start from pre-trained models

- significant speedup speedup
- improved training stability

Work ongoing to form centralized system to train and test ML techniques for Calorimeter and RICH simulations

this moves the training from individuals to a centralized system, improving reproducibility and ensuring high quality

Work ongoing to include ML-based FastSim models via GEANT4 FastSim interface

presented ealrier in this series

https://indico.cern.ch/event/1030029/contributions/4326642/ attachments/2231623/3781422/ml4sim_at_lhcb_22_04_21.pdf

Conclusions

Infrastructure in the simulation framework is necessary to use ML based FastSim models in routine operation

- exchangeable GEANT-based and ML-based modules to convert GEANT track to detector response G4Track(in) → DetectorHits
 - to collect training data

to use fast generative model

converter from global geometry to local model geometry

ML-based FastSim models aggregating SIM-DIGI-RECO may be trained on real data and bypass SIM-DIGI-RECO steps

They need even more operational efforts for training and validation

- Is closer connection between data taking run conditions and simulation
- established procedures for routine re-training models for new Run conditions
- Infrastructure to plug newly trained models into operation stack

