Status of the FASER Experiment

9 November, 2021 10th Workshop of the LLP Community

Tobias Böckh (University of Bonn) on behalf of the FASER collaboration

ForwArd Search ExpeRiment

- Search for LLPs produced in inelastic pp collisions
 - Large inelastic pp cross-section σ_{inel} (13 TeV) ~ 75 mb $\rightarrow N_{inel}$ (Run 3, 150 fb⁻¹) ~ 10¹⁶
 - Small production angle: $\theta \sim \Lambda_{acd} / E \sim mrad$
 - Macroscopic decay length: ~ 100 m for M $\sim 10-100$ MeV, $\epsilon \sim 10^{-5}$
- Placed 480 m downstream of the ATLAS IP on the beam collision axis in TI12 tunnel
 - Quiet background environment
- Detector installed in March 2021, data taking during LHC Run 3 (2022-2024)
- FASER: search for new, weakly-interacting particles in the MeV GeV range (e.g. A', HNL, ALPS)
- FASER*v*: first measurements of neutrinos from a collider and in unexplored energy regime

FASER Installation in TI12

- Full BSM search detector installed in March 2021
- IFT will be installed in two weeks
- Emulsion detector will be installed just before the start of Run 3

Tracker Commissioning

- In situ commissioning ongoing since April 2021 using internal calibration circuit and cosmic rays
 - ensure high fraction of operational channels, low noise occupancy, uniform threshold distribution
- Use cosmics to test full detector system including trigger, DAQ and tracker stations
 - Cosmic rate in TI12 (100m underground) is very low, especially for more horizontal cosmic rays
 Table shows the expected and measured rates for cosmics going through 1,2 or 3 tracker stations

	track rate	two-station track rate	three-station track rate
expected	0.011 Hz	1/(28 hrs)	1/(82 days)
measured	0.012 ± 0.001 Hz	1/(33.5 ± 8.9 hrs)	Not yet measured

• The Tracker is described in more detail in "The tracking detector for the FASER experiment" which will be submitted in the next weeks

Testbeam

- Carried out testbeam campaign from July 28 to August 4 using CERN SPS beam
- Goal: energy calibration of preshower and calorimeter modules and characterize overall performance
 - Measure absolute calorimeter response, electron vs muon response, particle identification, ...
- 5 GeV 300 GeV electron beam, 200 GeV muon beam and 200 GeV pion beam from CERN SPS
- Setup: two trigger scintillators, 3-layer tracker station (IFT), preshower scintillator station and 6 calorimeter modules
 - Positioned on top of large scissor table to measure different scan points
- Recorded more than 150 million events!
- Analysis ongoing

LHC Pilot Beam

- Collecting data during pilot beam test in the last two weeks in October
- Beam splash events (beam is driven in closed collimator, producing large shower of muons)
 - See particles from splashes in front of ATLAS and LHCb
- See many tracks during alignment of collimators between ATLAS and FASER in the outgoing beam
- Stable beam: 900 GeV collisions, 2 x 10²⁸ cm⁻²s⁻¹ luminosity
 - 14 tracks collected over 26 hours, probably originating from beam background not collisions at ATLAS IP (7 events from non-colliding bunches, 7 from colliding bunches)
- Continuing to study beam background
- First three-station tracks!
- First track with low enough momentum too see obvious bending in mag. field

Test of Emulsion module

- Combined test of emulsion module (20 emulsion films and tungsten plates),
 3-layer tracker station (IFT) and two scintillators
- Study matching of tracks in the emulsion detector and IFT

Recent Offline Development Work

- Updated TI12 and testbeam geometry with passive material
- Segment finder allows to fit tracks with at least 4 clusters and multiple tracks per event
- Improved ECAL simulation (tested different physics models, comparison with LHCb and testbeam data)
- Work on ACTS-based tracking and alignment ongoing
- First studies of FASERv simulation
 Space Point Segment fit

Acknowledgements

We are grateful for the generous support of the Heising-Simons Foundation, the Simons Foundation and CERN

SIMONS FOUNDATION

Conclusions

- FASER has been installed in the LHC tunnel
 - IFT will be added in two week
 - In situ commissioning using internal calibration circuit and cosmics ongoing since April 2021
- Collected > 150 million events during testbeam
 - Analysis of energy calibration of preshower and calorimeter, tracker efficiency, ... ongoing
- LHC pilot beam
 - Observed first three-station events
 - Studying beam backgrounds
- First combined test of emulsion detector and IFT
- Improvements on offline reconstruction
 - Work on tracking, alignment, ...

Looking forward to first high-energy LHC collisions of Run 3

Additional slides

FASER Detector

- 0.55 T permanent dipole magnets
 - Separate the pair of charged particles arising from the LLP decay
- Veto, timing and pre-shower scintillator stations
 - Ensure that the LLPs decay inside the decay volume or the emulsion detector
- Three tracker stations and Interface tracker (IFT)
 - Use 96 ATLAS semiconductor strip tracker modules (SCT) Thanks to the ATLAS Collaboration!
 - Measure the position and momentum of charged particles
 - IFT: match tracks from neutrino interaction in emulsion detector to main tracker
- Electromagnetic calorimeter
 - Use 4 LHCb outer ECAL modules Thanks to the LHCb Collaboration!
 - Discriminate electrons from muons
 - Measure the em. energy
- Tungsten/emulsion detector
 - Detect all three neutrino flavors
- Trigger
 - Expect 650 Hz trigger rate https://arxiv.org/abs/2110.15186

1.5 m decay volume 20 cm diameter

Emulsion production for FASERv

- emulsion film: vertex detector with intrinsic resolution of ~ 50 nm
- emulsion readout system HTS-1
- upgrade of emulsion facility completed
- confirmed sufficient track-finding efficiency (> 96 %) using cosmic rays

