EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the ¹⁷⁶Yb(n,γ) cross-section at EAR1 and its application to nuclear medicine

[submission date]

F. García Infantes^{1,2}, J. Praena^{1,2}, V. Vlachoulis¹, I. Porras², F. Arias de Saavedra², H. Amar Es-sghir², N. Colonna³, M. Mastromarco³ and C. Massimi^{4,5} for the n_TOF collaboration

- ¹ European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ² Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- ³ Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- ⁴ Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
- ⁵ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

Spokesperson(s): Javier Praena (jpraena@ugr.es) Francisco García Infantes (<u>francisco.garcia.infantes@cern.ch</u>) Technical coordinator: Oliver Aberle (<u>Oliver.Aberle@cern.ch</u>)

Outlook

- Scientific motivations.
 - ¹⁷⁷Lu in nuclear medicine. Complementary production in new facilities.
 - Data needs of the 176 Yb $(n,\gamma){}^{177}$ Yb $(\rightarrow {}^{177}$ Lu).
- Status 176 Yb(n, γ) experimental data and evaluations.
 - No data in the 1/v region (meV-keV).
 - No resolved resonances.
- Proton beam request at EAR1.
 - 1.5e18

Scientific motivations



New facilities for complementary radioisotope production

There is a trend since a decade to use existing and new nuclear facilities for producing radioisotopes (Medicis-Isolde).

The Technetium world crisis in 2009-2010 was an alarm about the way to supply radioisotopes for nuclear medicine. Few reactors world wide.

nature	science	20	09		
nature news home	news archive	specials	opinion	features	news blog
comments on this story	Published online (News Europe's				/news.2008.1186
Stories by subject	continue			0.00	
Health and medicine Technology Physics	Hospitals force scans. Paula Gould			procedures	for medical
Stories by keywords • Europe • Isotope • Medical • Shortage • Radiolsotope • Medical imaging • Mogical • Hospital • Reactor closure • Petten This article elsewhere	A Europe-wide medical isotope continue for at months while a nuclear reactor Governments a regulators are i their rules conc use and transp radioactive mat that patients ca undergo diagno during the supp	es will least three Dutch is repaired. nd now bending terning the ort of terrials so an still ostic tests			
Blogs linking to this article	The High Flux F Petten has been	Reactor in	El Par		
Add to Digg	action since the August (see 'Is		al de		THE A
Add to Facebook	shortage could treatment') after	delay cance	r		Share de
Add to Newsvine	bubbles of gas escaping from a		and the	A spectra	1 martin
Add to Del.icio.us	the reactor's co	oling system		e to laster to a	
Add to Twitter	during a routine maintenance in Although the ca leak has now b	spection. ause of the			r in Petten, the g an extended shut- NRO

In 2009, two nuclear research reactors shut down for repairs and maintenance. This was not surprising, given that both were around half a century old. But these reactors happened to produce most of the world's supply of the radioactive tracer technetium-99m, an isotope injected into patients in 70,000 diagnostic scans a day. Hospitals around the world went into a panic

2020

Annual Review of Nuclear and Particle Science The Shortage of Technetium-99m and **Possible Solutions**

Thomas I. Ruth TRIUME Vancouver, British Columbia V6T2A3, Canada: email: truth@triumf.ca

ANNUAL CONNECT

ww.annualreviews.org Download figures Novigate cited reference Keyword search Explore related articles Share via email or social media

Annu. Rev. Nucl. Part. Sci. 2020, 70:77-94

First published as a Review in Advance on June 2, 2020 The Annual Review of Nuclear and Particle Science is online at nucl.annualreviews.org

https://doi.org/10.1146/annurev-nucl-032020

Keywords HEU, LEU, 99Mo, 99mTc, reactor, accelerator

Abstract

Following a major shortage of 99Mo in the 2009-2010 period, concern grew that the aging reactor production facilities needed to be replaced.

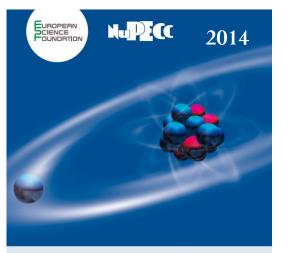
New facilities for complementary radioisotope production

Many working groups and international agencies have pushed for the use of nuclear facilities for radioisotope production with application to nuclear medicine (therapy and diagnosis). Not only "industrial" production is needed...

Nuclear Physics European Collaboration Committee (NuPECC) Nuclear Physics for Medicine

Another "longer-lived" alpha emitter is ²¹¹At. The difficulty of its application resides more in its (bio-) chemistry. Astatine is a heavier homologue of the halogen iodine, but it is also close to the metalloids. For therapeutic applications it is essential to ensure a stable bond to the targeting vector to minimise in vivo delabelling. Efforts are ongoing to improve the understanding of astatine chemistry by experiments with trace quantities supported by computational chemistry [Cha11]. Interestingly, the ionisation potential of astatine, one of the fundamental atomic properties of an element, was only experimentally determined by laser spectroscopy with astatine isotopes produced at ISOLDE (CERN) [Rot13]. This value can now serve as experimental benchmark to support "in silico" design of astatine compounds for nuclear medicine applications.

²¹¹At-labelled antibodies have been used clinically for treatment of brain cancer [Zal08]. Phase I trials for treatment of prostate cancer micrometastases and of neuroblastoma with ²¹¹At labelled antibodies are under preparation.


Preclinically ²¹¹At-labelled antibodies have been used against acute myeloid leukaemia as well as cancers of the ovary and intestine. **R&D** activities in nuclear facilities as ISOLDE provided a better understanding in nuclear medicine

To overcome this restriction a new project called MEDICIS is now under construction. It will make use of the protons that have traversed the ISOLDE targets for additional beam dump irradiations of

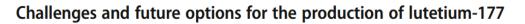
Also, accelerator-based neutron facilities has been considered for the production of radioisotopes for nuclear medicine.

Nuclear Physics European Collaboration Committee (NuPECC) Nuclear Physics for Medicine

NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics

Thus high neutron flux *and* a high capture cross-section are essential to achieve a high specific activity by converting a large fraction of the stable target into the wanted radioisotope. Only 60 Co, 153 Sm, 169 Yb and 177 Lu can be produced with appreciable specific activity (R > 0.05) in this way.

To be used in nuclear medicine, large radionuclide production is required which implies the use of highly intense particle beams (hundreds to thousands of µA) or <u>secondary neutron sources</u>. Targetry to be used in such conditions (kW of power over few cm²) are not an easy task requiring dedicated developments. Such R&D activities are ideally suited to be performed in nuclear physics research laboratories. Production capabilities of some specific nuclei using electron and gamma beams should also be investigated.



New facilities for complementary radioisotope production

European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-021-05392-2

EDITORIAL

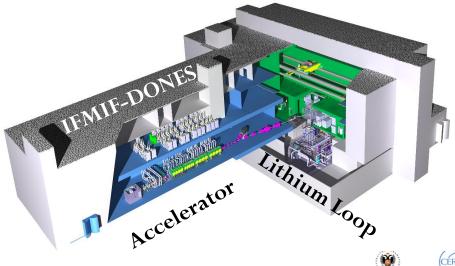
W. V. Vogel¹ · S. C. van der Marck² · M. W. J. Versleijen¹

© The Author(s) 2021

Discussion

In the coming years, production of medical isotopes will remain a matter of clinical, financial and political debate. There are multiple routes to production of ⁹⁹Mo, potentially involving investments in several current and new techniques. But it remains a vital question whether future facilities, of which an increasing number may be optimized for ⁹⁹Mo production alone, can also produce the full range of other required medical isotopes.

We identify ¹⁷⁷Lu, which already is an indispensable isotope for radionuclide therapy and will become even more so with increasing number of treatable prostate cancer patients, as an important candidate isotope that may not be produced in sufficient quantities in the near future, in case of insufficient availability of high-flux neutron irradiation facilities. In 2015,



New facilities for complementary radioisotope production

Facilities under designed and construction as IFMIF-DONES (Granada, Spain) considers the production of radioisotopes for medicine as an complementary application.

MEDICIS-ISOLDE-CERN is an excellent successful example.

Nuclear data are needed to calculate the specific activity of the most adequate radioisotopes.

https://doi.org/10.1051/epjconf/202023923001

Radioisotope production at the IFMIF-DONES facility

Javier Praena^{1,*}, Francisco Garcia-Infantes¹, Rafael Rivera¹, Laura Fernandez-Maza², Fernando Arias de Saavedra¹, and Ignacio Porras¹

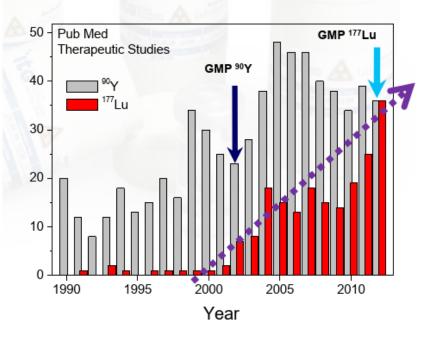
1Universidad de Granada, Granada, Spain ²Hospital Virgen de la Arrixaca, Murcia, Spair

EPJ Web of Conferences 239, 23001 (2020)

ND2019

Javier Praena – U. Granada – CERN (EP/SME)

¹⁷⁷Lutetium in medicine



¹⁷⁷Lu, rising demand

- Theragnostic = diagnosis and therapy.
- Versatile radioisotope and one the most important emergent radioisotopes.
- Good good success in gastroenteropancreatic neuroendocrine tumours [11].
- Currently, Lu177 is under study for several other tumours with good results [12].
- At present, it is produced in nuclear reactors.
- Rising demand radioisotope.

Number of scientific publications vs time:

Therapeutic applications of ⁹⁰Y and ¹⁷⁷Lu

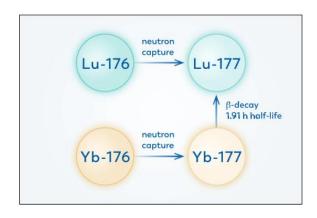
¹⁷⁷Lu production routes

"Carrier Added"

 $^{176}Lu(n,\gamma) \rightarrow ^{177}Lu + \underline{^{177m}Lu}$

Higher production. Lower specific activity. ^{177m}Lu is produced (0.05%), 160 days.

176Hf STABLE 5.26%	177Hf STABLE 18.60%		178Hf TABLE 27.28%	179 STAI 13.6	BLE	180 STA 35.		181Hi 42.39 I β-: 100.0
175Lu STABLE 97.401%	176Lu 3.76E+10 Υ 2.599% β-: 100.00%		177Lu 3.647 D : 100.00%	178 28.4 β-: 100	М	179 4.5 β-: 10	9 H	180Lc 5.7 M β-: 100.0
4.5.477	AD CIT!			_				
174Yb STABLE	175Yb 4.185 D	s			177	7Lu		
32.026%			E(level)	Jn	Т	1/2	Deca	y Modes
	β-: 100.00%		0.0	7/2+	6.64	7 d 4	β ⁻ :1	00.00 %
			0.9702	23/2-	160.4	44 d 6	β ⁻ · 7	8.60 %
173Tm	174Tm							1.40 %
8.24 H	5.4 M		2.7400	(39/2-)	6 µs	+3-2	β [−] · 1	00.00 %
β-: 100.00 %	β-: 100.00%	β-		,				T ?

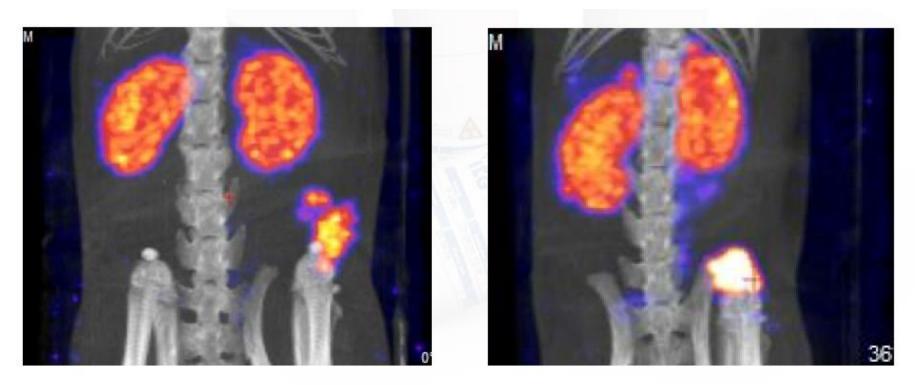

"Non Carrier Added"

 176 Yb(n, γ) 177 Yb (\rightarrow 177 Lu)

Lower production. Higher specific activity.

^{177m}Lu is negligible (<0.0001%)

177Hf	178Hf	179Hf
STABLE	STABLE	STABLE
18.60%	27.28%	13.62%
176Lu 3.76E+10 Υ 2.599% β-: 100.00%	177Lu 6.647 D β-: 100.00%	178Lu 28.4 Μ β-: 100.00%
175Yb	176Yb	177Yb
4.185 D	STABLE	1.911 Η
β-: 100.00%	12.996%	β-: 100.00%



Specific activity: impact on tumor uptake

"Carrier Added"

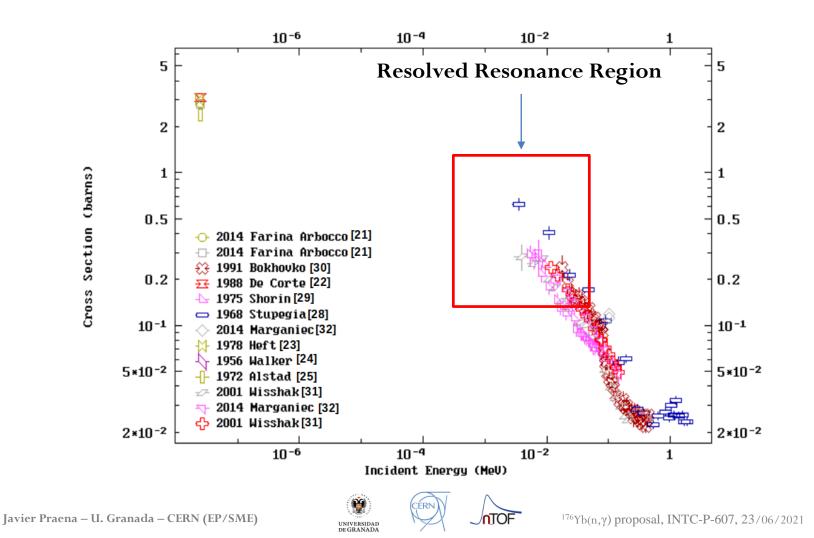
"Non Carrier Added"

300 MBq of ¹⁷⁷Lu c.a. Dose to tumor - 35 Gy

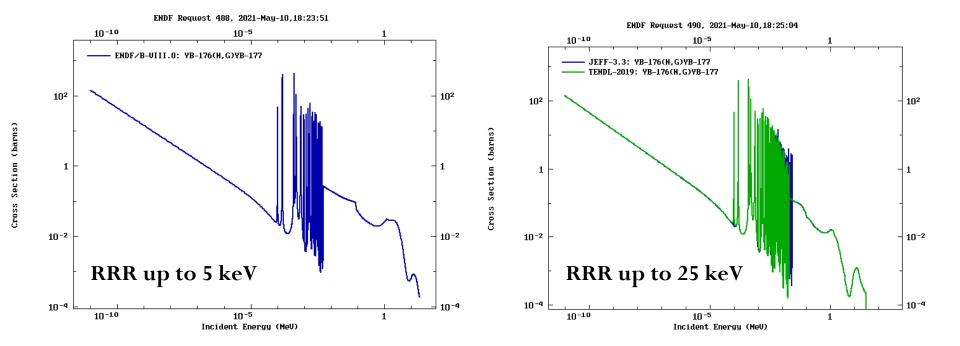
300 MBq of ¹⁷⁷Lu n.c.a. Dose to tumor - 70 Gy

Marion de Jong et al.; 2012 ICTR-PHE

176 Yb $(n,\gamma)^{177}$ Yb Data status. Proton request.



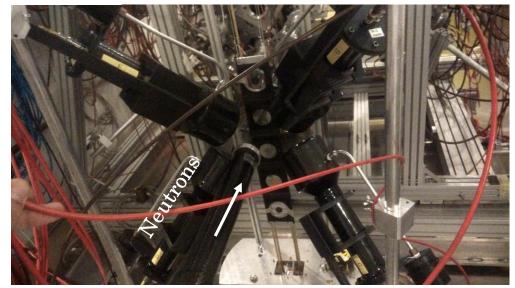
13


Experimental data ¹⁷⁶Yb(n,γ)

- No data in the 1/v region
- No resolved resonances. Resonances detected in transmission experiments.

Evaluations ¹⁷⁶Yb(n, γ)¹⁷⁷Yb

Evaluations foreseen resonances in the 176 Yb(n, γ) due to the results of transmission experiments. However, (n, γ) have not been detected

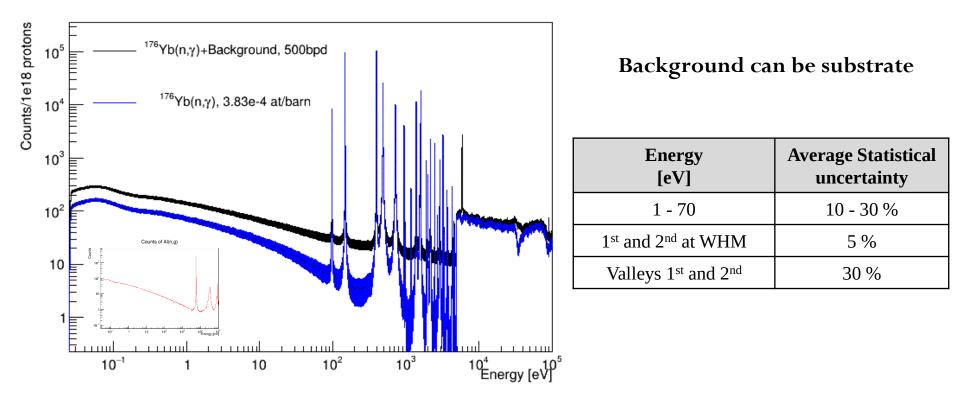

Sample and setup at EAR1

For the sample we will follow the method of Wisshak *et al.* [31], powder in Al can container. Trace Science Inter. provides the material with a higher enrichment than Wisshak *et al.* [31]. Contaminations of ¹⁶⁸Yb and ¹⁷⁶Lu are not expected, private communication Trace Science.

176 Yb ₂ O ₃		
Enrichment [%]	>96%	
Mass [g]	0.5	
Area density [at/barn]	$3.857 \cdot 10^{-4}$	

Table 1. Sample enrichment, mass and area density of the 176 Yb₂O_{3.}

Four C₆D₆ detectors



Counts for 1e18 protons at EAR1: 500 bpd

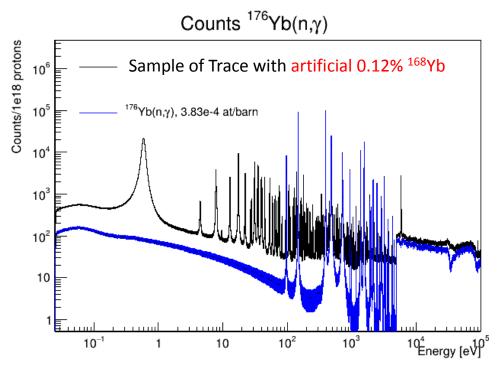
Considering the setup with 4 C_6D_6 , ENDF and the sample 3.8e-4 at/b.

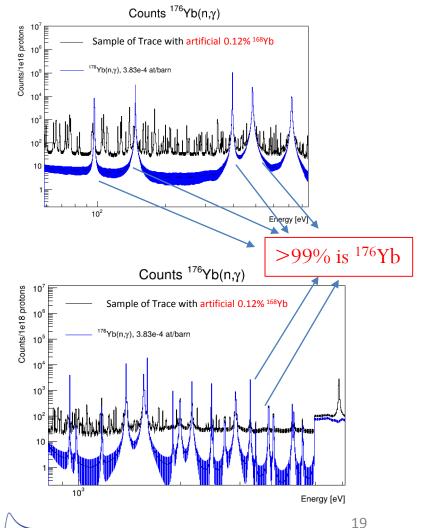
Most important background is expected from the Al can.

Sample by TRACE SCIENCE: no ¹⁶⁸Yb

¹⁷⁶Lu and ¹⁶⁸Yb are the most undesirable isotopes in the sample. Both will not be present in the sample.

Isotopes	Abundance
¹⁷¹ Yb	0.41 %
¹⁷² Yb	0.69 %
¹⁷³ Yb	0.51 %
¹⁷⁴ Yb	1.99 %
¹⁷⁶ Yb	96.4 %
	100 %


However, let us consider that the ¹⁶⁸Yb isotope would be present in the sample of TRACE.



Most unfavorable sample for background

Sample for the experiment considering an **artificial** contamination of 0.12% of the ¹⁶⁸Yb isotope.

Even in this artificial less favorable situation the background can be substrate

Conclusions and proton request

- ¹⁷⁷Lu is an important theragnostic radioisotope in nuclear medicine.
- It is considered for its production in accelerator-based neutron sources by means of the 176 Yb(n, γ) reaction as complementary to the production at nuclear reactors.
- A complete lack of data of the 176 Yb(n, γ) cross-section in the 1/v region (meV-keV).
- Important 176 Yb(n, γ) resonances, never detected, are expected because they have been detected in transmission experiments.
- At n_TOF, we will provide data in 1/v and will resolve the resonances for the first time, in a reasonable beam time.
- At present, it is not an objective of n_TOF to produce radioisotopes.

Summary of requested protons at EAR1: A total of 1.5·10¹⁸ protons are requested.
1·10¹⁸ for the ¹⁷⁶Yb(n,γ)
0.4·10¹⁸ for background measurements.
0.1·10¹⁸ for ¹⁹⁷Au normalization

Thank you

Javier Praena

Universidad de Granada (Spain) CERN Scientific Associate (EP-SME-62) n_TOF Physics Coordinator

Sample by TRACE SCIENCE: no ¹⁶⁸Yb

¹⁷⁶Lu is not present in the sample. ¹⁶⁸Yb is the other isotope that could give noticeable background. Contaminations of ^{168,170}Yb are not expected.

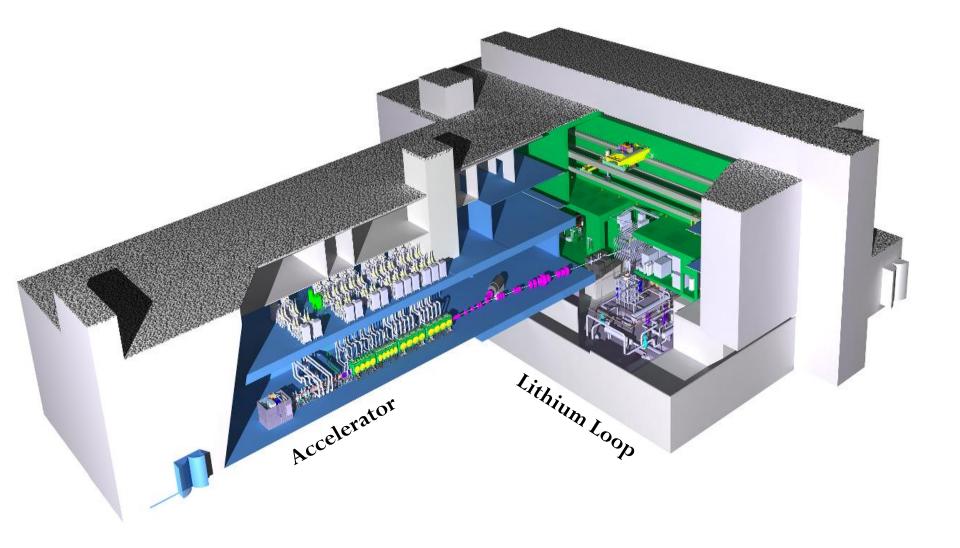
Isotopes	Abudance
¹⁷¹ Yb	0.41 %
¹⁷² Yb	0.69 %
¹⁷³ Yb	0.51 %
¹⁷⁴ Yb	1.99 %
¹⁷⁶ Yb	96.4 %
	100 %

	i
Isotopes	Experimental Enrichment [*] Kappeler
¹⁷⁰ Yb	0.10 %
¹⁷¹ Yb	0.53 %
¹⁷² Yb	0.87 %
¹⁷³ Yb	0.73 %
¹⁷⁴ Yb	2.47 %
¹⁷⁶ Yb	95.3 %
	100 %

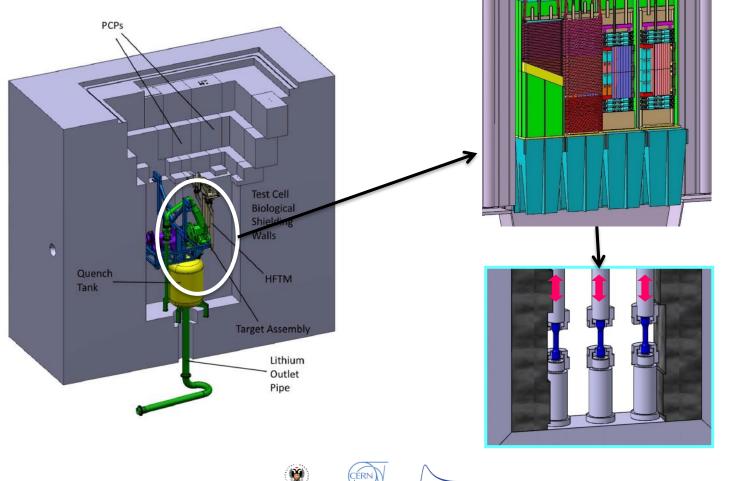
IFMIF-DONES

ESFRI facility. City host: Granada

ESFRI	Login ESFRI MOS Contact s	earch Q
Strategy Report on Research Infrastructures ROADMAP 2018	Parts STRATEGY REPORT LANDSCAPE ANALYSIS PROJECTS & LANDMARKS	S
Part 3 PROJECTS & LAI	DMARKS	WNLOAD PART 3
ENERGY / PROJECT	FC	
IFMIF-DON International Fusion	ヒン Materials Irradiation facility - DEMO Oriented NEutro	on Source
lead country ES prospective member countries HR prospectives entities	TYPE single-sited	
EUROfusion The full list of research inst must be found in the webs TIMELINE		
Roadmap Entry 2018	POLITICAL SUPPORT	
Design Phase 2007-2015 Preparation Phase 2015-2019 Implementation/Construction Phase 2019-2029 Operation Start 2029		
ESTIMATED COSTS capital value 710 M€ design 150 M€ preparation		
40 M€ construction 420 M€ operation 50 M€/year		
INVERSIDAD	TOF Coll. Board Meeting, 11/05/2021	24

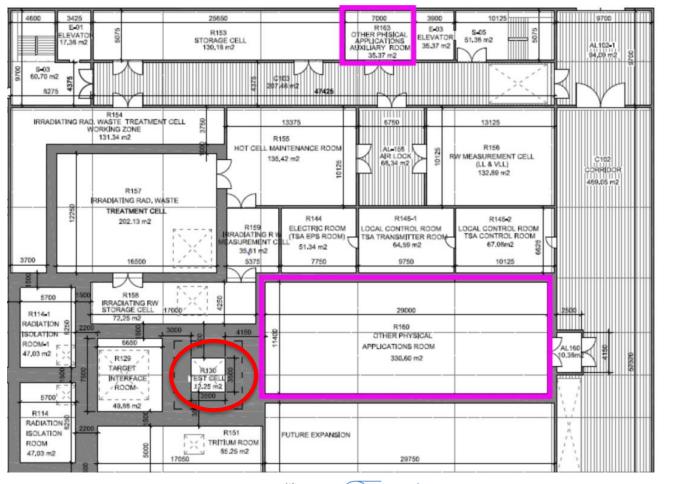

Spain-Croatia. City host: Granada

The facility goal: produce neutrons



Neutron damage in key pieces of fusion reactors

The goal of IFMIF-DONES is to produce neutrons-like DEMO fusion reactor. Study the behaviour of several key pieces of DEMO.


Irradiations will last several months.

UNIVERSIDAD

Other applications: in and out the bunker.

The design of the building of IFMIF-DONES has already included an experimental hall (R160) next to the bunker where the neutrons are produced.

UGR and the other applications.

(C) EUROfusion	Power Plant Physics & Technology		$ \in $
----------------	----------------------------------	--	---------

Report IDM Ref. No.

Version: see IDM

Report	
ENS-7.2.3.1-T13-06-N1	
Feasibility study of the use of DONES for radioisotope	
production, electronics irradiation and neutron scattering	

Deliverable			Technical Report
Management Report		Х	Technical Note
Other	Specify:		

		Document Id.	ENS-7.2.3.1-T13-06-N1			
Work Package:	WPENS	Issue Date	21/01/2020			
Document/Report Autho	rs (refer to first page of actual report/d	locument for a complet	te list)			
Authors:	J. Praena, F. García Infantes, P. 1	Forres-Sánchez, M. Ma	cías, A. Roldán, I. Porras, F.			
	Arias de Saavedra					
RU:	CIEMAT / University of Granada	(Spain)				

Links to other files (CATIA CAD Files, Interface database,)	
Title:	n/a
URL:	n/a

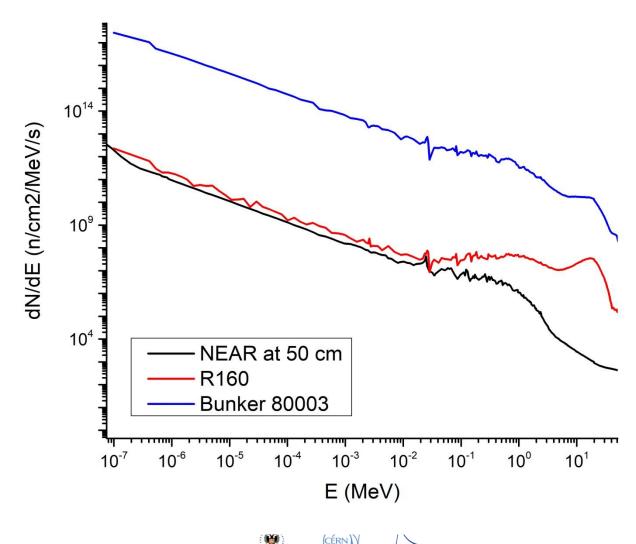
IDM Report Review & Approval	
IDM role	Name(s)
Author and co-author(s):	J. Praena, F. García Infantes, P. Torres-Sánchez, M. Macías, A. Roldán, I. Porras, F.
	Arias de Saavedra. (Authors of Section 1: A. Ibarra, U. Fischer, F. Mota)
Reviewer(s) Technical Issues:	W. Krolas, J. Castellanos and F. Arbeiter
Reviewer PMU:	No
Approver:	A. Ibarra

EPJ Web of Conferences **239**, 23001 (2020) ND2019

https://doi.org/10.1051/epjconf/202023923001

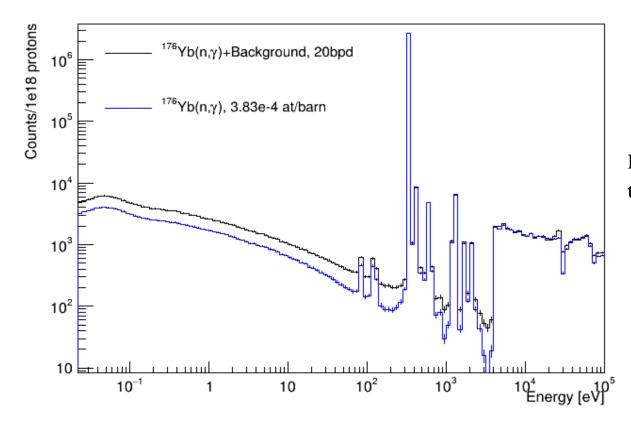
Radioisotope production at the IFMIF-DONES facility

Javier Praena^{1,*}, Francisco Garcia-Infantes¹, Rafuel Rivera¹, Laura Fernandez-Maza², Fernando Arias de Saavedra¹, and Ignacio Porras¹


¹Universidad de Granada, Granada, Spain

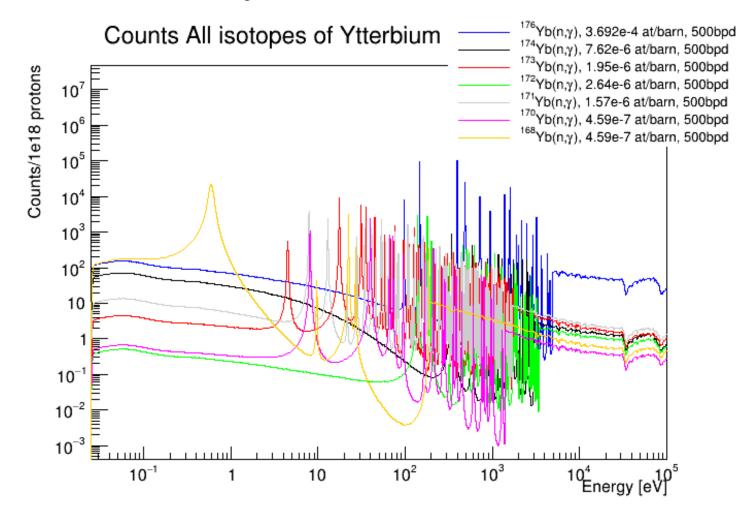
²Hospital Virgen de la Arrixaca, Murcia, Spain

N_TOF versus DONES



UNIVERSIDAD DE GRANADA NTOF

Counts for 1e18 protons at EAR1: 20 bpd


The low statistics in the 1/v could be improved with a smaller number of bpd

However, the low statistic of the valleys will remain.

Counts for natural enrichment of ytterbium

