GKE PanDA and Dask
iInfrastructure recap

Fernando Barreiro

PanDA + Rucio setup

PanDA GKE analysis queue: GOOGLE100

e Cluster details
o 0-10 autoscaled, preemptible nodes: n2-standard-8 (=8 cores, 32GB RAM)
m Scaling down under discussion with Usman and Jason Nichols (GKE specialist)
o Local SSD at each node

e Queue status “Brokeroff’: you need to specifically set the queue when submitting to PanDA
e Data needs to be pre-placed to GOOGLE _EU

o Jobs will stay in “assigned” if data not present
o Requires special permission/quota in Rucio to interact with this storage element

e Queue was briefly validated. Data for “10% test” finished transferring today

PanDA

ATLAS Site | = Site |: PanDA Queue |= state type cap rtype Cloud Tier Final status Manual
GOOGLE GKE (@ & © GOOGLE100 ACTIVE analysis ucore cloud US T3D @ BROKEROFF € BROKEROFF
ATLAS Site PanDA Site PanDA Queue State type cap rtype Cloud Tier Final status Manual

© DDMEndpoint Type © Experiment Site Activities

GOOGLE_EU OS_CACHE GOOGLE read_lan/0, write_lan/0

Dask Gateway

Dask Gateway

Cluster Firewall

Sets up common Dask cluster and
JupyterHub for all users

Users have access to JupyterHub and
Dask, but not to GCP/GKE

Disadvantage: less flexibility for individual
customization. Needs central maintenance
of a set of images that work for everybody

Current installation on modest cluster: 3
e2-standard-8 nodes with 100GB disk

JupyterHub

http:)/jupyter.acp4hep.org/

Warning: JupyterHub seems to be served
over an unsecured HTTP connection. We
strongly recommend enabling HTTPS for
JupyterHub.

Username:

Password:

Local accounts. | need to add
new users

Integration with other identity
providers possible. Could be
done only if there is real usage

Server Options

@® pYHEP environment
coffea, uproot...

O ML environment
keras, flatbuffers, joblib, pillow, pytz, scikit-learn, scipy, uproot, root-numpy

O PHYSLITE environment (Added 10 min ago)
environment for experiments with DAOD_PHYSLITE with uproot, awkward etc.

Available images
o pyHEP environment: dependencies suggested in
this tutorial
o ML environment: dependencies requested by
Fang-Ying
Images hosted in GCP Container Registry
Installing conda dependencies and uploading images is
time consuming

http://jupyter.gcp4hep.org/
https://github.com/nsmith-/dask-hep-tutorial

Jupyter notebook specs

Each user notebook runs on an independent

pod with image selected at startup
o “Burstable” QoS with 1GB RAM base request
o How much you can burst depends on overall cluster
usage and occupancy of the node

(notebook) jovyan@jupyter-fbarreir:~$ df -h

H . ilesystem ize Used Avail Use unted on
User home directory: 10GB vl e
. . tmpfs 64 0 64M 0% /dev
s sys/fs/cqrouy
o Indepe.ndent.per3|stent disk o 1 v (e
o Value is configurable = $196 270 3.0 468 Jorkte/at ie ook carnsch
o Disk can also be manually extended ovmtaz 596 2,70 3.26 464 /emfa/gridiceraich
. . . cvmis2 5.9G 2.7G 3.2G 46% /cvmfs/sft.cern.ch
o Anything outside the home directory gets cleaned up cvmts2 5.9 2.76 3.2 46% /cvmfs/sft-nightlies.cern.ch
cvmfs2 5.9G 2.7G 3.2G 46% /cvmfs/unpacked.cern.ch
v/sda etc/hosts
once noteboolf stops | | fdmv/S el R g
m A potential conda user environment installed on bnci 6 0 e e
16G OA 16(3_ O§ /sys/firmware

home directory would survive -l

CVMFS

e Available from Jupyter session and Dask
workers
e You can for example interact with Rucio
to list file replicas and get signed URLs
o Requires uploading your voms
proxy to the notebook

(notebook) jovyan@jupyter-fbarreir:~$ echo $ATLAS LOCAL ROOT BASE/
/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase/
(notebook) jovyan@jupyter-fbarreir:~$ source ${ATLAS_LOCAL ROOT BASE}/user/atlasLocalSetup.sh
lsetup <tooll> [<tool2> ...] (see lsetup -h):
agis ATLAS Grid Information System
asetup (or asetup) to setup an Athena release
atlantis Atlantis: event display
eiclient Event Index
emi EMI: grid middleware user interface
ganga Ganga: job definition and management client
lcgenv lcgenv: setup tools from cvmfs SFT repository
panda Panda: Production ANd Distributed Analysis
pod Proof-on-Demand (ocbsolete)
pyami pPYAMI: ATLAS Metadata Interface python client
root ROOT data processing framework
rucio distributed data management system client
views Set up a full LCG release
xcache XRootD local proxy cache
xrootd XRootD data access
advancedTools advanced tools menu
diagnostics diagnostic tools menu
more help
show this menu
show versions of installed software

showVersions

(notebook) jovyan@jupyter-fbarreir:~$ lsetup rucio
bash: file: command not found

Requested: rucio ...
Setting up emi 4.0.2-1 200423.fix3 ...
Skipping: grid middleware already setup (from UI)
Setting up rucio 1.25.3 ...
Info: Setting compatibility to centos7
Setting up xrootd 5.1.1-x86 64-centos7 ...
bash: file: command not found
SESOEBOEIBIEBOI>>>>>>>>> Information for user <<<<<<C<<LLC<CLL<CLLL<LLLS
emi:
Warning: current gcc version (gcc00) is older than needed for emi (gcc48)
emi:
No valid proxy present. Type "voms-proxy-init -voms atlas"

(notebook) jovyan@jupyter-fbarreir:~$ rucio whoami

2021-05-19 14:55:54,098 ERROR given client cert (/tmp/x509up_ul000) doesn't exist

2021-05-19 14:55:54,098 ERROR Cannot authenticate.

Details: x509 authentication failed for account=fbarreir with identity={'client_proxy': '/tmp/x509up_ul000'}
2021-05-19 14:55:54,099 ERROR Please verify that your proxy is still valid and renew it if needed.

Spinning up a Dask cluster: LOCAL

LOCAL: your cluster lives in your jupyter pod

(3
o

File Edit View Run Kernel Tabs

dask/dashboard/f7bcc33e-2df3-4c9d

PROGRESS CPU MEMORY BY KEY
BANDWIDTH TYPES NPROCESSING
AGGREGATE TIME PER ACTION
COMPUTE TIME PER KEY NBYTES
TASK STREAM GPU UTILIZATION
WORKERS PROFILE SERVER
PROFILE GRAPH
BANDWIDTH WORKERS GPU MEMORY

CLUSTER MAP

CLUSTERS C + NEW

LocalCluster 1

Scheduler Address: tcp://127.0.0.1:41677
Dashboard URL: http://127.0.0.1:8787/status
Number of Cores: 8

Memory: 33.68 GB
Number of Workers: 4

<> SHUTD

Settings Help

Q

#| Untitled2.ipynb [

B + X

O ™ » m C » Code v

from dask.distributed import Client

client = Client("tcp://127.0.0.1:41677")

client
Client Cluster Not sure how these values
Scheduler: tcp://127.0.0.1:41677 Workers: 4 were chosen, probably by

Dashboard: http://127.0.0.1:8787/status Cores: 8 . . .
Memory: 336868 retrieving node size

¢ 1:|| Run your dask code

drag

Spinning up a Dask cluster: distributed

Distributed: each worker gets an independent pod, so you can scale to multiple nodes

File Edit View Run Kernel Tabs Settings Help

http:/jupyter.gcpdhep.org/services/d: Q % Untitled3.ipynb L4

B+ XTO 0 » m C » Code v Python [conda env:notebook] *

TASK STREAM PROGRESS

from dask_gateway import GatewayCluster
WORKERS MEMORY (WORKER) cluster = Gatewaycluster[worker_coreszl] [/orker_memory=2,] image="eu.gcr.io/gke-dev-311213/dask-gateway-coffea:20210518")

cluster.scale(1) 1-4 cores 1-8 GB D e — T Y] i i
CPU (WORKERS) CLUSTER MAP client = cluster.get_client(] Limits defined by admin
GRAPH PROCESSING TASKS /srv/conda/envs/notebook/lib/python3.8/site-packages/distributed/client.py:1129: VersionMismatchWarning: Mismatched versions found

COMPUTE TIME (OPERATION
{) | Package | client | scheduler | workers |

NEORY (ORERATION]| | PROFILE R T e e Warning... more on this later
PROFILE SERVER warnings.warn(version_module.VersionMismatchWarning(msg[@] ["warning"]))
BANDWIDTH (WORKERS) client

BANDWIDTH (TYPE) .
Client Cluster

COMPUTETRANSRER Y (ESEUMEMORY Scheduler: gateway://traefik-dhub-dask-gateway.default:80/default. 6295b697d9d5454fb2cab7ch80829d1b Workers: 1

Dashboard: /services/dask-gateway/clusters/default.6295b69fd9d5454fb2cab7ch80829d1b/status Cores: 1

GPU UTILIZATION ; :
Including the host! Memory: 2.15 GB

CLUSTERS C + NEW l [l’||

10

Spinning a dask cluster from outside Jupyter

é

()
C {0 A NotSecure | jupyter.gcpahep.org/hub/token
= —
$ Jupyter Home Token Admin Services »

Note

s note will help you keep track p#fvhat your tokens are for

export JUPYTERHUB_API_TOKEN=<YOUR TOKEN>

[user@machine gke-dask]# python3

Python 3.6.8 (default, Nov 16 2020, 16:55:22)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> from dask_gateway import Gatewa

>>> gateway = Gateway(|"http://dask.gcpdhep.org/services/dask-gateway"
>>> cluster = gateway.new_cluster(image="'xxx/yyy:zzz")

>>> client = cluster.get_client()

>>> # RUN YOUR COMPUTATION

auth='jupyterhub')

11

Software compatibility

e The client (Jupyter or your python shell) and the Dask workers need to have compatible
SW (dask, tensorflow...) installed

e | tried to generate compatible images for both Jupyter images building on the default
pangeo/daskgateway images

Jupyter image Name Worker image Description

pangec Not daskgateway/dask Basic Dask installation. We have overwritten this option
notebook 0.11.06 | selectable teway:0.9.0 with our images

eu.gcr.io/gke-dev- . This image is based on the dependencies used in this

HEP : y
by . PyHEP tutorial. It includes coffea, python-graphviz,
e environment a = : A ;
coffea:20210518)) mimesis on top of the default pangeo image.

13/jupyter-

Image based on Fang-Ying's request which includes
ML sk root, keras, flatbuffers, joblib, pillow, pytz, scikit-learn,
environment a scipy, energyflow, root-numpy, sklearn, awkward, uproot
on top of the default pangeo image.

eu.gcr.io/gke-dev-
PHYSLITE 311213/dask- Image by Nikolai including PHYSLITE SW (numpy h5py
environment = gateway- numba uproot awkward pyarrow coffea aiohttp) .
physlite:20210526

cr.io/gke-dev-
/jlupyter-
physlite:20210526

https://qithub.com/gcp4hep/analysis-cluster/wiki/Daskhub-images

12

https://github.com/gcp4hep/analysis-cluster/wiki/Daskhub-images

Git repository includes wiki with documentation

& (& 0 @ github.com/gcp4hep/analysis-cluster/wiki/Daskhub-usage

O Search or jump to... / Pullr Issues Mar Explore

& gcpdhep [analysis-cluster ®Watch ~ 9 Y Star 1

Settings

Edit New Page

Below you will find information on how to use our Dask Gateway instance, including basic snippets to get you started. You » Pages (8
can either use it from JupyterHub or directly through python.

Home

JupyterHub

Our JupyterHub instance is available under http://jupyter.gcp4hep.org. You need a local JupyterHub user account in order to DaskHub pages
access it. Installation

Each notebook runs on an independent pod. When starting up JupyterHub, the user will be given a selection of available Images
images.

Each user is assigned a 10GB disk for his personal files. This disk is persistent and mounted to the user's home directory.
Anything outside the home directory is cleaned up when the notebook is stopped.

o . Clone this wiki locall
Basic creation and shutdown of a Dask cluster Y

https://github. co

The following figure illustrates a basic example.

1. You connect to the gateway, create a cluster and get the client. You have to scale the cluster in order to start up a
worker. to the required size.

from dask_gateway import GatewayCluster

cluster = GatewayCluster(worker_cores=1, worker_memory=2, image="xxx/yyy:zzz")
cluster.scale(1)

client = cluster.get_client()

B Instructions on the available images are in the image section

Conclusions

e Infrastructure is ready to be used and required features implemented
o Desirable Dask features (https, oAuth) can be implemented depending on evolution of activity
o Data management in Dask to be explored further
e \alidation steps under preparation
o “10% PanDA” test
o “1% Dask” test
e Paul has setup a separate cluster with Dask Helm (single user)

o This model can be more appropriate for a potential PanDA integration
o Still requires more experience and a dedicated discussion

14

