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Consider an LLP…
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• LLP is produced from an LHC collision, and then travels through, say, the CMS detector

• If it’s reasonable heavy (10, 100+ GeV), can have a unique signature:

‣ Large energy loss (through ionization or nuclear interactions)

‣ Slow-moving (large time-of-flight)

‣ Could also be neutral and forward
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1: Stop the particle
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•Place dense absorber material close to interaction point aiming to stop particle: can even be moved

•Density determines the absorption efficiencies
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2: Wait for it to decay and detect
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•Stopped particle might decay to SM+BSM eventually


•Leaves detectable EM/hadronic energy:  
calorimeter signature


•For long lifetimes decay happens significantly after 
absorption


•Open up new avenues: make absorption material removable

‣ Change position w.r.t. beam spot: target different LLP mass ranges

‣ Remove from cavern for detection:  

reduce background and avoid trigger thresholds


•Target: long lifetimes, low energy SM decay products
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Previous Searches at ATLAS and CMS
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• Both CMS and ATLAS have performed several searches for particles that stop in the detectors and then decay 
later


•Most recent CMS: 10.1007/JHEP05(2018)127

•Most recent ATLAS: 10.1007/JHEP07(2021)173

• Both experiments set cross section and mass limits for lifetimes between 100 ns and 10 days, 


• Benchmark model: split SUSY gluino R-hadrons 

Δm ≳ 100 GeV

• No trigger needed

• no collider detector  

thresholds

https://link.springer.com/article/10.10JHEP05(2018)127
https://dx.doi.org/10.1007/JHEP07(2021)173&v=3747cd0f
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Acceptance for Gluino Benchmark Model
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•Benchmark case where the stopped particle is gluino ( ) in split SUSY

‣ SUSY must be broken at a scale much higher than the weak scale

‣ Very massive squarks

‣ Gluino becomes long-lived due to large mass difference between them and squarks, which mediate their decay


•Generate gluinos and their R-hadrons in Pythia8 to obtain the kinematic acceptance
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•Detector position can be changed and adapted to targeted mass range
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Absorption
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•As absorber: brass rods

‣ High density

‣ Relatively cheap

‣ Re-usable in/from (hadronic) calorimeters


•Simulate neutral R-hadrons passing through an approximation of  
CMS material with Geant4 

•R-hadrons hit brass rods and are absorbed


•Absorption depends on velocity, mass, and depth


• For practical reasons, chose 2x2x2 m absorber
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Total trapping efficiency
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•Convolve R-hadron angular acceptance and absorption efficiency to get the total efficiency times acceptance:
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• Total trapping efficiency between 0.1 and 1%, depending on the considered mass and position
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Detection setup
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• Take the absorber apart (brass rods, 1cm x 1cm)

•Submerge into LAr, leave 1cm space between rods

•Apply voltage to each rod and attach readout electronics

‣ LAr calorimeter!


•Particles above ~100MeV escape the rods

•Primary SM particles above 3 GeV can easily be detected by 

setup
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Backgrounds
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•Detection happens far away from interaction point: only 
background from cosmics

•Shielding can reject everything but muons


•Cosmic muons can fake signal: a few GeV for ~TeV muon


•Relative energy deposit studied in simulation  
(shooting from worst possible angle)

arXiv:hep-ph/9803488
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Cosmic Muon Rejection
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•RPCs + timing can reduce the muon background


• Timing precision defined by distance (d):  
large enough, timing does not need to be very precise


•Assume RPC efficiency + convolve cosmic muon spectrum with 
energy deposits from muons = background estimate

‣ Can also be derived from data with unexposed rods!


• Take all muons that leave an energy above ∆m/2 
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Sensitivity
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•Complimentary to ATLAS and CMS, in both mass and lifetime coverage

•Covering dark corners of the phase space


•Can target different lifetimes by adjusting exposure and detection times
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Summary
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•We propose a two-stage experiment to discover LLPs 
produced at the LHC, stop in detector material, and 
decay later


•Would bring unique sensitivity to the small mass splitting 
regime (~3-100 GeV)

•Uniquely sensitive to lifetimes on the order of days to 

years

•Possibility of discovery reach within a few months of 

operation


•Relatively low cost (~1M CHF)

•Construction could be carried out without interfering with 

existing scientific operations at CERN JK, J. Alimena, J. Simms, T. Aarrestad, M. Pierini, A. Kish,  
arxiv:2110.13837

https://arxiv.org/abs/2110.13837
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Backup
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Fraction of Energy Deposited in LAr
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