INVERSE-ALPHA-X: α-scattering on unstable proton-rich tin isotopes in inverse kinematics for the astrophysical p-process

Daniel Galaviz Redondo

LIP-Lisbon
Physics Department, Faculty of Sciences, U-Lisboa

Javier Ferrer Fernández

Atomic, Molecular and Nuclear Physics Department, Univ. Seville

National Center of Accelerators (CNA), Seville.
67th INTC Meeting
June 23rd, 2021

Outline

Motivation:

- Astrophysical p-process
- Uncertainties related to α nuclear potentials
- Innovative use of thin helium targets
- Results of the Test Experiment at INFN/LNS
- Proposed experiment:
- Elastic $\boldsymbol{\alpha}$ scattering in inverse kinematics on exotic ${ }^{108,110} \mathbf{S n}$, and stable ${ }^{112} \mathbf{S n}$

Astrophysical p-process

p-process Sensitivity Studies

- Sensitivity studies of p-process nucleosynthesis point out the strong dependence of the α-nuclear potential in the production of heavy p-nuclei
Z \uparrow

W. J. Rapp et al., Astrophys. J 653, 474 (2006)

a-nuclear potentials

Mass dependence in stable Sn isotopes

D. Galaviz et al., Phys. Rev. C 71, 065802 (2005)

New Helium targets

Development of He solid targets for nuclear reaction experiments

Motivation summary

- Motivation: Sensitivity of heavy p-nuclei production to α nuclear potentials
- Goal: Determine a nuclear potentials on heavy unstable isotopes
- Opportunity: Innovative use of new thin helium targets in scattering experiments in inverse kimematics
- Proposal at ISOLDE: Measurement of α nuclear potentials for the first time on exotic nuclei at energies around the Coulomb barrier

Test Experiment

- Performed at INFN/LNS
- Developed in the framework of an stable beam experiment proposed at the CT2000 scattering chamber

Test Experiment

- Performed at INFN/LNS
- Developed in the framework of an stable beam experiment proposed at the CT2000 scattering chamber
${ }^{4} \mathrm{He}\left({ }^{58} \mathrm{Ni}, \alpha\right){ }^{58} \mathrm{Ni} @ 150 \mathrm{MeV}$

Previous Works

- Measurement of the ${ }^{4} \mathbf{H e}\left({ }^{\text {A }} \mathbf{S n}, \boldsymbol{\alpha}\right)^{\text {A }} \mathbf{S n}$ elastic scattering cross section in inverse kinematics at energies close to the Coulomb barrier

Benchmark data with new approach

Analyse mass dependence
D. Galaviz et al., Phys. Rev. C 71, 065802 (2005)

Proposed experiment

- Measurement of the ${ }^{4} \mathbf{H e}\left({ }^{\mathrm{A}} \mathbf{S n}, \boldsymbol{\alpha}\right){ }^{\mathrm{A}} \mathbf{S n}$ reaction same E_{cm} : mass dependance of $\boldsymbol{\alpha}$ nuclear potentials

Proposed experiment

- Measurement of the ${ }^{4} \mathrm{He}\left({ }^{(} \mathbf{S n}, \boldsymbol{\alpha}\right)^{\mathrm{A}} \mathrm{Sn}$ reaction same E_{cm} : mass dependance of $\boldsymbol{\alpha}$ nuclear potentials

Proposed experiment

INVERSE-ALPHA-X

Proposed experiment

Proposed experiment

Proposed experiment

Beam	$\mathrm{E}(\mathrm{MeV} / \mathrm{u})$	Intensity (pps)	Shifts
${ }^{112} \mathrm{Sn}$	4.9	5×10^{7}	3
${ }^{110} \mathbf{S n}$	4.9	5×10^{7}	$\mathbf{5}$
${ }^{108} \mathbf{S n}$	4.9	5×10^{6}	$\mathbf{1 5}$
	Calibration and electronics, beam changes	3	

Total RIB: 20 Shififts

Proposal Outlook

- This proposal is part of a development series:

Targets developed and characterized in SSF: CNA- Seville
Benchmark measurement at a LSF: LNS-Catania
Experiment using unstable isotopes in RIB: HIE-ISOLDE

- Follow up:

Analyse the impact on p-process network calculations

Measurements on heavier unstable isotopes

Participants

D. Galaviz ${ }^{1}$, F. J. Ferrer ${ }^{2,3}$, F. G. Barba L. Acosta ${ }^{4}$, B. Bastin ${ }^{5}$, M. J. G. Borge ${ }^{6}$, J. A. Briz 6, J. Cederkall ${ }^{7}$, M. La Cognata ${ }^{\circ}$, J. G. Correia ${ }^{9}$, J. Cruz ${ }^{10}$, Y. Demane ${ }^{11}$, J. Díaz ${ }^{6}$, C. Aa Diget ${ }^{12}$, C. Ducoin ${ }^{11}$, A. Fernández ${ }^{13}$, B. Fernández ${ }^{2,3}$, J. P. Fernández-García ${ }^{2,3}$, P. Figuera ${ }^{8}$, L. M. Fraile ${ }^{14}$, Zs. Fülöp ${ }^{15}$, V. Godinho ${ }^{13}$, J. Gómez Camacho ${ }^{2,3}$, Gy. Gyürky ${ }^{15}$, F. Heim ${ }^{16}$, D. Hufschmidt ${ }^{13}$, A. P. de Jesus ${ }^{10}$, K. Johnston ${ }^{17}$, G. G. Kiss ${ }^{15}$, T. Kurtukian-Nieto ${ }^{18}$, L. Lamia ${ }^{8}$, A. Laird ${ }^{12}$, J. P. Marques ${ }^{1}$, N. Millard ${ }^{11}$, P. Mohr ${ }^{15,19}$, B. Oliazola ${ }^{17}$, L. Peralta ${ }^{1}$, A. Perea ${ }^{6}$, A. di Pietro ${ }^{8}$, G. Pizzone ${ }^{8}$, B. Rebeiro ${ }^{11}$, S. Romano ${ }^{8}$, J. M. Sampaio ${ }^{1}$, A. M. Sánchez-Benítez ${ }^{20}$, O. Stézowski ${ }^{11}$, O. Tengblad ${ }^{6}$, P. Teubig ${ }^{1}$, A. Tumino ${ }^{8}$, S. Viñals ${ }^{21}$, M. Xarepe ${ }^{1}$, A. Zilges ${ }^{16}$
${ }^{1}$ LIP-Lisbon, 1649-016 Lisboa, Portugal
${ }^{2}$ Departamento de Física Atómica, Molecular y Nuclear, Univ. Sevilla, 41012 Sevilla, Spain
${ }^{3}$ Centro Nacional de Aceleradores (U. Sevilla, J. Andalucia, CSIC), 41092 Sevilla, Spain
${ }^{4}$ Instituto de Física, Universidad Nacional Autónoma de México, Cd. Mx., Mexico
${ }^{5}$ LPC-Caen, INPP3/CNRS, 14050 Caen Cedex, France
${ }^{6}$ Instituto de Estructura de la Materia (CSIC), Serrano 113bis, 28006 Madrid, Spain
${ }^{7}$ Physics Department, University of Lund, Box 118, SE-221 00 Lund, Sweden
${ }^{8}$ INFN-Laboratori Nazionalli del Sud, 95123 Catania, Italy
${ }^{9}$ Centro de Ciências e Tecnologias Nucleares (C2TN), IST, 2686-953 Sacavém, Portugal
${ }^{10}$ LIBPhys-UNL, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
${ }^{11}$ Université Claude Bernard-IPNL, 69622 Villeurbanne Cedex, France
${ }^{12}$ Department of Physics, University of York, York YO10 5DD, UK
${ }^{13}$ Instituto de Ciencia de Materiales de Sevilla (CSIC, U. Sevilla), 41092 Sevilla, Spain
${ }^{14}$ Grupo de Física Nuclear, Universidad Complutense, 28040 Madrid, Spain
${ }^{15}$ Institute for Nuclear Research (Atomki), H-4001 Debrecen, Hungary
${ }^{16}$ Institute for Nuclear Physics, University of Cologne, D-50937 Cologne, Germany
${ }^{17}$ PH Department, CERN, CH-1211 Geneva-23, Switzerland
${ }^{18}$ Centre d'Etudes Nucléaires de Bordeaux Gradignan, 33175 Gradignan Cedex, France
${ }^{19}$ Diakonie-Klinikum, 74523 Schwäbisch Hall, Germany
${ }^{20}$ Centro de Estudios Avanzados en Física, Matemáticas y Computación (CEAFMC), Department of Integrated Sciences, University of Huelva, 21071 Huelva, Spain
${ }^{21}$ Centro de Micro-Análisis de Materiales, Madrid ES-28039, Spain

Thank you!

Start Backup Slides

TAC Comments

Expected Maximum Rates

$\mathrm{I}_{\max }\left({ }^{112} \mathrm{Sn}\right)=5 \times 10^{7} \mathrm{pps}$
Rate $=12 \mathrm{~Hz}$ rate
$\Delta \mathrm{t}_{\text {pulse }}=1 \mathrm{~ms}$

Detector	Distance (mm)	$\Delta \boldsymbol{\vartheta}_{\text {lab }}\left(^{\circ}\right)$	Strip Rate $($ counts/s)	Strip Rate (counts/pulse)	Prompt Strip Rate (counts/s)
A	70	$15^{\circ}-55^{\circ}$	6.5	0.55	550
B	140	$45^{\circ}-65^{\circ}$	5.6	0.46	465
C	140	$60^{\circ}-80^{\circ}$	24.9	2.1	2.1×10^{3}

Target Stability

CNA-ICMS: Si:He

p-process Sensitivity Studies

Sensitivity studies of p-process nucleosynthesis point out the strong dependence of the α-nuclear potential in the production of heavy p-nuclei

Fig. 10.-Ratio of p-abundances calculated with modified rates and the currently accepted HF rates for all (a) n-induced, (b) p-induced, and (c) α-induced reactions and their inverse processes. Squares and crosses denote results obtained with rates 3 times smaller and larger, respectively.

Figure 4. Overproduction factors for 35 p-nuclei obtained from post-processing calculations of $25 \mathrm{M}_{\odot}$ SNII. Crosses indicate data extracted from Rapp et al, open circles and full circles indicate results from NucNet tools code using the same temperature and density trajectories and seed nuclei as Rapp et al, but with Reaclib 2.0 and Talys reaction rates, respectively (see text for details). Solid triangles are the results of the test calculations.

Kinematics

${ }^{112} \mathrm{Sn}$ @ 4.9 MeV/u

Astrophysical p-process

	Odi	integr	ration	$\begin{aligned} & 196 \\ & 4 \mathrm{~m} \\ & \text { soz; } \end{aligned}$		Pb 198 $2,40 \mathrm{~h}$ ϵ $\gamma_{2}^{290 ; ~ 365 ;}$ $173 .$. g				
										$\begin{aligned} & \mathrm{Tl} 201 \\ & 73,1 \mathrm{~h} \end{aligned}$
	Hg 191 $50,8 \mathrm{~m}$ -50 m	Hg 192 $4,9 \mathrm{~h}$ $\substack{f \\ \text { \& 275; 157; } \\ \text { 307.: } \\ \hline \\ \mathrm{Au} \\ \hline}$		$\begin{array}{\|c} \hline \mathrm{Hg} 194 \\ 520 \mathrm{a} \\ \hline \\ \text { no } \gamma \\ \hline \end{array}$		$\begin{gathered} \mathrm{Hg}_{0,15} 196 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Hg} 197 \\ & \hline 3,8 \mathrm{~h} \\ & \hline 64,1 \mathrm{n} \end{aligned}$	$\begin{gathered} \mathrm{Hg} 198 \\ 9,97 \\ 0.017+2 \end{gathered}$		3,10
			$A u 192$ $5,0 \mathrm{~h}$ $\epsilon^{\dagger}+2,5 \ldots \ldots$ $\beta^{3} 117296 ;$ $612 . \ldots$		Au 194 $38,0 \mathrm{~h}$ $\epsilon^{+}+1,5 \ldots$ $\beta^{+} 328.294 ;$ $1469 \ldots$	30,5 s $186,1 \mathrm{~d}$				
		$\begin{aligned} & 6,510^{11} \mathrm{a} \\ & \text { a3, } 1,17 \\ & \hline 150 \end{aligned}$		$\begin{array}{r} \text { Pt } 192 \\ 0,79 \\ 02,0+6 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Pt } 193 \\ 4,33 \mathrm{~d} & -50 \mathrm{a} \\ \hline \end{array}$			$\begin{gathered} \text { Pt } 196 \\ 25,3 \end{gathered}$ r $0,045+0,55$		$\begin{gathered} \text { Pt } 198 \\ 7,2 \\ 00.027+4,0 \end{gathered}$
		$\begin{aligned} & \quad 13,3 \mathrm{~d} \\ & \begin{array}{l} \epsilon \\ \gamma 245 ; 70 ; 59 \ldots \\ \mathrm{~g}: \mathrm{m} \end{array} . . . \\ & \hline \end{aligned}$								
$\begin{array}{\|c\|} \hline \text { Os } 186 \\ 1,58 \\ \hline 2,0 \cdot 50^{15} \mathrm{a} \\ \text { a2, } 26 \\ \hline \rightarrow 80 \\ \hline \end{array}$	$\underset{1,6}{\text { Os } 187}$	$\begin{array}{cc} \text { Os } 188 \\ 13,3 \end{array}$						$\begin{array}{\|c} \hline \text { Os } 194 \\ 6,0 \mathrm{a} \\ \beta-0,1 \ldots \\ \gamma-43 \\ e^{-} \\ g^{2} \\ \hline \end{array}$	Os 195 $6,5 \mathrm{~m}$ $\substack{\mathrm{\beta}^{-2} \\ 9}$	Os 196 $34,9 \mathrm{~m}$ $\left.\begin{array}{l}\beta^{-}-0.8 \ldots \ldots \ldots \\ \gamma^{4} 408 ; \\ g\end{array}\right) .126 \ldots$

Astrophysical p-process

	100			$\begin{aligned} & 196 \\ & 4 \mathrm{~m} \\ & \mathbf{S}^{002} \end{aligned}$		Pb 198$2,40 \mathrm{~h}$$\epsilon$ $\mathcal{Y}_{2}^{290 ;} 365 ;$ $173 \ldots$				
						$T 197$ $2,84 \mathrm{~h}$ $\mathrm{~B}^{+}+\ldots$ $\gamma_{426}: 152 \ldots$$\|$				
				$\begin{gathered} \hline \mathrm{Hg} 194 \\ 520 \mathrm{a} \end{gathered}$		$\begin{aligned} & \lg 196 \\ & 0,15 \end{aligned}$		$\begin{gathered} \text { Hg } 198 \\ 9,97 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{Hg} \\ \hline 42,6 \mathrm{~m} \\ \hline \end{array}$	$23,10$
		AU	Au 192 5,0 r		Au 194 $38,0 \mathrm{~h}$ ϵ $\beta^{+}+1,5 \ldots$ $\gamma^{328} 294$ $1469 \ldots$					
	Pt 189 $\quad 11 \mathrm{~h}$ ϵ $\gamma 721 ; 608$ $569 ; 243 ; 545$		$\begin{array}{r} 2,8 \mathrm{~d} \\ \text { 539; 409; } \\ 60 \ldots \end{array}$	$\begin{gathered} \text { Pt } 192 \\ 0,79 \end{gathered}$				$\begin{gathered} 25,3 \\ 00.045+0,55 \end{gathered}$		$\begin{gathered} \text { Pt } 198 \\ 7,2 \\ \sim 0,027+4,0 \end{gathered}$
		$\begin{aligned} & \quad 13,3 \mathrm{~d} \\ & \begin{array}{l} \mathrm{f} 245 ; 70 ; 59 . \\ \mathrm{g}: \mathrm{m} \end{array} \\ & \hline \end{aligned}$								
$\begin{gathered} \text { Os } 186 \\ 1,58 \\ \hline 2,0 \cdot 10^{15} \mathrm{a} \\ \begin{array}{c} \alpha 2.76 \\ \sigma \rightarrow 80 \end{array} \\ \hline \end{gathered}$	$\mathrm{Os}_{1,6} 187$	$\begin{gathered} \text { Os } 188 \\ 13,3 \end{gathered}$	$$						$6,5 \mathrm{~m}$ β^{-2}	Os 196$34,9 \mathrm{~m}$$\beta-0.8 \ldots \ldots$ $\gamma 408 ;$ g $\mathrm{l} 26 \ldots$

Astrophysical p-process

