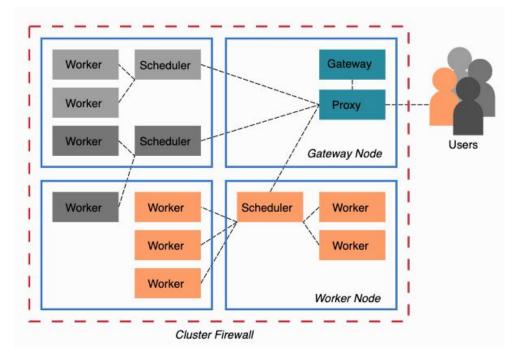
GKE PanDA and Dask infrastructure recap

Fernando Barreiro

PanDA + Rucio setup


PanDA GKE analysis queue: GOOGLE100

- Cluster details
 - 0-10 autoscaled, preemptible nodes: n2-standard-8 (=8 cores, 32GB RAM)
 - Scaling down under discussion with Usman and Jason Nichols (GKE specialist)
 - Local **SSD** at each node
- Queue status "Brokeroff": you need to specifically set the queue when submitting to PanDA
- Data needs to be pre-placed to GOOGLE_EU
 - Jobs will stay in "assigned" if data not present
 - Requires **special permission/quota** in Rucio to interact with this storage element
- Queue was briefly validated. Data for "10% test" finished transferring today

ATLAS Site ∔≟	PanDA Site ↓≟	PanDA Queue	🗄 State 🛛	† type ↓1	cap↓1	rtype↓	Cloud	Tier	Final status 🗍	Manual 🕴
GOOGLE	GKE	🕝 🔓 🚯 GOOGLE100	ACTIVE	analysis	ucore	cloud	US	T3D	BROKEROFF	1 BROKEROFF
ATLAS Site	PanDA Site	PanDA Queue	State	type	сар	rtype	Cloud	Tier	Final status	Manual
ODMEnd	lpoint	↓≟ Type	, II	C Expe	riment	Site			Activities	
GOOGLE_EU OS		OS_CACHE		GOOGLE					read_lan/0	, write_lan/0

Dask Gateway

Dask Gateway

- Sets up common Dask cluster and JupyterHub for all users
- Users have access to JupyterHub and Dask, but not to GCP/GKE
- Disadvantage: less flexibility for individual customization. Needs central maintenance of a set of images that work for everybody
- Current installation on modest cluster: 3 e2-standard-8 nodes with 100GB disk

- Local accounts. I need to add new users
- Integration with other identity providers possible. Could be done only if there is real usage

Server Options

0	pyHEP environment coffea, uproot
0	ML environment keras, flatbuffers, joblib, pillow, pytz, scikit-learn, scipy, uproot, root-numpy
0	PHYSLITE environment (Added 10 min ago) environment for experiments with DAOD_PHYSLITE with uproot, awkward etc.

- Available images
 - pyHEP environment: dependencies suggested in this tutorial

Start

- ML environment: dependencies requested by Fang-Ying
- Images hosted in GCP Container Registry
- Installing conda dependencies and uploading images is time consuming

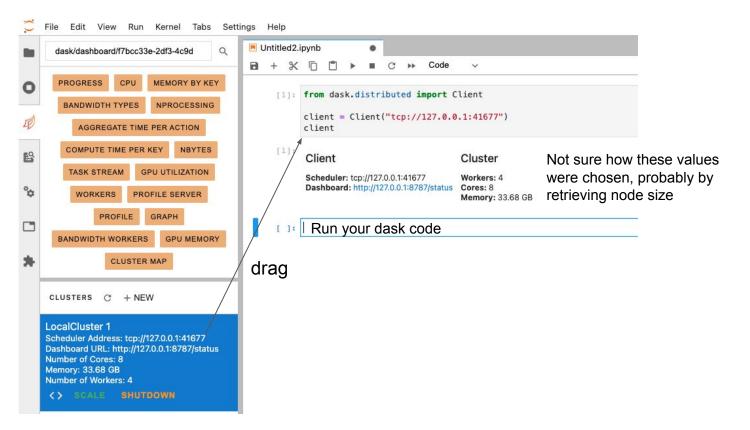
Jupyter notebook specs

- Each user notebook runs on an **independent** pod with image selected at startup
 - "Burstable" QoS with 1GB RAM base request
 - How much you can burst depends on overall cluster usage and occupancy of the node
- User home directory: 10GB
 - Independent persistent disk
 - Value is configurable
 - Disk can also be manually extended
 - Anything outside the home directory gets cleaned up once notebook stops
 - A potential conda user environment installed on home directory would survive

(notebook)	jovyan@jup	yter-	fbarre.	ir:-\$	df -h	
Filesystem	Size	Used	Avail	Use%	Mounted on	
overlay	95G	16G	79G	17%	1	
tmpfs	64M	0	64M	0%	/dev	
tmpfs	16G	0	16G	0%	/sys/fs/cgroup	
/dev/sdc	20G	46M	20G	1%	/home/jovyan	
cvmfs2	5.9G	2.7G	3.2G	46%	/cvmfs/atlas.cern.ch	
cvmfs2	5.9G	2.7G	3.2G	46%	/cvmfs/atlas-condb.cern.ch	
cvmfs2	5.9G	2.7G	3.2G	46%	/cvmfs/atlas-nightlies.cern.ch	
cvmfs2	5.9G	2.7G	3.2G	46%	/cvmfs/grid.cern.ch	
cvmfs2	5.9G	2.7G	3.2G	46%	/cvmfs/sft.cern.ch	
cvmfs2	5.9G	2.7G	3.2G	46%	/cvmfs/sft-nightlies.cern.ch	
cvmfs2	5.9G	2.7G	3.2G	46%	/cvmfs/unpacked.cern.ch	
/dev/sda1	95G	16G	79G	17%	/etc/hosts	
shm	64M	0	64M	0%	/dev/shm	
tmpfs	16G	0	16G	0%	/proc/acpi	
tmpfs	16G	0	16G	0%	/proc/scsi	
tmpfs	16G	0	16G	0%	/sys/firmware	

CVMFS

- Available from Jupyter session and Dask workers
- You can for example interact with Rucio to list file replicas and get signed URLs
 - Requires uploading your voms proxy to the notebook


(notebook) jovyan@jupyter-fbarreir:~\$ echo \$ATLAS_LOCAL_ROOT_BASE/ /cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase/ (notebook) jovyan@jupyter-fbarreir:~\$ source \${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh

lsetup	<pre>lsetup <tooll> [<tool2>] (see lsetup -h):</tool2></tooll></pre>
lsetup agis	ATLAS Grid Information System
1setup asetup	(or asetup) to setup an Athena release
lsetup atlantis	Atlantis: event display
1setup eiclient	Event Index
lsetup emi	EMI: grid middleware user interface
lsetup ganga	Ganga: job definition and management client
1setup 1cgenv	lcgenv: setup tools from cvmfs SFT repository
lsetup panda	Panda: Production ANd Distributed Analysis
1setup pod	Proof-on-Demand (obsolete)
lsetup pyami	pyAMI: ATLAS Metadata Interface python client
lsetup root	ROOT data processing framework
lsetup rucio	distributed data management system client
lsetup views	Set up a full LCG release
lsetup xcache	XRootD local proxy cache
lsetup xrootd	XRootD data access
advancedTools	advanced tools menu
diagnostics	diagnostic tools menu
helpMe	more help
printMenu	show this menu
showVersions	show versions of installed software

(notebook) jovyan@jupyter-fbarreir:~\$ lsetup rucio bash: file: command not found Requested: rucio ... Setting up emi 4.0.2-1 200423.fix3 ... Skipping: grid middleware already setup (from UI) Setting up rucio 1.25.3 ... Info: Setting compatibility to centos7 Setting up xrootd 5.1.1-x86 64-centos7 ... bash: file: command not found emi: Warning: current gcc version (gcc00) is older than needed for emi (gcc48) emi: No valid proxy present. Type "voms-proxy-init -voms atlas" (notebook) jovyan@jupyter-fbarreir:~\$ rucio whoami 2021-05-19 14:55:54,098 ERROR given client cert (/tmp/x509up u1000) doesn't exist 2021-05-19 14:55:54,098 ERROR Cannot authenticate. Details: x509 authentication failed for account=fbarreir with identity={ 'client proxy': '/tmp/x509up u1000' } 2021-05-19 14:55:54.099 ERROR Please verify that your proxy is still valid and renew it if needed.

Spinning up a Dask cluster: LOCAL

LOCAL: your cluster lives in your jupyter pod

Spinning up a Dask cluster: distributed

Distributed: each worker gets an independent pod, so you can scale to multiple nodes

0	File Edit View Run Kernel Tabs Sett	ngs Help
8	http://jupyter.gcp4hep.org/services/d	Untitled3.ipynb
0 Ø	TASK STREAMPROGRESSWORKERSMEMORY (WORKER)CPU (WORKERS)CLUSTER MAPGRAPHPROCESSING TASKS	<pre>Python [conda env:notebook]* Python [conda env:notebook]* (1]:</pre>
°°	COMPUTE TIME (OPERATION) MEMORY (OPERATION) PROFILE PROFILE SERVER BANDWIDTH (WORKERS)	<pre> Package client scheduler workers lz4 3.1.1 3.1.3 None warnings.warn(version_module.VersionMismatchWarning(msg[0]["warning"])) (2]: client </pre> Warnings.warn(version_module.VersionMismatchWarning(msg[0]["warning"]))
*	BANDWIDTH (TYPE) COMPUTE/TRANSFER GPU MEMORY GPU UTILIZATION CLUSTERS C + NEW	Image: Client Cluster Scheduler: gateway://traefik-dhub-dask-gateway.default.80/default.6295b69fd9d5454fb2cab7cb80829d1b/status Workers: 1 Dashboard: /services/dask-gateway/clusters/default.6295b69fd9d5454fb2cab7cb80829d1b/status Workers: 1 Including the host! Memory: 2.15 GB

Spinning a dask cluster from outside Jupyter

← → C ☆ ▲ Not Secure jupyter.gcp4hep.org/hub/toker	1	*					
CJupyterhub Home Token Admin Services-							
	Request new API token Note note to identify your new token This note will help you keep track or what your tokens are for.						
export JUPYTERHUB_API_TOKEN= <your token=""></your>							
[user@machine gke-dask]# pythor							
Python 3.6.8 (default, Nov 16 2							
[GCC 4.8.5 20150623 (Red Hat 4.							
Type "help", "copyright", "credits" or "license" for more information.							
>>> from dask_gateway import Gateway							
<pre>>>> gateway = Gateway("http://dask.gcp4hep.org/services/dask-gateway", auth='jupyterhub') >>> cluster = gateway.new_cluster(image='xxx/yyy:zzz')</pre>							
>>> client = cluster.get_client	:()						
>>> # RUN YOUR COMPUTATION							

Software compatibility

- The client (Jupyter or your python shell) and the Dask workers need to have compatible SW (dask, tensorflow...) installed
- I tried to generate compatible images for both Jupyter images building on the default pangeo/daskgateway images

Jupyter image	Name	Worker image	Description
pangeo/base- notebook:2020.11.06	Not selectable	daskgateway/dask- gateway:0.9.0	Basic Dask installation. We have overwritten this option with our images
eu.gcr.io/gke-dev- 311213/jupyter- coffea:20210518	pyHEP environment	eu.gcr.io/gke-dev- 311213/dask- gateway- coffea:20210518	This image is based on the dependencies used in this PyHEP tutorial. It includes coffea, python-graphviz, mimesis on top of the default pangeo image.
eu.gcr.io/gke-dev- 311213/jupyter- ml:20210518	ML environment	eu.gcr.io/gke-dev- 311213/dask- gateway- ml:20210518	Image based on Fang-Ying's request which includes root, keras, flatbuffers, joblib, pillow, pytz, scikit-learn, scipy, energyflow, root-numpy, sklearn, awkward, uproo on top of the default pangeo image.
eu.gcr.io/gke-dev- 311213/jupyter- physlite:20210526	PHYSLITE environment	eu.gcr.io/gke-dev- 311213/dask- gateway- physlite:20210526	Image by Nikolai including PHYSLITE SW (numpy h5py numba uproot awkward pyarrow coffea aiohttp) .

https://github.com/gcp4hep/analysis-cluster/wiki/Daskhub-images

Git repository includes wiki with documentation

- > C 1	fe github.com/gcp4hep/analysis-cluster/wiki/Daskhub-usage	* 🛱 💩 🗷 🐵 🦠 🚸 🔌 省 🥌 🛸
C Sea	rch or jump to 7 Pull requests Issues Marketplace Explore	\$ +• €
Ģ gcp4h	ep/analysis-cluster	⊘ Watch + 9 ☆ Star 1 ⁹ / ₈ Fork
<> Code	① Issues 🏦 Pull requests ⓒ Actions 🖽 Projects 🛄 Wiki ① Security 🗠 Insights 鈴 Settings	
	Daskhub usage Fernando Barreiro edited this page 6 days ago - 9 revisions	Edit New Page
	Below you will find information on how to use our Dask Gateway instance, including basic snippets to get you started. You can either use it from JupyterHub or directly through python.	Pages 6
	JupyterHub	Home 🖉
	Our JupyterHub instance is available under http://jupyter.gcp4hep.org. You need a local JupyterHub user account in order to	DaskHub pages
	access it.	Installation
	Each notebook runs on an independent pod. When starting up JupyterHub, the user will be given a selection of available images.	Images
		Usage
	Each user is assigned a 10GB disk for his personal files. This disk is persistent and mounted to the user's home directory. Anything outside the home directory is cleaned up when the notebook is stopped.	CVMFS
	Basic creation and shutdown of a Dask cluster	Clone this wiki locally
	The following figure illustrates a basic example.	https://github.com/gcp4hep/ana
	 You connect to the gateway, create a cluster and get the client. You have to scale the cluster in order to start up a worker, to the required size. 	
	from dask_gateway import GatewayCluster cluster = GatewayCluster(worker_cores=1, worker_memory=2, image="xxx/yyy:zzz") cluster.scale(1) client = cluster.get_client()	

Conclusions

- Infrastructure is ready to be used and required features implemented
 - Desirable Dask features (https, oAuth) can be implemented depending on evolution of activity
 - Data management in Dask to be explored further
- Validation steps under preparation
 - "10% PanDA" test
 - "1% Dask" test
- Paul has setup a separate cluster with Dask Helm (single user)
 - This model can be more appropriate for a potential PanDA integration
 - Still requires more experience and a dedicated discussion