

Smilei) Building a plasma simulation ecosystem

A. Beck, LLR, Ecole polytechnique

G. Bouchard – A. Specka M. Grech – F. Pérez – T. Vinci M. Lobet – F. Massimo – J. Silvacuevas

European Strategy: Townhall meeting #3

MAISON DE LA SIMULATION

Milestones

"What are the important milestones for the next 10 years to get there from today ?"

- => Fast AND reliable codes:
 - 1) Quasi real time simulations for ~Hz repetition rate
 - 2) Simulations capable of rendering experimental results
 - 3) Both simultaneously
- => Brute force simulations of a large number of stages (exascale, next generation of supercomputers)
- => Maintainable and usable codes

Turn high tech complicated simulation code into a practical everyday tool: Code quality, shared knowledge, documentation, ease of use (interface for non expert)

All these milestones require mostly software engineering

Facilities and Funding

What is the role of the already planned future facilities in Europe and world-wide?

Computing centers provide HPC resources for the simulation campaigns.

Europe supports some applications towards exascale with 14 of "Centres of Excellence in HPC applications " (Biomedicine, Combustion, Materials ...). Today, none of them is dedicated to high energy or plasma physics.

Is the R&D work for each of those deliverables already funded and, if not, what additional resources / support would be needed?

USA: Exascale Computing initiative => exascale supercomputer expected this year. \$475 million for year 2021.

Exascale Computing Project => applications and software stack \$250 million for year 2021. Plasma wakefield accelerator is listed as an objective.

Europe: Exascale systems annouced for 2023/2024 and is just now identifying scientific fields and pilot applications relevant to exascale. It is important that plasma acceleration is recognized as eligible for European exascale as it has been in the US. EuroHPC: 8 Billion \in for 2021-2030.

Open source ecosytem

Strong interconnections between the players of the ecosystem

Sharing knowledge

Practicals for master students

User training & workshop

Tutorials available at smileipic.github.io/tutorials

International Users Community Germany

Joint effort between communities

Smilei) Timeline

Features relevant for plasma acceleration

Physics	Numerics	HPC
 Ionization QED 	 Dispersion free solver Envelope Moving window Azimuthal Decomposition PML boundaries Dynamic Load Balancing Arbitrary laser/plasma profiles Particles injection 	 MPI OpenMP Taskification GPU support Vectorization

Towards fast and reliable simulations

Numerical methods and High Performance Computing are key.
 Combining all features is the challenge.

Combining features is a lot of work

10

And N is getting very large !

Where do we stand today ? A practical usecase

Simulations by unexperienced users at IJC Lab: Ionization & downramp injection, ~5.2 mm propagation. A simulation runs in ~12 minutes over 5 compute nodes. 1200 simulations are run in less than 6H on a national supercomputer.

- Use aggressive reduction
- Getting close to real time
- Manageable error (< 5%)
- Allows parameter scan for plasma cell design
- Will get better with the addition of improved boundary conditions, full GPU support, etc...

P. Drobniak, V. Kubytskyi, K. Cassou

Apollon Laser usecase

Simulation support to Apollon campaigns

- Target design
- Scan parameters of interest
- Guide ongoing campaigns (close to real time simulation)
- Interpretations of results

Simulation 1, Propagation distance = 6.3 mm
Simulation 2, Propagation distance = 7.2 mm
Simulation 3, Propagation distance = 6.5 mm
Simulation 4, Propagation distance = 7.6 mm

Massimo et. al. (2019) Plasma Phys. Control. Fusion 61 124001

Milestones

"What are the important milestones for the next 10 years to get there from today ?"

- => Fast AND reliable codes:
 - 1) Quasi real time simulations for ~Hz repetition rate
 - 2) Simulations capable of rendering experimental results
 - 3) Both simultaneously
- => Brute force simulations of a large number of stages (exascale, next generation of supercomputers)
- => Maintainable and usable codes

Turn high tech complicated simulation code into a practical everyday tool: Code quality, shared knowledge, documentation, ease of use (interface for non expert)

All these milestones require mostly software engineering

Building the community

4000	Press				_	
Smile;)	Overview	Understand	Use	More	9	
uone by merdanig	a block braghteras			l	Sections	
<pre>DiagFields(every = 10, time_average fields = ["E #subgrid = N)</pre>	= 2, x*, "Ey*, "Ez*], lone					
every						
Number of tim	lesteps between ea	ch output or a time se	election.			
flush_every Default: 1						
Number of tim	nesteps or a time so	election.				
When <i>flush_</i> ev from the buffe	very coincides with r). Flushing too off	every, the output file en can dramatically sl	is actually wi ow down the	ritten ("flushe simulation.	ed"	
	C)nline	e m	late	eria	
milei users github.cor	n/SmileiPIC/Smilei)ocur	nei	nta	tior	. ≙ ⊞ ©
		Hi	er			
asladom						U 5 ···
li everybody, I'd like to ask n "xmax" for a short laser p lectric field of the original ried the default boundary o he "xmax" boundary, anyw	if anybody knows if it is p ulse (Gaussian beam) in m laser pulse), which eventu conditions and then EM_bo ay.	ossible to solve the following i 19 2D simulation. However, I ar ally disrupt my simulation. Is t pundary_conditions_k =[[1,0.],	issue. I am using S m always getting (here any way to s [-1.,0.],[1.,0.005],[Silver-Muller as ar certain reflections uppress these ref [1.,-0.005]], but th	a absorbing EM bound s of this EM wave (~0 flections even more si uese reflections are co	dary condition 1.1% of the ignificantly? I oming from
edpz i)		hahaadd ha hawaa Dadaadaaa				

beck-ll

🕲 masladom : Hi. The reflected EM wave hits the xmax boundary with a normal incidence ? If not you can try to adjust the k indeed. Also for the moment a brute force solution is simply to use a larger domain in order to delay the reflection as much as possible

masladon

Yes, it is coming from xmin boundary where the condition is [1.0] and is absorbed in xmax where the condition is [-1,0]. I also tried oblique incidence but the effect was similar

I was actually using larger domain before but I wanted to reduce the computational time :)

Thanks anyway!

<u></u>	-4	
	- Z I	c
-		

does your geometry allow the use of azimuthal decomposition maybe to reduce the computational time?

Why GitHub? V Enterprise	Explore V Marketplace Pric	ing V Search			Sign i	n Sign	up
SmileiPIC / Smilei			() Watch	29 ★ Sta	r 91	¥ Fork	42
Code ① Issues 10 11 Pull req	uests 0 📃 Projects 0 🕕 S	ecurity					
collaborative, open-source, multi-pu	rpose particle-in-cell code for pla	asma simulation https:	//smileipic.g	ithub.io/Smile	ei		
collaborative, open-source, multi-pu Jasma-simulation @ 6,664 commits	rpose particle-in-cell code for pli 2 branches	asma simulation https: © 22 release	//smileipic.g s	ithub.io/Smile 14 1	i 9 contribu	utors	
collaborative, open-source, multi-pu Jasma-simulation () 6,664 commits Branch: master • New pull request	rpose particle-in-cell code for pli	asma simulation https: © 22 release	//smileipic.g	jithub.io/Smile	i 9 contribu Clone	utors or downloa	d -
collaborative, open-source, multi-pu stasma-simulation @ 6,664 commits Branch master • New pull request jderouillat Merge trgt.in2p3 fr.smileismile	rpose particle-in-cell code for pli 2 branches	asma simulation https: © 22 release	//smileipic.g	ithub.io/Smile	9 contribu Clone	utors or downloa	d - tay
collaborative, open-source, multi-pu plasma-simulation (2) 6,664 commits Branch: master • New pull request jdercoillat Merge trgt in2p3 framileismile in gehuchISSUE_TEMPLATE	rpose particle-in-cell code for pli 2 branches Update issue templates	asma simulation https: © 22 release	//smileipic.g	ithub.io/Smile 21 1 Find File Latest co	ti 9 contribu Clone mmit 2d73	utors or downloa 99b yester 8 months a	d - say
collaborative, open-source, multi-pu learns-sinulation	rpose particle-in-cell code for pli 2 branches Update issue templates Update deleting process	asma simulation https: © 22 release after merging algorithm	//smileipic.g	jithub.io/Smile 11 1 Find File Latest co	i 9 contribu Clone mmit 2d73 (utors or downloa 89b yestern 5 months a	d - day igo
collaborative, open-source, multi-pu stasma-simulation	rpose particle-in-cell code for pli 2 branches Update issue templates Update deleting process Merge branch 'develop' I	asma simulation https: 22 release after merging algorithm nto dev_injector	//smileipic.g	jithub.io/Smile	9 contribu Clone mmit 2d73 (or downloa 89b yestero 8 months a 7 months a 25 days a	d - day igo

Free access Issue reporting **Online support**

Chat with developers and other users

Multiple geometries

Cylindrical azimuthal modes (3D particles)

Additional physics

Non-linear Breit-Wheeler pair cascades

Lobet et al., JPCS (2016) Niel et al., PRE 97 (2018); PPCF 60 (2018)

Advanced numerical methods

- Full-PIC = resolve the laser wavelength
- Approximation : reduced equations on laser envelope

Parallel computing

Is part of the French national benchmark for supercomputing

Happi post-process

The repository includes a python module

\$ ipython
In [1]: import happi; S = happi.0pen("simulation_directory")

Plot results

Data manipulation

In [4]: data_array = rho.getData()
In [5]: rho.toVTK()

Integrate into the global ecosystem

Standard for Particle-Mesh Data

PIC code library

Collaborative, user-friendly GitHub • Python interface

Educational resources Online documentation • Tutorials

High-performance

MPI-OpenMP • Load balancing • vectorization

Physics Ionisation • Collisions • Strong-field QED

Advanced solvers

Spectral solvers • Multi-geometries • Laser envelope M. Grech F. Perez T. Vinci

M. Lobet F. Massimo J. Silvacuevas

A. Beck G. Bouchard MAISON DE LA SIMULATION

... and many more

Derouillat et al., CPC 222 (2018)

M. Grech F. Perez T. Vinci

M. Lobet F. Massimo J. Silvacuevas

MAISON DE LA SIMULATION

maisondelasimulation.fr/smilei

A. Beck G. Bouchard

github.com/SmileiPIC/Smilei

... and many more

app.element.io/#/room/#Smilei-users:matrix.org

Derouillat et al., CPC 222 (2018)

High Performance

Vectorization activated only where there are many particles per cell

Beck et al., CPC 244 (2019)

Many options for solvers

Charge-conserving current deposition

Esirkepov, CPC 135 (2001)

- Orders of interpolation:
 - 2 or 4 (3 or 5 points)
- Several FDTD schemes:

"Yee", "Cowan", "Lehe"

Nuter et al., EPJD 68 (2017)

• Spectral solver available via PICSAR (beta)

picsar.net

Ionization by fields

- Monte-Carlo
- Multiple events in 1 timestep
- May define a custom ionization

Processes between pairs of particles

- Collisions
- Collisionnal ionization
- Nuclear reactions (D-D fusion in progress)

Balance the workload between processors

Balance the workload between processors

Domains automatically adapt to the simulation evolution

Laser wakefield simulation ~ 2x faster

Vectorization: do multiple operations at once

+

★

Scalar

╋

Vectorized

+ +

₩

+

Theoretically, almost 4x faster Requires extensive work on data structure & operators

Envelope: wave equation

Terzani and Londrillo, CPC (2019)

Laser Complex Envelope D'Alembert Equation: $\hat{A}(\mathbf{x},t) = Re\left[\tilde{A}(\mathbf{x},t)e^{ik_0(x-ct)}\right]$ + $\nabla^2 \hat{A} - \partial_t^2 \hat{A} = -\hat{J}$

Envelope Equation: Plasma $abla^2 ilde{A} + 2i \left(\partial_x ilde{A} + \partial_t ilde{A} \right) - \partial_t^2 ilde{A} = \chi ilde{A}$ Susceptibility

Envelope: particle motion

Ponderomotive force:

Acts as a radiation pressure on charged particles. Expels the electrons from high-intensity zones.

<u>Equations of motion for the macro-particles</u>:

