Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Pairing vibrations beyond $N = 82$

May 12, 2021

1Nuclear Science Division, Lawrence Berkeley National Laboratory, USA, 2Instituto de Estructura de la Materia, CSIC, Spain, 3University of Liverpool, UK, 4Physics Division, Argonne National Laboratory, USA, 5University of Manchester, UK, 6TU Darmstadt, Germany, 7University of Tennessee, USA, 8Daresbury Laboratory, UK, 9KU Leuven, Belgium

Spokespersons:
A. O. Macchiavelli, aom@lbl.gov and K. Wimmer, k.wimmer@csic.es
Contact person:
Bruno Olaizola, bruno.olaizola@cern.ch
Pair correlations provided a key to understanding
- the excitation spectra of even-A nuclei,
- odd-even mass differences,
- rotational moments of inertia,
- … and a variety of other phenomena
The evolution of pairing correlations in exotic nuclei is a topic of great interest in nuclear structure, in particular pairing in neutron-rich isotopes and the role of weak binding.

Motivation

![Graph showing correlation length and separation as functions of density ratio](image)

- d: Separation
- ζ_{rms}: Correlation Length

Key observable

\rightarrow (t,p) two-neutron transfer reactions

Matsuo et al. PRC 73 (2006) 044309
Pillet et al. PRC 76 (2007) 024310
Motivation

Anomalous pairing vibration in neutron-rich Sn isotopes beyond the $N = 82$ magic number

Hirotaka Shimoyama and Masayuki Matsuo
Currently it is not possible to study Sn nuclei with $A > 140$. However, the region $132 < A < 140$ where strong transitions to an excited pairing vibrational 0^+ state are predicted is within reach of present accelerator facilities.

The first excited 0^+ state can be regarded as a pairing vibrational mode built on the weakly bound $p_{3/2}$ (and $p_{1/2}$ orbits), which show a rather long tail in the transition density extending beyond the nuclear surface, resulting in a large strength, comparable to that populating the ground state.
Motivation

Production of Sn beams challenging, but similar effects are expected in the PV mode in ^{138}Xe [S. Tamaki. Master thesis, Niigata University, 2016]
Production of Sn beams challenging, but similar effects are expected in the PV mode in 138Xe
[S. Tamaki. Master thesis, Niigata University, 2016]
$^{138}\text{Xe}(t,p)^{140}\text{Xe}$ at 7 AMeV focus on $L=0$ transfers to PV \rightarrow forward CM angles

A typical DWBA calculation for j^2 TNA’s (FRESCO)
ISS Experiment: Kinematics considerations

Reaction kinematics for a 138Xe beam at 7 AMeV impinging on the tritium-loaded titanium target. **ISS operating at 2.5 T.**

The reaction kinematics for different excitation energies in 140Xe are indicated by different colors.

Energy of recoiling protons as a function of the position on the ISS silicon array. Proton orbits for CM scattering angles 10^0(solid lines) and 35^0(dashed lines).
ISS Experiment: Estimated Rates

Measured ISOLDE yields from S. Rothe. priv. comm., 2021.

<table>
<thead>
<tr>
<th>Beam</th>
<th>Yield /μC</th>
<th>Target material</th>
<th>Ion Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{134}Xe</td>
<td>stable</td>
<td>none</td>
<td>EBIS</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>stable</td>
<td>none</td>
<td>EBIS</td>
</tr>
<tr>
<td>^{138}Xe</td>
<td>$1.6 \cdot 10^8$</td>
<td>UC$_x$</td>
<td>cold plasma</td>
</tr>
<tr>
<td>^{140}Xe</td>
<td>$0.8 \cdot 10^8$</td>
<td>UC$_x$</td>
<td>cold plasma</td>
</tr>
</tbody>
</table>

Assuming 2 μA proton beam and 2% overall extraction/post-acceleration efficiency, we consider a conservative beam intensity on target of 5×10^6 pps for ^{138}Xe, and 3×10^6 pps for ^{140}Xe.

Past experience with Xe beams at HIE-ISOLDE, IS548, has shown that, due to the noble gas nature, the only contaminants are decay products originating from the decay during the breeding of the beam.

We will limit the current of stable Xe on the tritium target to 10^7 pps.
Count rates estimates for the Xe(t,p) reactions proposed assuming a cross section of 0.55 mb for the pairing vibrational mode (PV).

This is a conservative estimate obtained from the pure $(3p_{3/2})^2$ single-particle configuration. Total counts include the overall efficiency of ISS, in the CM (LAB) angular range 10-50° (160-100°).

Tritium loaded titanium foil (Ti thickness 0.5 mg/cm², atomic ratio t/Ti ~ 1 ~ 40µg/cm²)

<table>
<thead>
<tr>
<th>Beam</th>
<th>Intensity</th>
<th>reactions per h for 0.55 mb</th>
<th>Shifts 8 hour</th>
<th>Total reactions</th>
<th>Detected events</th>
</tr>
</thead>
<tbody>
<tr>
<td>134Xe</td>
<td>$1 \cdot 10^7$</td>
<td>119</td>
<td>3</td>
<td>2850</td>
<td>620</td>
</tr>
<tr>
<td>136Xe</td>
<td>$1 \cdot 10^7$</td>
<td>119</td>
<td>3</td>
<td>2850</td>
<td>620</td>
</tr>
<tr>
<td>138Xe</td>
<td>$5 \cdot 10^6$</td>
<td>59</td>
<td>6</td>
<td>2850</td>
<td>640</td>
</tr>
<tr>
<td>140Xe</td>
<td>$3 \cdot 10^6$</td>
<td>36</td>
<td>6</td>
<td>1720</td>
<td>380</td>
</tr>
</tbody>
</table>
ISS Experiment: Realistic simulations

Simulation for the 138Xe(t, p) reaction for the population of two states at 0 and 4 MeV excitation energy in 140Xe

Proton kinetic energy vs. the distance from the target. The detectors will be placed covering the solid angle from -10 cm to 0 cm.

Excitation energy of 140Xe reconstructed from the measured proton energies and positions. FWHM ~ 300 keV.
Analysis of simulated data for the 138Xe(t,p) reaction to two states with $(2f_{7/2})^2$ and $(3p_{3/2})^2$ configurations.

The level of statistics is sufficient to identify the characteristic shape of the differential cross section of 0^+ states.
Summary

We propose to study pairing correlations in neutron-rich Xe isotopes, by systematically comparing the 2n transfer cross sections as a function of the projectile mass using beams of $^{134,136,138,140}\text{Xe}$. Theoretical predictions suggest an enhancement of the two-neutron transfer strength going to excited 0^+ states beyond $N=82$, both in Sn’s and Xe’s isotopes.

The experiment will be performed at HIE ISOLDE, using 7 MeV/A Xe beams impinging on a radioactive tritium target. ISS, operating at 2.5 T, will identify the outgoing protons with a resolving power much improved over that of conventional setups.

Angular distributions in the angular range of 10-50$^\circ$ CM and integrated cross-sections will be measured for L assignment and to assess the anticipated enhancement of the cross-section with respect to a single-particle transition.

In total we request **21 shifts, 7 days, of beam time**: six days of beam on target measurement (6 shifts stable, 12 shifts radioactive Xe beams) and 3 shifts for tuning, setup and debugging. This time is also required for switching the beams and tuning to the ISS target.

While the stable beam part of the experiment could run any time without PSB protons, it would be advantageous, if the experiment were scheduled as one run to avoid systematic differences between the different beams. Furthermore, the operation of the tritium target requires substantial preparation of the setup at ISS.
Thank you!